Appendices

Appendix A SEARS Compliance

 Table A1
 Compliance with SEARs for application number SSI-22545215

Category	SEARs requirement	Section addressed
General Requirements	The Environmental Impact Statement (EIS) for the project must be prepared in accordance with Part 3 of Schedule 2 of the <i>Environmental Planning and Assessment Regulation 2000</i> (the Regulation).	Section 6.1.1, Appendix B
	The EIS must include:	Executive summary
	– an executive summary	
	 a detailed description of the project, including: 	Section 2.1, 2.2
	 an accurate history of the site, including development consents and approved plans previously and/or currently applicable to the site 	
	 the strategic need for the project with regard to its critical State significance 	Section 3.1
	 the justification for the project and an analysis of other options or alternatives considered and the reasons for selecting the preferred option 	Section 4.1, 4.3 and 4.4
	 likely staging of the project, including construction, commissioning, operation, maintenance and decommissioning 	Section 5
	 likely interactions between the project and existing, approved and proposed operations in the vicinity of the site 	Section 5.1
	 site plans and maps at an adequate scale showing the location and design of all project components, the footprint, existing infrastructure and environmental features 	Section 5.8, Appendix B
	any contributions required to offset the impacts of the project, and	Section 8 and 9
	 infrastructure upgrades or items required to facilitate the project, including measures to ensure these upgrades are appropriately maintained. 	Section 5.2
	 consideration of all relevant environmental planning instruments, including identification and justification of any inconsistencies with these instruments 	Section 6.1.2
	 consideration of issues discussed in Attachment 2 (public authority responses to key issues) 	Appendix A
	 a risk assessment of the potential environmental impacts of the project, identifying the key issues for further assessment 	Section 7.4 and project Scoping Report
	 a detailed assessment of the key issues specified below, and any other significant issues identified in the risk assessment, which includes: 	Section 8 and 9
	a description of the existing environment, using sufficient baseline data	
	 an assessment of the potential impacts of all stages of the project, including any cumulative impacts, taking into consideration relevant guidelines, policies, plans and statutes, and 	
	 a description of the measures that would be implemented to avoid, minimise, mitigate and if necessary, offset the potential impacts of the project, including proposals for adaptive management and/or contingency plans to manage significant risks to the environment. 	
	 a consolidated summary of all the proposed environmental management and monitoring measures, highlighting commitments included in the EIS. 	Appendix D
	The EIS must also be accompanied by: - high quality files of maps and figures of the subject site and proposal	Throughout the EIS

Category	SEARs requirement	Section addressed
	 a report from a qualified quantity surveyor providing: 	
	 a detailed calculation of the capital investment value (CIV) of the project (as defined in Clause 3 of the Regulation, including details of all assumptions and components from which the CIV calculation is derived. The report shall be prepared on company letterhead and indicate the applicable GST component of the CIV 	A CIV report will be provided under separate cover to DPIE. Total CIV is outlined in Section
	 an estimate of the jobs that will be created by the project during the construction and operational phases, and 	Error! Reference source not found.
	certification that the information provided is accurate at the date of preparation.	
Key issues	The EIS must address the specific matters:	-
	Community and stakeholder following engagement – including:	Section 7, Appendix
	 a community and stakeholder participation strategy identifying key community stakeholders 	C
	 clear evidence of how each stakeholder has been consulted and details of the issues raised 	
	 clear details of how issues raised during consultation have been addressed and whether they have resulted in changes to the development. 	
	Air quality and odour – including:	Section 8.1, 9.8,
	 a quantitative assessment of the potential air quality, dust and odour impacts of construction, commissioning and operation, in accordance with relevant Environment Protection Authority guidelines 	9.9, Appendix E
	 cumulative assessment of air quality emissions from operation of the site as a whole and comparison with background data and impact assessment criteria 	
	 details of all air quality and odour control equipment, benchmarked against best practice, and monitoring for all discharge points and fugitive emissions 	
	 an assessment of the greenhouse gas emissions of the project and any measures to minimise emissions intensity, improve energy efficiency and adopt new technologies to reduce emissions in the medium to long term 	
	 details of proposed mitigation, management and monitoring measures. 	
	Hazards and risk – including:	Section 8.3,
	 a preliminary risk screening completed in accordance with State Environmental Planning Policy No.33 – Hazardous and Offensive Development and Applying SEPP 33 (DoP, 2011), with a clear indication of class, quantity and location of all dangerous goods and hazardous materials associated with the development. Should preliminary screening indicate that the project is "potentially hazardous" a Preliminary Hazard Analysis (PHA) must be prepared in accordance with Hazardous Industry Planning Advisory Paper No.6 – Guidelines for Hazard Analysis (DoP, 2011) and Multi-Level Risk Assessment (DoP, 2011). 	Appendix G
	 Systems and procedures to prevent and manage all types of emergencies. 	
	Noise and vibration – including:	Section 8.2,
	 a quantitative assessment of potential construction, operational and transport noise and vibration impacts of the project prepared in accordance with the relevant Environment Protection Authority guidelines 	Appendix F
	 identification of sensitive receivers and consideration of cumulative noise from approved and/or proposed development on site and in the vicinity of the site 	
	 details and justification of proposed noise mitigation and monitoring measures. 	

Category	SEARs requirement	Section addressed
	Traffic and transport – including:	Section 8.5,
	 include a traffic impact assessment addressing construction and operational traffic impacts of the project, details of traffic types and volumes, access roads and haul routes 	Appendix I
	 an assessment of the predicted impacts of project traffic on road safety and capacity, including consideration of cumulative traffic and the need for any road upgrades or infrastructure works to support the project 	
	 Details of internal road layouts and vehicle movement plans to demonstrate that all vehicle sizes can be safely accommodated on site 	
	Soils and water – including:	Section 8.4, 9.1,
	- an assessment of potential surface and groundwater impacts of the project	Appendix H
	 characterisation of water quality discharges, including quality and quantity of all pollutants from the project for comparison against relevant water quality criteria and details of proposed water quality controls 	
	 a detailed site water balance and any water licensing requirements 	
	 details of the stormwater and wastewater management systems and measures to treat, reuse or dispose of water 	
	 description of the proposed erosion and sediment controls during construction 	
	 characterisation of the nature and extent of any contamination on the site and surrounding area. 	
	Biodiversity – including an assessment of the proposal's biodiversity impacts in accordance with the <i>Biodiversity Conservation Act 2016</i> , including the preparation of a Biodiversity Development Assessment Report (BDAR) where required under the Act, except where a waiver for preparation of a BDAR has been granted.	Section 9.2, Appendix K
	Heritage (Aboriginal) – including identification of potential impacts on Aboriginal cultural heritage values through consultation with the Aboriginal community.	Section 9.3
	Waste – including details of the quantities and classification of all waste streams to be generated on site and details of waste storage, handling and disposal	Section 9.9
	Visual Amenity – including an assessment of the potential visual impacts of the project on the amenity of the surrounding area and sensitive receivers.	Section 9.10
	Infrastructure requirements – including details and plans of all infrastructure required to service the project and any impacts on existing utility infrastructure and assets.	Section 5
	Socio-economic – including:	Section 9.7
	 a social impact assessment in accordance with the Department's Social Impact Assessment Guideline – State significant projects (July 2021) 	
	 an analysis of any potential economic impacts of the development, including a discussion of any potential economic benefits to the local and broader community. 	
	Ecologically sustainable development – including a description of how the project will incorporate the principles of ecologically sustainable development in the design, construction and ongoing operation of the development.	Section 11.1.3
	Planning agreement/development contributions – demonstration that satisfactory arrangements have been or would be made to provide, or contribute to the provision of, necessary local and regional infrastructure required to support the development.	Section 6.1.1

Category	SEARs requirement	Section addressed
Consultation	During the preparation of the EIS, you must consult with the relevant local, State or Commonwealth Government authorities, service providers, community groups and affected landowners.	Section 7 and Appendix C
	In particular you must consult with:	
	- NSW Ports	
	 Wollongong City Council 	
	 BlueScope Community Consultative Committee and other relevant community groups 	
	 Environment Protection Authority 	
	 Transport for NSW 	
	 DPIE Water and Natural Resources Access Regulator 	
	 Environment, Energy and Science Group 	
	 Heritage NSW 	
	 NSW Fire and Rescue 	
	 Sydney Trains 	
	 surrounding local landowners and stakeholders, including the Illawarra Local Aboriginal Land Council 	
	 any other public transport, utilities or community service providers. 	
	The EIS must describe the consultation process and the issues raised and identify where the design of the project has been amended in response to these issues. Where amendments have not been made to address an issue, an explanation should be provided.	
Further consultation after 2 years	If you do not lodge a Development Application and EIS for the project within two (2) years of the issue date of these SEARs, you must consult further with the Secretary in relation to the preparation of the EIS.	Noted.
References	The assessment of the key issues listed above must take into account relevant guidelines, policies, and plans as identified. While not exhaustive, Attachment 1 contains a list of some of the guidelines, policies, and plans that may be relevant to the environmental assessment of this proposal.	Section 12

Table A2Agency comments attached to SEARs

Agency	Comment	Where addressed
Biodiversity and Conservation Division	We note the project occurs within a heavily industrialised area. We have no specific comments in relation to the SEARs and are supportive of the draft advice in relation to assessing any biodiversity impacts associated with the proposal. That is, as per Part 7 of the <i>Biodiversity Conservation Act 2016</i> , a BDAR is prepared or a BDAR waiver is requested for the proposal.	Section 9.2
DPIE Water and NRAR	 The SEARS should include: The identification of an adequate and secure water supply for the life of the project. This includes confirmation that water can be sourced from an appropriately authorised and reliable supply. This is also to include an assessment of the current market depth where water entitlement is required to be purchased. 	Section 8.4
	 A detailed and consolidated site water balance. 	Section 8.4
	 Assessment of impacts on surface and ground water sources (both quality and quantity), related infrastructure, adjacent licensed water users, basic landholder rights, watercourses, riparian land, and groundwater dependent ecosystems, and measures proposed to reduce and mitigate these impacts. 	Section 9.2
	 Proposed surface and groundwater monitoring activities and methodologies. 	Section 9.1
	 Consideration of relevant legislation, policies and guidelines, including the NSW Aquifer Interference Policy (2012), the Guidelines for Controlled Activities on Waterfront Land (2018) and the relevant Water Sharing Plans (available at https://www.industry.nsw.gov.au/water). 	
EPA	 The Environmental Impact Statement (EIS) should document how the following outcomes will be achieved: there is no pollution of waters (including surface & groundwater) except in accordance with an Environment Protection Licence (EPL) issued by the EPA. provides development that maintains or restores the community's environmental uses and values of water through the achievement of the relevant NSW Water Quality and Flow Objectives promotes integrated water cycle management that optimises opportunities for sustainable water supply, wastewater and stormwater management and reuse initiatives where it is safe and practicable to do so bunding is designed in accordance with the EPA's Bunding and Spill Management Guidelines 	Section 8.4, 9.1,
EPA	 This assessment should incorporate process discharges and any proposed controls from the operational blast furnace as well as from the relevant premises discharge drain to the receiving environment 	Section 8.4
	 State the ambient NSW Water Quality Objectives (NSW WQO) and environmental values for the receiving waters relevant to the project, including the indicators and associated guideline values or criteria for the identified environmental values; 	Section 8.4
	 Where site specific studies are proposed to tailor the ANZG (2018) guideline values to reflect local conditions, obtain prior agreement from the EPA on the approach and study design; 	Section 8.4
	Identify and estimate the quality and quantity of all pollutants that may be introduced into the water cycle by source and discharge point (including cooling and process wastewater) and describe the nature and degree of impact that discharge(s) may have on the receiving environment, including consideration of all pollutants that pose a risk of non-trivial harm to human health and the environment and taking into account the ANZG (2018) guidelines.	Section 8.4

Agency	Comment	Where addressed
	 Where relevant, identify the rainfall event that the water quality protection measures will be designed to contain (including first flush systems, integrated water cycle management, etc) 	
	 Demonstrate how construction and operation of the project will, to the extent that the project can influence, ensure that: 	Section 8.4
	 where the NSW WQOs for receiving waters are currently being met they will continue to be protected; and 	
	 where the NSW WQOs are not currently being met, activities will work toward their achievement over time 	
	 justify, if required, why the WQOs cannot be maintained or achieved over time 	Section 8.4
	 demonstrate that all practical measures to avoid or minimise water pollution and protect human health and the environment from harm are investigated and implemented 	Section 8.4,
	 provide details of measures to minimise and mitigate potential impacts of discharges on the receiving waterway such as recycling, wastewater treatment and/or optimising the location, depth and mode of discharge to maximise dilution, mixing and dispersion; 	Sections 8.4, 9.9
	 specify the location of discharge points, including but not limited to drains at the #6BF, on the broader premises, Allans Creek and Port Kembla Harbour release location(s) for dry and wet weather justifying why the location was selected over other potential discharge points, including discussion of waterway characteristics at each point (e.g. depth, water quality, hydrodynamics) and consideration of the relative water quality risks 	Section 8.4
	 assess the significance of any identified impacts including consideration of the relevant ambient water quality outcomes; 	Section 8.4
	 include the results of water quality modelling and analysis including descriptions of water quality impacts under the full range of operating scenarios, including average or typical through to worst case for each discharge point during wet and dry weather 	Section 8.4
	 identify any sensitive receiving environments (which may include estuarine and marine waters downstream) and develop a strategy to avoid or minimise impacts on these environments 	Sections 8.4, 9.2
	 identify proposed water quality monitoring locations, monitoring frequency and indicators of water quality 	
	 in wastewater management systems for the proposal, take into account the current Pollution Reduction Programs (including PRP 182 Condition U4 and PRP 183 Condition U5) on Environment Protection Licence 6092 related to improving wastewater discharges from the premises. The Reline Project should consider options to improve wastewater discharge quality, and implement any necessary treatment systems or controls, to achieve a discharge standard consistent with the objectives of these PRPs 	Section 8.4
	 describe how stormwater will be managed during the construction phase. The proponent should provide a commitment in the EIS that a Soil and Water Management Plan will be developed and implemented prior to construction in accordance with the Managing urban stormwater: soils and construction, vol. 1 (Landcom 2004) and vol. 2 (A. Installation of services; B. Waste landfills; C. Unsealed roads; D. Main Roads; E. Mines and quarries) (DECC 2008) 	Sections 9.1, 9.9
	 Describe how stormwater will be managed during the operational phase of the project. This should include collecting, assessing, and treating (where necessary), first flush stormwater to achieve the relevant environmental discharge standard. 	Sections 8.4, 9.1

Agency	Comment	Where addressed
EPA	 The environmental outcome for the project should ensure: emissions do not cause adverse impact upon human health or the environment no offensive odour beyond the boundary of the premises compliance with the requirements of the POEO Act and its associated regulations maintains or improves air quality to ensure National Environment Protection Measures for ambient air quality are not compromised • any dust emissions are prevented or minimised. 	Section 8.1
	Assess the risk associated with potential discharges of fugitive and point source emissions for all stages of the proposal. Assessment of risk relates to environmental harm, risk to human health and amenity	Section 8.1
	 Justify the level of assessment undertaken on the basis of risk factors, including but not limited to: a. proposal location; b. characteristics of the receiving environment; and c. type and quantity of pollutants emitted. 	Section 8.1
	 Describe the receiving environment in detail. The proposal must be contextualised within the receiving environment. The description must include but need not be limited to: d. meteorology and climate; e. topography; f. surrounding land-use; receptors; and ambient air quality 	Sections 8.1, 9.10
	Include a detailed description of the proposal. All processes that could result in air emissions must be identified and described. Sufficient detail to accurately communicate the characteristics and quantity of all emissions must be provided.	Section 8.1
	Identify and provide a detailed discussion regarding emission control techniques/practices that will be employed by the proposal. All emission controls must be benchmarked against best practice process design and emission control. Nominated controls must be explicitly linked to calculated emission reductions adopted in the air quality impact assessment emissions inventory, with all assumptions documented and justified.	Section 8.1
	Include consideration of 'worst case' emission scenarios & impacts at proposed emission limits.	Section 8.1
	Account for cumulative impacts associated with existing emission sources as well as any currently approved developments linked to the receiving environment.	Section 8.1
	Air dispersion modelling must be conducted in accordance with the Approved Methods for the Modelling and Assessment of Air Pollutants in NSW (2016)	Section 8.1
	Demonstrate the proposal's ability to comply with the relevant regulatory framework, specifically the POEO Act and the POEO (Clean Air) Regulation (2010), including compliance with Group 6 limits.	Section 8.1
	The EIS should include a commitment that the proponent will develop and implement an Air Quality Management Plan prior to expansion of operations.	Section 8.1

Agency	Comment	Where addressed
	In particular the assessment must include, but not necessarily limited to:	Section 8.2, 9.10
	g. The identification and assessment of all potential noise sources associated with the development, the location of all sensitive receptors, and proposed noise mitigation measures.	
	 Accounting for adverse weather conditions including temperature inversions. 	
	 Sound power levels measured or estimated for all plant and equipment must be clearly stated and justified. 	
	j. An assessment of cumulative noise impacts, having regard to existing surrounding industrial activities and development.	
	 Consideration of impacts to sensitive receivers and include consideration of sleep disturbance and, as relevant, the characteristics of noise and vibration (for example, low frequency noise). 	
	I. Demonstrating that blast impacts are capable of complying with the current guidelines, if blasting is required.	
	With the proposed activity being potentially traffic generating, the EIS should identify the transport route(s) to be used, the hours of operation and assess any potential road traffic noise impacts in accordance with the "NSW Road Noise Policy".	Section 8.2
	 The goal of the development should be to ensure: it is in accordance with the principles of the waste hierarchy and circular economy 	Section 8.2
	 the handling, processing and storage of all materials used at the premises does not have negative environmental or amenity impacts 	
	 the beneficial reuse of all wastes generated at the premises are maximised where it is safe and practical to do so no waste disposal occurs on site except in accordance with an EPL. 	
	The EIS should also provide details of how waste will be handled and managed both onsite and offsite to minimise pollution. This should include information on the infrastructure (e.g. bunding and containment) as well as the procedures and protocols to be implemented to ensure that any waste leaving the site is transported and disposed of lawfully and does not pose a risk to human health or the environment.	Section 9.9
	The EIS should document systems and procedures to prevent and manage all types of emergencies. This includes systems and infrastructure to manage incidents (for example, spills, explosions or fire) that may occur at the premises or that may be associated with activities that occur at the premises and which are likely to cause harm to the environment. This should also include appropriate measures to protect the environment during these emergencies such as on-site containment measures for fire water and communication strategies that involves reporting of any incidents to appropriate regulatory authorities.	Section 8.3
Heritage NSW	The subject site is not listed on the State Heritage Register (SHR), nor is it in the immediate vicinity of any SHR items. Further, the site does not contain any known historical archaeological relics. Therefore, no heritage comments are required. The Department does not need to refer subsequent stages of this proposal to the Heritage Council of NSW.	Section 9.4
	Notwithstanding the highly disturbed nature of the site, Heritage NSW advise that the process described in the Due Diligence Code of Practice for the protection of Aboriginal objects in NSW (DECCW 2010) is not sufficient to assess the impacts on Aboriginal cultural heritage for Major Projects. In this instance, this is because no consultation would be required to be undertaken with the Aboriginal community which may provide more information about cultural values of the land.	Section 9.3
	Heritage NSW recommend that the SEARs provide an avenue for consultation with the Aboriginal community.	

Agency	Comment	Where addressed
TfNSW	 Input has been requested by the Secretary under Schedule 2 of the Environmental Planning and Assessment Regulation 2000 	Section 8.5
	 The development proposes to undertake major maintenance works in order to reline, commission and operate 6BF, located in the southern sector of the No.2 Works of Port Kembla Steelworks 	Section 5.3
	 Traffic associated with the Steelworks currently accesses the site via Five Islands Road, Flinders Street and Springhill Road, with heavy vehicles additionally using Masters Road, Shellharbour Road, the Princes Highway and the Princes Motorway to transport goods to the wider road network. 	Section 5.4
	 The construction phase will require materials and equipment to be transported to the Steelworks via road and will increase light and heavy vehicle road movements. The impact of this increased traffic needs to be considered and adequately mitigated. 	Section 5.4
	Traffic Impact Study (TIS): TfNSW notes that a Traffic Impact Study (TIS) is planned to be prepared as part of the EIS (Scoping Report Section 5.2.5). TfNSW supports this proposed methodology. The RTA Guide to Traffic Generating Developments (Table 2.1) should also be considered when preparing the TIS.	Section 8.5
	Traffic Impact Study (TIS): TfNSW notes that a Traffic Impact Study (TIS) is planned to be prepared as part of the EIS (Scoping Report Section 5.2.5). TfNSW supports this proposed methodology. The RTA Guide to Traffic Generating Developments (Table 2.1) should also be considered when preparing the TIS.	Section 8.5
	State Environmental Planning Policy (Infrastructure) 2007: The provisions of 104 need to be addressed.	Section 8.5
	Consultation with Sydney Trains: Given that the proposed development is within close proximity to the rail corridor managed by Sydney Trains on behalf of TAHE, it is recommended that consultation with Sydney Trains (as a separate Agency) is undertaken during the preparation of the EIS.	Section 7
WCC	Wollongong City Council declared a Climate Emergency in August 2019. The EIS should detail how BlueScope has the capability and flexibility to adopt new technologies and iron making configurations in the medium to longer term. The EIS should also detail opportunities to reduce the emissions intensity from its existing operations by outlining how progressive investment in complementary technologies such as use of renewable energy and additional on-site electricity might be implemented in line with Council targets.	Sections 0
	Under Section 7.9 of the Biodiversity Conservation Act an application to carry out State Significant Infrastructure is to be accompanied by a Biodiversity Development Assessment Report (BDAR) unless the Planning Agency Head and the Environment Agency Head determine that the proposed development is not likely to have any significant impact on biodiversity values.	Section 9.2
	Any stormwater runoff from the site as a result of this proposal must be managed in accordance with the controls in the Wollongong DCP 2009 Chapter E14: Stormwater Management.	Section 8.4
	The applicant should refer to Chapter E3 – Car Parking, Access, Servicing/ Loading Facilities and Traffic Management of the Wollongong Development Control Plan 2009 (WDCP 2009) for merit guidance on car parking and servicing.	Section 8.5
	A Traffic Impact Assessment needs to be prepared by a suitably qualified consultant in accordance with Table 2.1 of the RTA Guide to Traffic Generating Development.	

Agency	Comment	Where addressed
	 The applicant will need to provide an assessment of the proposed traffic generation based on the expected construction/delivery requirements, vehicle capacities etc. The different types of heavy vehicle and passenger vehicles need to be identified and quantified as part of the assessment. The analysis should determine the peak operating hours of the development and provide details of the split of vehicle types, as well as a multi modal analysis across a 24-hour period for both weekdays 	Sections 5.4, 0, 8.5
	 and weekends. If changes are proposed to the access arrangements, the proposed access design must comply with the AS2890 series and be designed for the largest anticipated vehicle to enter the site with adequate clearances. 	
	 Where possible, construction deliveries should be sent by rail freight to reduce heavy vehicle impacts on the surrounding road network. 	Sections 5.4, 8.5, 9.10
	 For road access, heavy vehicle routes are to be outlined ensuring that construction traffic is directed to the State Road Network, and not Councils local roads. 	
	 The applicant will need to assess the capacity of the existing road network/access to and from the site and the capacity and level of service at relevant intersections under baseline conditions and a future 10-year scenario with background traffic growth. 	
	 The applicant needs to provide details of likely traffic impacts at all relevant intersections and provide details of any required upgrades that are required to ensure an acceptable level of service. The applicant will need to demonstrate acceptable management of any potential safety and capacity impacts as a result of the expected traffic increase. 	
	 Details of required upgrades to the road network will need to be put forward by the applicant to ensure that the network is able to accommodate future background traffic growth as well as development-generated traffic. The applicant will also need to demonstrate how the safety of all road users will be maintained i.e. a review of relevant pedestrian and cyclist infrastructure. 	
	 The applicant should provide all internal access dimensions on the site plan, including grades, access widths, parking aisle widths which comply with AS2890.1 and AS2890.2. 	Appendix I
	 The applicant should refer to Schedule 1 of Chapter E3 of WDCP 2009 for merit guidance on car parking, bicycle parking and motorcycle parking. 	
	 Disabled car parking also needs to be provided in accordance with BCA requirements and the design specification must meet the requirements of AS2890.6. 	
	A series of vehicle movement plans will be required to demonstrate that the internal road network is able to accommodate all sizes of vehicles likely to enter the site and access all areas with forward ingress and egress. As per the requirements of AS2890.1, a B99 vehicle must be shown passing a B85 vehicle on all critical corners. A service vehicle must also be shown passing a B85 vehicle throughout the development.	
	 The applicant will need to clarify emergency access arrangements. 	
	 The applicant should refer to Chapter E3 of WDCP 2009 for merit guidance on loading and servicing arrangements. 	Appendix I
	 AS2890.2 requires a maximum grade of 15.4% for service vehicles which should also be taken into consideration. 	

Appendix B Statutory Compliance Table

Table C1 Statutory compliance

Statutory reference	Consideration	Section of EIS
EP&A Act		1
Section 1.3	Objects of the Act	Section 6.1.1.
Section 5.13	Critical State significant infrastructure Any State significant infrastructure may also be declared to be critical State significant infrastructure if it is of a category that, in the opinion of the Minister, is essential for the State for economic, environmental or social reasons. Any such declaration may be made by the instrument that declared the development to be State significant infrastructure or by a subsequent such instrument.	Section 6.1.1
Section 5.14	Minister's approval required for State significant infrastructure	Section 6.1.1
Section 5.15	Application for approval of State significant infrastructure	This EIS
Section 5.16	Environmental assessment requirements for approval	Appendix A
Section 5.17	Environmental assessment and public consultation	This EIS
Section 5.28(5)	 A condition of the approval of State significant infrastructure under this Division may require any one or more of the following— a. a) the surrender under this section of any other approval under this Division (or under Part 3A) relating to the infrastructure or the land concerned, b. b) the surrender under section 4.63 of any development consent relating to the infrastructure or the land concerned, 	Section 6.1.1
Section 4.6.3(3)	If a development consent is to be surrendered as a condition of a new development consent and the development to be authorised by that new development consent includes the continuation of any of the development authorised by the consent to be surrendered: a) the consent authority is not required to re-assess the likely impact of the continued development to the extent that it could have been carried out but for the surrender of the consent authority is not required to re-determine whether to authorise that continued development under the new development consent (or the manner in which it is to be carried out), and	Section 6.1.1
	c) the consent authority may modify the manner in which that continued development is to be carried out for the purpose of the consolidation of the development consents applying to the land concerned.	
EP&A Regulation		
Part 3 of Schedule 2 Clause 6	Form of an environmental impact statement An environmental impact statement must contain the following information:	
(a)	The name, address and professional qualifications of the person by whom the statement is prepared,	Declaration
(b)	The name and address of the responsible person,	Declaration
(c)	The address of the land: In respect of which the development application is to be made, or On which the activity or infrastructure to which the statement relates is to be carried out,	Section 2.2.5
(d)	A description of the development, activity or infrastructure to which the statement relates,	Section 5
(e)	An assessment by the person by whom the statement is prepared of the environmental impact of the development, activity or infrastructure to which the statement relates, dealing with the matters referred to in this Schedule,	Declaration

Statutory reference	Consideration	Section of EIS
(f)	A declaration by the person whom the statement is prepared to the effect that:	Declaration
	The statement has been prepared in accordance with this Schedule, and	
	The statement contains all available information that is relevant to the environmental assessment of the development, activity or infrastructure to which the statement relates, and	
	That the information contained in the statement is neither false nor misleading.	
Part 3 of Schedule 2 Clause 7	Content of an environmental impact statement An environmental impact statement must also include each of the following:	
1(a)	A summary of the environmental impact statement,	Executive Summary
1(b)	A statement of the objectives of the development, activity or infrastructure,	Section 1.2
1(c)	An analysis of the feasible alternatives to the carrying out of the development, activity or infrastructure, having regard to its objectives, including the consequences of not carrying out the development, activity or infrastructure,	Section 4
1(d)	An analysis of the development, activity or infrastructure, including:	
1(d)(i)	A full description of the development, activity or infrastructure, and	Section 5
1(d)(ii)	A general description of the environment likely to be affected by the development, activity or infrastructure, together with a detailed description of those aspects of the environment that are likely to be significantly affected, and	Section 5, 8 and 9
1(d)(iii)	The likely impact on the environment of the development, activity or infrastructure, and	Section 8 and 9
1(d)(iv)	A full description of the measures proposed to mitigate any adverse effects of the development, activity or infrastructure on the environment, and	Section 8 and 9
1(d)(v)	A list of any approvals that must be obtained under any other Act or law before the development, activity or infrastructure may lawfully be carried out,	Section 6
1(e)	A compilation (in a single section of the environmental impact statement) of the measures referred to in item (d) (iv),	Appendix D
1(f)	The reasons justifying the carrying out of the development, activity or infrastructure in the manner proposed, having regard to biophysical, economic and social considerations, including the principles of ecologically sustainable development set out in subclause (4).	Section 11
(2)	Subclause (1) is subject to the environmental assessment requirements that relate to the environmental impact statement.	Appendix A
(3)	Not applicable	
(4)	The principles of ecologically sustainable development	Section 11.1.3
Relevant consideration	ons under EPIs	
SRD SEPP	Division 4.36 of the EP&A Act enables an EPI to declare a development to be SSD. The project has been declared CSSI and is listed in Schedule 5.	Section 6.1.2
Three ports SEPP	While the project is permissible with consent under the provisions of the Three Ports SEPP, it has also has been declared CSSI and will therefore be assessed under Division 5.2 of the EP&A Act and can be undertaken without consent under Part 4 of the EP&A Act.	Section 6.1.2
SEPP 33	A Preliminary Hazard Analysis (PHA) has been undertaken in accordance with SEPP 33	Section 8.3
Coastal Management SEPP	The project is located partially within the coastal use and coastal environment area mapped under the Coastal Management SEPP. While the CSSI declaration overrides the need for consent under the Coastal Management SEPP, consideration as been given to the requirements of the SEPP.	Section 6.1.2

Statutory reference	Consideration	Section of EIS
SEPP 55	The project represents a continuation of the existing industrial land use and the management of any contaminated land and the suitability of the site for the project is considered in this EIS.	Section 9.1
Consideration under	other NSW legislation	
POEO Act	 PKSW, is operated under EPL 6092, which applies to a range of scheduled activities carried out at the site. It is expected that this license will be varied to incorporate any new or discontinued scheduled activities associated with the project. Section 5.24 of the EP&A Act provides that an EPL cannot be refused if it is necessary for carrying out an approved CSSI project and is consistent with the development consent. 	Section 6.2.1
BC Act	The project will be unlikely to have a significant impact on any threatened species, populations or ecological communities listed under the BC Act, therefore the requirement for a BDAR has been waived.	Section 6.2.1
NPW Act	Under section 5.23 of the EP&A Act, an AHIP under Section 90 of the NPW Act is not required for approved CSSI. The project will be restricted to a highly disturbed industrial site of the existing PKSW and would not impact on Aboriginal heritage.	Section 6.2.1 and 9.3
Heritage Act	The project is not expected to impact upon any identified heritage item or relic. Under section 5.23 of the EP&A Act, approval under Section 59 or Section 139 is not required for approved CSSI.	Section 6.2.1 and 9.4
CLM Act	The PKSW site is listed as a contaminated site by the EPA. The site has had four notices issued to it, the last being in March 2018, which was a notification to cease the Voluntary Management Plan for the site on the basis that regulation of the site under the Contaminated Land Management Act 1997 (CLM Act) is no longer warranted.	Section 6.2.1
Consideration under	Commonwealth legislation	
EPBC Act	No impacts to MNES have been identified that are considered likely to be significant and consequently a referral to DAWE under the EPBC Act has not been made.	Section 6.2.1
Native Title Act	Under the Native Title Act, the valid grant of a freehold estate on or before 23 December 1996 is known as a 'previous exclusive possession act'. This means that native title has been extinguished over the area and native title claimants can not include this land in their applications. The project is located on freehold land and therefore native title does not exist within the project site.	Section 6.2.1

Appendix C Stakeholder engagement table

Table D1Stakeholder engagement

Stakeholder	Engagement activity	Issues raised	Response/ where addressed in EIS
BlueScope's Community Consultative Committee (CCC)	Quarterly meeting updates	Supportive of the project and appreciative of the regular updates at each meeting.	Quarterly meeting updates to continue
Investors, Shareholders and Analysts	Full Year Results Briefings and AGM	Timing and capital spend. Opportunity for climate action to be built in.	Regular updates to be provided at Half-Year and Full-Year Results roadshows and AGM.
Wollongong City Council	Briefing for Mayor, GM, Executives and Councillors	Environmental – climate change action Surplus land and property – plans to unlock employment lands	Factor in more environmental improvements if 6BF Reline base case + commitment to climate change action Surplus land and property - Property Master Planning commissioned
National and Local Media	Various media events	Interested in BlueScope's Climate Action Report and MOUs with Shell and Rio Tinto regarding decarbonisation and new pilot projects	Continue to provide regular media stories on updates with regards 6BF and the future of steelmaking at Port Kembla
General Public	Virtual Town Hall	Mainly climate change related	Over 1 hour of Q&A addressed concerns and reassured commitment to action on Climate change.
Illawarra Local Aboriginal Land Council (ILALC)	Briefing	Environmental and climate change. Surplus land and Property. Opportunities to partner.	
Illawarra Aboriginal Corporation (IAC)	Briefings	Interested in employment and supply opportunities for the indigenous community as well as exploring property-related opportunities.	Follow up workshops conducted with Colony Six (BlueScope's Land Transformation Master planning consultants) to explore opportunities.
Regional Development Australia (RDA) Illawarra	CEO and Board briefing	Supportive of economic benefits and opportunities for the region	Regular updates.
Local Businesses	Business Illawarra (Illawarra First) panel discussion	Businesses supportive of economic benefits and opportunities to participate where possible	Ongoing updates through Business Illawarra existing forums
Contractors and suppliers	i3net Supplier Town Hall Breakfast presentation	Opportunity to maximise procurement from local suppliers	Ongoing information sessions to help connect local contractors and suppliers to the project team
University of Wollongong	Vice Chancellor and Executive Team briefing	Opportunity to partner on researching new technology. Also follow workshop up re: opportunities on BSL land transformation.	Agreed on ongoing dialogue. BlueScope backed UoW submission for R&D funding re: new technology
Environmental Groups	Concerned residents of the Illawarra	Climate action was the focus. Requested to hold over any decisions on 6BF until 2022 and extend community consultation period.	Ongoing engagement agreed. Community consultation extended into 2022 and decision to move to Feasibility for 6BF reline project delayed until Feb 2022.

Stakeholder	Engagement activity	Issues raised	Response/ where addressed in EIS
Port Kembla Pollution Group	BlueScope CCC	No major issues raised. Very interested in Shell and Rio Tinto MOU announcements re: Hydrogen and pilot 'Green Steel' plant	Continued updates at quarterly meetings
Recharge Illawarra	Regular Committee Meetings	How can Recharge Illawarra attract more Government funding to coordinate the new Hydrogen industry in Port Kembla	Ongoing discussions
NSW Ports	Briefing	As neighbours, Interested in the Port Kembla property precinct.	Agreed on ongoing discussions to ensure alignment on property-related opportunities
Local Industry	Inside Industry Board and Executive Quarterly Briefings	Industry very supportive of securing the future of steel and helping with the transition to decarbonisation.	Ongoing updates at quarterly meetings
EPA	CCC and Regular Briefings	Request to utilise best available proven Environmental improvement technology on 6BF where it makes commercial sense	Project team have researched best available environmental technology and recommended several inclusions into 6BF Reline base case.
Utility suppliers	Correspondence and briefings	No real concerns. Interested in opportunities around a Clean Manufacturing Precinct at Port Kembla and what that means for them.	Ongoing updates. Opportunities to partner in Clean Manufacturing Precinct
NSW Government	Briefings and site visits	How can they support researching and expediting new technology for decarbonisation	Ongoing updates requested
NSW Opposition	Briefings and site visits	How can they support the future of manufacturing	Ongoing updates requested
BlueScope Employees	Quarterly Briefings with Chief Executive	No concerns. Interested in decarbonisation roadmap.	Ongoing updates through existing channels (email and Workplace – Facebook for organisations)
Federal Government	Briefings and site visits with Ministers and bureaucrats	Policy changes to support steelmaking in Australia	Continue regular briefings

Appendix D Proposed mitigation measures

Table E1

Consolidated list of management measures for 6BF reline project

Impact	ID	Measure	Timing
Air quality			
Dust control	AQ1	A dust management plan for use during construction activities will be prepared prior to works commencing.	Pre- Construction
Dust control	AQ2	Existing ambient air quality stations will be used to monitor dust generating construction activities.	Construction
Dust control	AQ3	During demolition of any contaminated areas, extra measures will be implemented to prevent dust leaving the work area.	Construction
Dust control	AQ4	Dust generating activities will be ceased or reduced if a visual plume of dust leaves the site or monitoring shows excessive particulate levels.	Construction
Dust control	AQ5	Blasting or heavy demolition which may lead to excessive dust will only be undertaken in conditions not likely to disperse dust towards sensitive receptors.	Construction
Dust control	AQ6	Operations conducted in areas with low moisture content material will be suspended during high speed wind events or water sprays will be used.	Construction
Dust control	AQ7	Stockpile sizes will be kept to a minimum, where practical.	Construction
Dust control	AQ8	Limit cleared areas of land and stockpiles, and clear only when necessary to reduce fugitive dust emissions.	Construction
Dust control	AQ9	Control on-site traffic by following specific routes for haulage and access in accordance with signposted speeds.	Construction
Dust control	AQ10	All trucks hauling material will be covered on the way to the site and should maintain a reasonable amount of vertical space between the top of the load and top of the trailer.	Construction
Additional emission controls	A11	 BlueScope intends to provide the following additional process and emission controls as part of the project: Cast house floor fugitives - manipulator and trough covers, extraction from main trough, extraction at taphole with primary and secondary hood (5BF only has a primary hood so this is an improvement), lowered tilting platforms during casting (also an improvement on 5BF). Iron Kish - extraction at iron ladles and slag tilting spouts, both the iron ladles and Slag Pots will have level sensors to ensure they are filled in a controlled manner. Slag Handling - Coldwater slag granulation with condensing stack - BAT and improvement on 5BF. Slag pits - air cooling for up to 24 hours before applying water to minimise H₂S generation during watering. Dust catcher - A lock-hopper will be installed at the base of the dust catcher and will minimise BFG and dust emissions to the atmosphere. Dust suppression - Sealed roads, street sweepers and truck wheel washes from stock house and slag handling areas. 	Construction
Commissioning phase impacts	AQ12	If there is potential for local residents to experience impacts, they will be notified about the proposed commissioning timetable and provide advice on what they can expect regarding emissions including smoke.	Operation
Commissioning phase impacts	AQ13	Where practicable, any commissioning activities that may lead to excessive emissions or visible smoke (excluding blow-in) will be timed as much as possible to occur when winds are not blowing towards residential areas.	Operation

Impact	ID	Measure	Timing
Operational Air Quality Management	AQ14	 BlueScope will develop and implement an Air Quality Management Plan prior to commencement of operations including: Identify all major sources of air emissions and associated proactive and reactive mitigation measures to ensure air pollution is prevented or minimised Describe protocols for regular maintenance of plant and equipment Outline procedures for monitoring and reporting air emissions Describe measures to regularly review the effectiveness of air pollution control measures. 	Operation
Operational Air Quality Management	AQ15	Conduct ongoing emission sampling in accordance with conditions of approval and EPL 6092.	Operation
Noise and vibration	่า	·	
Construction Noise and Vibration Management Plan	NV1	 A construction noise and vibration management plan (CNVMP) will be developed once a detailed construction methodology has been prepared. The plan will include: details of the construction methodology updated noise predictions at sensitive receivers based on finalised construction methodology a noise monitoring procedure and program for the duration of works in accordance with the construction noise and vibration management plan and any approval or licence conditions. Monitoring reports will be prepared in accordance with the requirements of the noise monitoring procedures. feasible and reasonable mitigation measures to be implemented to mitigated predicted impacts to sensitive receivers that may be noise affected a community consultation plan to liaise with the noise affected receivers, including: Notification to residences a minimum of 7 calendar days prior to the start of high noise generating works, including information such as total building time, what works are expected to be noisy, their duration, what is being done to minimise noise and when respite periods will occur. A procedure for complaints, including maintaining a complaints register on site. 	Pre-construction
Site induction	NV2	 All employees, contractors and subcontractors are to receive an environmental induction. The site induction must at least include: All project specific and relevant standard noise and vibration mitigation measures. Relevant licence and approval conditions. Permissible hours of work Any limitations on high noise generating activities Location of nearest sensitive receivers Construction employee parking areas Designated loading/unloading areas and procedures Site opening/closing times (including deliveries) Environmental incident procedures. 	Pre-construction Construction
At source mitigation measures – pre - construction	NV3	Quieter and less vibration emitting construction methods will be used where feasible and reasonable.	Pre-construction

Impact	ID	Measure	Timing
At source mitigation measures – pre - construction	NV4	The noise levels of plant and equipment will have an operating sound power lower or similar to the levels presented in Table 8.18 and Table 8.19.	Pre-construction
At source mitigation measures – pre - construction	NV5	The size of the vibratory compactor will be limited to 18 tonnes or less to maintain the safe work buffer distances.	Pre-construction
At source mitigation measures - construction	NV6	Where practical noise generating activities with potential to impact any nearby receivers would be scheduled during standard hours.	Construction
At source mitigation measures - construction	NV7	As much distance as possible will be placed between the plant or equipment and residences and other sensitive land uses.	Construction
At source mitigation measures – construction	NV8	Equipment with directional noise characteristics will be oriented away from noise sensitive receivers.	Construction
At source mitigation measures – construction	NV9	Where additional activities or plant may only result in a marginal noise increase and speed up works, the duration of impact will be limited by concentrating noisy activities at one location and moving to another as quickly as possible.	Construction
At source mitigation measures – construction	NV10	Only the necessary size and power of equipment will be used.	Construction
At source mitigation measures – construction	NV11	Loading and unloading of materials/deliveries will occur as far as practically possible from sensitive receivers.	Construction
At source mitigation measures - construction	NV12	The use of engine compression brakes will be limited in proximity to residences.	Construction
At source mitigation measures - construction	NV13	Equipment will not be operated until it is maintained or repaired, where maintenance or repair would address the annoying character of noise identified.	Construction
At source mitigation measures – road noise	NV14	Construction traffic travelling along Emily Road: need to ensure that traffic remains below the speed limit of 40 km/hr.	Construction
Rock breaking	NV15	 All rock-breaking and pile driving activities to be confined between the hours: daytime hours of 7:00 am to 6:00 pm from Monday to Friday and 8:00 am to 1:00 pm on Saturday, with the exception of the following activities: The delivery of oversized plant or structures Emergency work to avoid the loss of life or damage to property, or to prevent environmental harm Removal of the salamander and staves from inside the furnace will likely be carried out 24 hours a day to minimise the hire time and maximise the utilisation of the specialised wreck out equipment sourced from overseas. 	Construction

Impact	ID	Measure	Timing
Out of hours work	NV16	Out of hours movements will be minimised where possible. The need for out of hours work will be justified in the CEMP from the project and assessed against the noise requirements of the ICNG.	Construction
	NV17	Approval in writing from the EPA will be sought for construction activities outside of the standard hours of construction per EPL 6092 requirements.	Construction
Noise validation	NV18	All conclusions from the operational noise assessment are based on a combination of similar noise sources from 5BF, alongside additional noise measurements where required. To check that noise model predictions are representative of 6BF operational noise emissions at sensitive receivers, noise validation measurements will be undertaken at an intermediate location in the path between source equipment and Cringila receivers. Refer to section 8.2 in Appendix F.	Operation
In transmission path mitigation measures	NV19	Temporary site buildings and materials stockpiles will be used as noise barriers.	Construction
Operational noise management plan	NV20	An operational noise management plan to be developed to minimise the risk of adverse noise impacts during the operation.	Operation
Hazard and risk			
Explosives	HR1	Explosives will be stored in a non-ferrous receptacle clearly marked 'Explosives' that is kept closed and locked (except during use by authorised personnel) and stored in the original containers which are securely sealed. The storage area will be a well-ventilated magazine licenced for Class 1.1 explosives, which protects the explosives from the weather, contamination, sources of ignition and access from unauthorised individuals. Storage will be isolated from other dangerous good stores and the area free of debris, waste and combustibles. The explosives containers will be protected against physical damage and regularly checked for spills and leaks.	Construction
Explosives	HR2	Explosive storage magazines will comply with the requirements of AS 2187.1 <i>Explosives – Storage, transport and use – Storage</i> .	Construction
Explosives	HR3	Where more than 2.5 kg of Class 1.1 explosives are stored onsite, every perimeter entrance to the site must be labelled with a 'Hazchem' placard in accordance with the Explosives Regulation 2013. Adequate security will be provided for the explosives storage area, and only those who are authorised for unsupervised access to the area will have means to unlock the explosive storage magazine.	Construction
Explosives	HR4	There will be no smoking, naked light, heat or ignition source present at the explosives storage area.	Construction
Explosives	HR5	The explosives stock will be rotated to prevent ageing (use on first in-first out basis).	Construction
Explosives	HR6	Explosives will be stored at least 90 metres from the site boundary.	Construction
Fire or explosion from gas leak.	HR7	An inspection and maintenance regime for the gas reducing station and the blast furnace gas pipework and associated fittings will be implemented to prevent leaks.	Construction Operation
Fire or explosion from gas leak.	HR8	The site gas reticulation line will be suspended from the wall or roof above and away from the reach of any mobile equipment.	Detailed design Construction
Fire or explosion from gas leak.	HR9	Barriers will be erected around the gas pipe in key areas.	Construction Operation

Impact	ID	Measure	Timing
Molten metal- water explosion	HR10	Any water use will be separated from the blast furnace area where possible. Any use of water within proximity to the blast furnace area will be tightly controlled to prevent mixing of water with molten metal.	Operation
Molten metal- water explosion	HR11	Furnace will be designed to avoid inadvertent water leakage into the furnace and casting areas.	Detailed design Construction
Toxic gas release	HR12	An inspection and maintenance regime for the BFG system will be implemented to prevent leaks.	Construction Operation
Dangerous goods and chemical spills	HR13	All chemicals and DGs will have appropriate labelling, be separated where necessary, contained within a bund and be disposed of in accordance with Australian Standards.	Construction Operation
Dangerous goods and chemical spills	HR14	A copy of the Safety Data Sheet (SDS) for all chemicals present on site will be made readily accessible to emergency services.	Construction Operation
Dangerous goods and chemical spills	HR15	Appropriate safe work procedures will be implemented for safe handling of all chemicals and dangerous goods, including transfer, storage, spill prevention and clean up requirements.	Construction Operation
Water and hydrolog	ау		
Surface Water General	WQ1	To manage impacts to water quality during the construction phase, it is recommended that the CEMP include a site specific SWMP outlining site management requirements, specific controls, environmental inspection requirements, roles and responsibilities, health and safety, incident management and emergency response including arrangements for managing wet weather events. The SWMP will include an Erosion and Sediment Control Plan (ESCP) which will be prepared in accordance with the <i>Blue Book -Managing Urban Stormwater:</i> <i>Soils and Construction</i> (4th edition, Landcom, 2004).	Pre-construction
Surface Water General	WQ2	A commissioning Water Quality Management Plan (WQMP) will be developed following investigations during detailed design to assess the likely composition of initial flushing water, the potential for foaming, the characteristics of the start-up blowdown water and commissioning of the granulator. Where required monitoring programs and corrective measures will be developed to ensure that discharges to groundwater, No.2 Blower Station Drain and Allans Creek are in accordance with EPL 6092. The commissioning WQMP may be a standalone document or may form part of the SWMP.	Pre-construction
Surface Water General	WQ3	The only direct discharge to 2BS drain will be from the effluent treatment system. All other discharges will be directed to Ironmaking East Drain (IMED), a secondary containment basin, which will then be pumped to 2BS.	Operation
Process Water / Stormwater	WQ4	 The slag handling area will include: Hardstand surfaces graded to internal drains in the area so surface water will flow into either the new slag pit settling pond or the granulator settling pond Collected water from the water sprays in the area will be recycled as make up water to the granulator or as slag pit sprays In a rain event the first flush will be collected in the new slag pit settling pond, which will flow into the plant stormwater drain before draining to IMED and subsequently being pumped to 2BS for release to Allans Creek. 	Operation
Process Water / Stormwater	WQ5	The effluent treatment system will be above ground and bunded underneath to capture any flows. Any spillage will be captured and directed to the effluent treatment system. Additional paving between the effluent treatment system and the road on the east side of the plant will cover the unsealed area.	Operation

Impact	ID	Measure	Timing
Process Water / Stormwater	WQ6	COG and BFG condensate will be managed with the controls that have previously been identified as part of PRP181-Seal Pot Risk Assessment. 'No-blow' seal pots will be installed for BFG seal pots which will improve the risk of gas condensate overflows, collection tanks will be bunded and level detection with alarming installed to avoid over fill events.	Operation
Process Water / Stormwater	WQ7	The effluent treatment system will discharge cleaned and treated water to 2BS, however if the water quality is variable, this will be directed to contingency storage for further treatment and reassessment.	Operation
Process Water / Stormwater	WQ8	 All process wastewater within the 6BF area will be either captured or treated and then discharged as per below: Blowdown water from the effluent treatment system is discharged to 2BS drain following the treatment process Contingency storage for all discharges will be used when water quality is variable Collection of blast furnace gas seal pot water and return to the effluent treatment system Collection of COG seal pot water with pick up by truck Seal pot tanks will have bunds installed and level detection with alarming on collection tanks to avoid over fill events Online treatment for cyanide is currently under investigation at 5BF. Outcomes and Learnings will be applied to 6BF. 	Operation
Process Water / Stormwater	WQ9	In high rainfall events water in the IMED may overflow the weir into Port Kembla Harbour at licensed discharge point 89.	Operation
Process Water / Stormwater	WQ10	Surface and groundwater monitoring will be undertaken in accordance with EPL conditions and the outcomes of any Pollution Reduction Plans requirements.	Operation
Process Water / Stormwater	WQ11	 Spill management will involve: EPA compliant bunding of all hazardous chemicals Spill kits readily available High risk process areas sealed All runoff, including spills, from the gas cleaning and effluent treatment plants will be collected and returned to the water treatment plant during normal operation Spill containment and additional paving between effluent treatment system and road on the east side of the plant No-blow seal pots installed on blast furnace gas mains reducing the chance of make-up water being left on for extended periods of time Level detection and alarming on gas condensate collection tanks Seal pot tanks will have bunds installed and level detection with alarming on collection tanks to avoid over fill events Above ground effluent treatment system clarifier with bunding underneath to capture any overflows. 	Construction and Operation
Decommissioning	WQ12	A rundown and decommissioning strategy (or similar) will be developed prior to decommissioning, in consultation with the EPA. The strategy will describe the water dosage and treatment processes during the rundown phase and management measures that will be implemented during decommissioning to ensure that water quality in the No.2 Blower Station drain meets EPL conditions throughout the rundown process.	Pre- Decommissioning

Impact	ID	Measure	Timing
Traffic			
Construction Traffic Management Plan	TT1	A Construction Traffic Management Plan (CTMP) will need to be prepared prior to the commencement of works. The CTMP will provided measures to:	Pre-construction
		 Minimise the impact of the construction vehicle traffic on the overall operation of the road network. 	
		 Provide continuous, safe, and efficient movement of traffic for both the general public and construction workers. 	
		 Details regarding installation of appropriate advance warning signs to inform users of the changed traffic condition. 	
		 A description of the construction vehicles and the volume of these construction vehicles accessing the construction site. 	
		 Include information regarding the changed access arrangement and a description of the proposed external routes for vehicles, including the construction vehicles, accessing the site. 	
		 Establishment of a safe pedestrian environment in the vicinity of the site. 	
		 All staff and subcontractors engaged on site should be required to undergo site induction. The induction will outline the requirements on the CTMP, including site access routes, environmental and occupational health and safety responsibilities, emergency procedures, potential carpooling opportunities and vehicle height restriction under the power lines, among others. Additionally, the Site Manager will discuss CTMP requirements 	
		regularly as a part of "toolbox talks".	
Traffic management measures	TT2	Key stakeholders, including owners/operators of adjacent lands and emergency service providers, will be notified of any changes to the traffic management arrangements prior to the commencement of works.	Pre-construction
Traffic management measures	ТТ3	The construction site access will be reviewed during design development to consider the turn path required for the construction vehicles.	Pre-construction
Traffic management measures	TT4	Construction works should occur within the standard hours defined by the Interim Construction Noise Guideline (DECC, 2009) where practical. As discussed in section 5.12, some works may occur outside of these hours.	Construction
Traffic management measures	TT5	Truck drivers will be directed to follow the predetermined haulage routes	Construction
Traffic management measures	TT6	Workers required to undertake works or traffic control will be suitably trained and hold the required accreditation to carry out works on site and will also be site inducted	Construction
Traffic management measures	TT7	Protection will be provided to workers and road users through advanced warning of roadworks, speed changes, safety barriers with adequate offsets and deflection allowance, where necessary	Construction
Traffic management measures	TT8	Site access should be restricted to authorised personnel only and existing employees on site. Pedestrian access to and around the site will be maintained at all times.	Construction

Impact	ID	Measure	Timing
Traffic management measures	TT9	 Roadwork speed zones must be logical, credible, and enforceable. They should only be used where they are self- enforcing or will be enforced. 	Construction
		 Roadwork speed zones will be used with traffic control signs and devices and should not be used in place of more effective traffic controls. They will be used only while road works are in progress or the lower speed road conditions exist. 	
Traffic management measures	TT10	A Transport Access Guide (TAG) should be prepared to identify alternate travel options for visitors and staff to encourage sustainable transport and reduce parking demand. The TAG summarises alternate transport options to access the development, outlining where and how these services can be accessed and the frequency of the service. This could include but is not limited to:	Construction
		 Public transport locations (bus and train connection). 	
		 Active transport (cycle / walking) opportunities. 	
		 Bicycle infrastructure facilities. 	
		 Carpooling between workers (subject to COVID-19 safe practices). 	
Traffic management	TT11	The following environmental requirements should be adhered to:	Construction
measures		 All vehicles transporting loose materials will have the entire load covered and/or secured to prevent any large items, excess dust or debris depositing onto the roadway during travel to and from the site, including but not limited to construction rumble strips/wheels wash at the site egress location. 	
		 The lead contractors will monitor the roads leading to and from the site and take all necessary steps to rectify any road deposits caused by site vehicles, to maintain the safety of all road users. 	
		 Vehicles operating to, from and within the site shall do so in a manner, which does not create unreasonable or unnecessary noise or vibration. 	
		 Public roads and access points will not be obstructed by any materials, vehicles, refuse skips or the like, under any circumstances. 	

Impact	ID	Measure	Timing
Soils, geology and	d groundwater		
Erosion and sedimentation	S1	Prior to construction commencing, a site specific Soil and Water Management Plan (SWMP) will be prepared. The plan will include arrangements for managing wet weather events, specific controls and environmental inspection requirements. The SWMP will include an Erosion and Sediment Control Plan (ESCP) which will be prepared in accordance with the Blue Book -Managing Urban Stormwater: Soils and Construction (4th edition, Landcom, 2004) and Volume 2 (DECC, 2008a).	Pre-construction
Erosion and sedimentation	S2	 The ESCP will detail the erosion controls used for the project and where they will be established. The ESCP will include soil specific measures to: Prevent sediment moving off-site and sediment laden water entering any watercourse, drainage lines, or drain inlets Prevent mixing of soils Ensure soils are replaced in their pre-existing configuration during rehabilitation Reduce water velocity overland and capture sediment on site Minimise the amount of material transported from site to surrounding pavement surfaces Divert clean water around the site 	Pre-construction
	00	 Install measures and site entry and exit points to minimise movement of material onto public roads. 	Duranteration
Erosion and sedimentation	S3	Erosion and sediment controls will be established prior to works commencing on site.	Pre-construction
Erosion and sedimentation	S4	Erosion and sediment controls will be inspected on a regular basis and replaced when their function is compromised.	Construction
Erosion and sedimentation	S5	Erosion and sediment controls will be inspected promptly after rainfall events.	Construction
Erosion and sedimentation	S6	If excavations are required during demolition works, soil generated will be reused where applicable. Excess spoil not required or able to be reused onsite will be disposed of appropriately as per the EPA's Waste Classification Guidelines (2014).	Construction
Erosion and sedimentation	S7	Vehicles will be restricted to existing access routes where practical.	Construction
Erosion and sedimentation	S8	Disturbed areas will be returned to pre-existing condition following the completion of construction.	Post-construction
Contamination	C1	An incident emergency spill plan will be detailed in the CEMP	Pre-construction
Contamination	C2	Spill response kits will be provided on site and be located in a clearly defined location.	Construction
Contamination	C3	Plant and machinery will be inspected regularly to ensure that they are in sound working order	Construction

Impact	ID	Measure	Timing
Contamination	C4	If soils that appear to be contaminated are exposed during construction of the project, works will cease in the area until further investigation can be undertaken.	Construction
		The following factors are indications of potential contamination on site:	
		 Stained or discoloured fill 	
		 Hydrocarbon or chemical odour 	
		 Construction wastes such as concrete, bricks, timber, tiles, fibre cement sheeting, fragments and pipes 	
		 Imported material such as ash, slag or coal chitter. Contaminated soils requiring disposal will be classified under the Waste Classification Guidelines (EPA,2014) prior to disposal. 	
Contamination	C5	All chemical/fuel storage and loading areas will be bunded or otherwise contained.	Construction, Operation
Contamination	C6	All plant personnel that may encounter chemicals/fuels will be trained in required handling procedures.	Construction, Operation
Biodiversity			
General biodiversity	B1	The following measures will be implemented to manage general biodiversity impacts:	Pre-construction Construction
,		 Measures proposed in the SWMP will be implemented to ensure appropriate sediment control measures are put in place to ensure run-off during construction does not result in indirect impacts to surrounding habitats 	Construction
		 Construction machinery will be cleaned prior to entering and leaving site to ensure weed propagules are not transported 	
		 No native flora will be cleared during the establishment of laydown areas 	
		 Laydown areas will be placed on existing hardstand, and where possible, as far away from drainage lines and places where surface water can pool. 	
		 These measures will be implemented in the CEMP and may be revised at any time to manage potential environmental impacts. 	
Green and Golden Bell Frog	B2	All measures outlined in Management of Threatened Species, The Green and Golden Bell Frog, Litoria Aurea (BlueScope, 2020) will be implemented during construction of the project.	Construction
Green and Golden Bell Frog	В3	All workers will be trained in the procedures outlined in Management of Threatened Species, The Green and Golden Bell Frog, Litoria Aurea (BlueScope, 2020) and their responsibilities under the BC Act and EPBC Act in the project induction. This will also be discussed periodically during the toolbox talks.	Construction
Green and Golden Bell Frog	B4	If a GGBF is found in the project site or laydown area, work in the vicinity will cease immediately. Work will not recommence until clearance from a qualified ecologist can be provided.	Construction
		Following confirmation of the sighting of GGBF either by a local ecologist or by means of identification using the GGBF Audit / Inspection Checklist, the sighting must be registered with the EPA and NSW BioNet Species sightings via the web or telephone.	
Unexpected species discovery	B5	If other endangered species are discovered on the project site or in laydown areas, work will cease in the vicinity and a qualified ecologist will be employed to assess the discovery.	Construction
		Additional mitigation measures presented by the ecologist will be incorporated into the CEMP. Work in the area will not commence unless clearance is given by the ecologist.	

Impact	ID	Measure	Timing	
Aboriginal heritage	9			
Unexpected Aboriginal heritage finds	AH1	In the event of an unexpected find of potential Aboriginal object/s (or suspected item), work will cease in the area and DPIE notified. Works will not recommence until continuation is authorised by DPIE.	Construction	
Historic heritage			·	
Unexpected finds	HH1	In the unlikely event that unexpected historical (non-Aboriginal) archaeological remains are discovered during works they will be managed with reference to the standard protocols and procedures of Section 146 of the <i>Heritage Act 1977</i> .	Construction	
Visual amenity				
Visual amenity – construction works	LV1	Temporary boarding, barriers, traffic management and signage will be removed when no longer required.	Construction	
Visual amenity – construction works	LV2	Roads providing access to the site and work areas will be maintained free of dust and mud as far as reasonably practicable.	Construction	
Visual amenity – construction works	LV3	Materials and machinery will be stored neatly during construction works.	Construction	
Visual amenity – construction works	LV4	Temporary lighting required during the construction period will be sited and designed to avoid light spill into the surrounding area.	Construction	
Visual amenity – construction works	LV5	Existing site features will be utilised as screening when positioning plant where practical.	Construction	
Land use and prop	erty			
Land use	LU1	 Management and mitigation strategies presented in the following sections will be implemented during construction of the project: Air quality (Section 8.1.5) 	Pre-construction Construction Operation	
		 Noise and vibration (Section 8.2.6) 		
		- Traffic (Section 8.5.5)		
		Visual amenity (Section 9.5.3)Waste management (Section 9.9.3)		
Land use	BlueScope will coordinate project activities to minimise the impact to land use and services within the PKSW site.	Construction		

Impact	ID	Measure	Timing
Social and econom	nic		
Investment and employment	SE1	A contracting and procurement strategy focusing on maximising local content will be prepared to support local employment and business opportunities during construction. During operation, the project should seek to work with interested local parties to fulfil workforce requirements.	Construction, operation
Investment and employment	SE2	BlueScope will continue to invest into the local community through the continuation of the BlueScopeWIN Community Partners Program.	Construction, operation
Community engagement	SE3	The project will include a comprehensive, multi-stakeholder engagement program to inform decisions regarding the project.	Construction
Community engagement	SE4	A Community Consultative Committee (CCC) will continue to be operated by BlueScope for the PKSW	Construction
Community engagement	SE5	BlueScope will provide a contact number and email address for the community to make comments on throughout the project.	Construction
Amenity	SE6	Ensure that measures discussed in other sections that reduce environmental impacts are implemented effectively for the duration of the project.	Construction, operation
Greenhouse gas ar	nd energy		
Construction GHG emissions	GHG1	All plant and equipment used during the construction works shall be regularly maintained to comply with the relevant exhaust emission guidelines	Construction
Construction GHG emissions	GHG2	Sustainable procurement practices will be adopted where feasible	Construction
Construction GHG emissions	GHG3	Where reasonable and feasible, measures to be implemented by contractors may include, but not be limited to:	Construction
		 Construction materials sourced locally where possible 	
		 Construction materials that have minimal embodied energy be selected 	
		 Use of PVC plastic minimised 	
		 Construction materials that are low maintenance and durable 	
		 Plant and equipment will be switched off when not in constant use and not left idling 	
		 Plant and equipment brought onsite will be regularly serviced and energy efficient vehicles or equipment will be selected where available 	
		 Any plant and equipment that is not working efficiently (i.e. emitting excessive smoke) will be removed from site and replaced as soon as possible 	
		Construction works will be planned to ensure minimal movement of plant and equipment, including barges	
Operational GHG emissions	GHG4	Subject to confirmation of engineering suitability, the following elements will be incorporated into the operation of the project: – Dual lance tuyeres. – Waste gas heat recovery unit installed on 6BF stoves	Detailed design
		 Top Recovery turbine installed to extract energy from gases vented from the top of the blast furnace. 	
Operational GHG emissions	GHG5	All operational equipment will be operated and maintained to minimise leaks, accidental venting of gases or other fugitive GHG emissions to the extent practical.	Operation

Impact	ID	Measure	Timing	
Operational GHG emissions	GHG6	 Annually report on total PKSW net energy consumption and GHG emissions under the NGERS in accordance with the methodology prescribed by the National Greenhouse and Energy Reporting (Measurement) Determination 2008 (Measurement Determination). 	Operation	
Operational GHG emissions	GHG7	BlueScope will seek to maximise the use of steel manufacturing co-products to offset carbon intensive material inputs into industrial processes e.g the use of Granulated Blast Furnace Slag as a cementitious replacement for Portland Cement in concrete construction to lower GHG emissions	Operation	
Waste managemen	nt			
Construction waste	WM1	A waste management plan for the project will be prepared prior to construction commencing. The waste management plan will detail:	Pre-construction	
		 Statutory requirements for waste in NSW 		
		 Systems to sort and track the actual types and quantities of waste generated 		
		 Measures for separating waste based on classification of management options including colour coded bins 		
		 Options for offsite reuse, reprocessing, recycling and energy recovery 		
Construction waste	WM2	Awareness of waste minimisation practices will be included in the project induction.	Construction	
Construction waste	WM3	Waste will be classified, managed and disposed of in accordance with the <i>Waste Classification Guidelines</i> (EPA, 2014).	Construction	
Operational waste	WM4	Operational waste streams will continue to be managed in accordance with EPL 6092.	Operation	
Operational waste	WM5	Recycling and resource recovery activities will continue to be managed by a slag service provider.	Operation	
Cumulative impact	S		,	
General impact	CI1	The mitigation measures presented in Appendix D will be	Pre-construction	
reduction		implemented effectively to reduce the project's impact on	Construction	
		the environment.	Operation	

Appendix E Air quality impact assessment

Blast Furnace No. 6 Reline Project

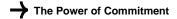
Air Quality Impact Assessment

BlueScope Steel (AIS) Pty Ltd

7 March 2022

→ The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373


133 Castlereagh Street, Level 15
Sydney, New South Wales 2000, Australia
T +61 2 9239 7100 | F +61 2 9475 0725 | E sydmail@ghd.com | ghd.com

Document status

Status Code	Revision	Author	Reviewer		Approved for issue		
			Name	Signature	Name	Signature	Date
S0	0	N Spurrett	E Smith		K Rosen		04/02/21
S0	1	N Spurrett	E Smith	ismte	K Rosen	Kullow	07/03/22

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive summary

GHD has conducted an air quality impact assessment to assess the construction, commissioning and operation of the No. 6 Blast Furnace at the Port Kembla Steelworks. The assessment was undertaken in accordance with relevant legislation and government guidance.

A qualitative based approach was adopted to assess the construction and commissioning of the project. The construction assessment identified a low risk of potential air quality impacts as there will be a large separation distance between construction activities and sensitive receptors, and emissions to air during construction are expected to be relatively minor.

The commissioning assessment concluded that there is potential for elevated emission of combustion products including carbon monoxide, carbon dioxide, and particulates to occur for a relatively short period of time during commissioning. As the commissioning procedure aligns with the industry standard approach and adopts best practice methods where possible, emissions during commissioning are considered to be minimised as far as reasonably practicable. Due to the relatively short duration of commissioning and implementation of industry standard and best practice methods, although the potential impact for any elevated emissions to air cannot be quantified, the commissioning process is considered to pose a low risk of potential adverse air quality impacts to surrounding receptors.

The quantitative operational air quality assessment consisted of three parts, an emission limit assessment, an air quality impact assessment and a best practice assessment.

The emission limit assessment identified that all No. 6 Blast Furnace air quality emission sources assessable to the standard of concentration limits will comply with the standard of concentration limits stipulated in the POEO Clean Air Regulation.

The air quality impact assessment used air quality dispersion modelling to predict incremental and cumulative pollutant concentrations from the existing and proposed future operating scenarios. The findings of the dispersion modelling are summarised below:

- Existing scenario (operation of 5BF and PKSW) findings:
 - A minor cumulative exceedance of the 24 hour PM₁₀ criteria was predicted for one 24 hour period in the modelled year at R05. This exceedance was primarily attributed to elevated background concentrations which accounted for 93% of the criteria while existing scenario incremental concentrations accounted for 7% of the criteria.
 - Compliance was predicted for 1 hour and annual NO₂ concentrations against both EPA and NEPM assessment criterions at sensitive receptor locations.
 - Compliance was predicted for 1 hour and 24 hour SO₂ concentrations against the EPA assessment criteria at sensitive receptor locations.
 - An incremental exceedance of the 1 hour SO₂ NEPM criteria was predicted at R06 and cumulative exceedances were predicted at R05 and R06. These exceedances of the NEPM criteria require interpretation in the context that the 1 hour SO₂ standard was reduced in a recent revision (May 2021) of the Air NEPM.
 - Exceedance of the 1 second H₂S criteria was predicted at R05 and R06. Compliance was predicted for the 1 hour H₂S criteria at all sensitive receptors.
- Future scenario (operation of 6BF and PKSW) findings:
 - Minor cumulative exceedance of the 24 hour PM₁₀ criteria were predicted at R03 and R05 for one day of the year only. These exceedances were primarily attributed to elevated background concentrations which accounted for 91% and 93% of the criteria, while future scenario incremental concentrations accounted for 9% and 7% of the criteria for receptors R03 and R05 respectively. 6BF sources account for approximately 1% and 3% of the maximum cumulative 24 hour PM₁₀ contribution at R03 and R05 respectively.
 - Compliance was predicted for 1 hour and annual NO₂ concentrations against both EPA and NEPM assessment criterions at sensitive receptor locations.

- Compliance was predicted for 1 hour and 24 hour SO₂ concentrations against the EPA assessment criteria at sensitive receptor locations.
- An incremental and cumulative exceedance of the 1 hour SO₂ NEPM criteria was predicted at R06. This
 exceedance of the NEPM criteria requires interpretation in the context that the 1 hour SO₂ standard was
 reduced in a recent revision (May 2021) of the Air NEPM. These exceedances are attributed mostly to
 existing sources on the PKSW site and predicted concentrations comply with the existing NSW EPA
 criteria. 6BF sources account for approximately 21% of the maximum cumulative 1 hour SO₂ contribution
 at R06.
- An exceedance of the 1 second H₂S criteria was predicted at R06 only. Compliance was predicted for the 1 hour H₂S criteria at all sensitive receptors. The predicted incremental H₂S concentration from 6BF only, shows that it contributes about one third of total H₂S emissions at the receptor locations (contributions range from 28% to 33% depending on receptor). Given that modelled emissions from 6BF are conservative, the project is unlikely to lead to offsite odour impacts and is predicted to reduce odour impacts at the sensitive receptor locations compared to the existing scenario. 6BF sources account for approximately 28% of the maximum 1 second H₂S contribution at R06.

Comparatively, the future scenario was predicted to result in a reduction of all pollutant concentrations (NO₂, SO₂ and H₂S) except for particulate matter, in relation to which a minor increase was predicted due to assumptions in the assessment. The project includes a number of measures anticipated to reduce particulates compared to the existing scenario.

The best practice assessment benchmarked proposed No. 6 Blast Furnace emissions control measures against European Union Best Available Techniques. The best practice assessment concluded that the project conforms with best available techniques and for each BAT requirement offers a beneficial or at least neutral impact compared with existing No. 5 Blast Furnace operations.

From an air quality perspective, the project is generally considered an improvement (reduction in pollutant concentrations) compared with existing operations.

This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the Report.

Contents

1.	Introd	duction		1
	1.1	Backgro	ound and project overview	1
	1.2	Purpos	1	
	1.3	Limitati	ons	2
2.	Legis	lative and	I policy context	3
	2.1	Secreta	ary's Environmental Assessment Requirements	3
	2.2	Legislat	tive and policy context to the AQIA	3
	2.3	Emissio	on limits	4
		2.3.1	POEO Clean Air Regulation	4
		2.3.2	Environmental Protection Licence conditions	5
	2.4	Air qua	lity impact assessment	6
3.	Methe	odology		8
	3.1	Genera	al	8
	3.2	Approa	ch	8
		3.2.1	Air quality species of interest	8
		3.2.2	Construction and commissioning assessment methodology	8
			Construction assessment Commissioning assessment	8 8
		3.2.3	Operation assessment methodology	9
			3.2.3.1 Air quality impact assessment	9
			3.2.3.2 Emission limit assessment	9
	0.0	Madalli	3.2.3.3 Best practice assessment	9
	3.3	3.3.1	ng methodology	9 9
		3.3.1	Dispersion model selection Emission inventory development	9 10
		3.3.3	Dispersion modelling	10
		3.3.4	Meteorological modelling	11
4.	Desc	ription of t	the project	12
	4.1	-	overview	12
5.	Exist	ing enviro	onment	14
	5.1	-	location	14
	5.2	-	ing environment	17
	-	5.2.1	Land use	17
		5.2.1	Terrain	17
		5.2.2	Sensitive receptors	17
	5.3	-	g and future sources of air pollutants	20
		5.3.1	Facilities reporting to the NPI	20
		5.3.2	State significant projects	20
	5.4	•	ound air quality	21
		5.4.1 5.4.2	Background DPIE AQMS data	22
		5.4.2 5.4.3	Background BlueScope collected data Adopted background data	23 25
	5.5		e and meteorology	25
	0.0	5.5.1	Available observations	25
		0.011	5.5.1.1 Temperature	26
			5.5.1.2 Rainfall	27

6.	Projec	ct air emissions	28
	6.1	Project construction	28
		6.1.1 Construction overview	28
		6.1.2 Construction emissions	30
	6.2	Project commissioning	31
		6.2.1 Commissioning overview	31
		6.2.2 Commissioning emissions	32
	6.3	Project operation	32
		6.3.1 Operational overview	32
		6.3.2 Operation emissions	33
	0.4	6.3.3 Site layout	34
	6.4	Comparison of existing to future emissions	45
	6.5	Other than normal operating conditions	47
7.	Emiss	sions limit assessment	48
	7.1	Methodology	48
	7.2	Emissions limit assessment	48
8.	Const	ruction and commissioning air quality assessment	50
	8.1	Construction assessment	50
	8.2	Commissioning assessment	52
9.	Onera	tional air quality assessment	53
5.	9.1	Operational assessment overview	53
	9.2	Existing	54
	5.2	9.2.1 Particulates and common gaseous pollutants	54
		9.2.2 Odorous air pollutants (H_2S)	60
	9.3	Future	62
	0.0	9.3.1 Particulates and common gaseous pollutants	62
		9.3.2 Odorous air pollutants (H_2S)	69
	9.4	Comparison of existing to future impacts	71
		9.4.1 Particulates and common gaseous pollutants	71
		9.4.2 Odorous air pollutants	72
10.	Best p	practice assessment and emissions controls	74
	10.1	Best practice assessment	74
	10.2	Additional emission controls	74
11.	Manag	gement and mitigation	79
	11.1	Construction	79
	11.2 Commissioning		79
	11.3	80	
12.	Concl	Operation usion	81
13.	Refere		83

Table index

Table 2.1	Air quality SEARs	3
Table 2.2	Relevant standards of concentration	4
Table 2.3	EPL limit conditions	5
Table 2.4	Air quality impact assessment criteria	6

Table 4.1	Project summary	12
Table 5.1	Location of identified sensitive receptors	18
Table 5.2	Existing operations reporting emissions to the NPI	20
Table 5.3	Annual emissions reported to NPI for each facility for the 2019/2020 reporting period (kg/year)	20
Table 5.4	Summary of nearby state significant projects with emissions to air	20
Table 5.5	Summary of data reviewed as part of the assessment	22
Table 5.6	5 year summary of available background air quality data recorded by DPIE	22
Table 5.7	5 year summary of available background PM ₁₀ data recorded by BlueScope	23
Table 5.8	Maximum 1 hour averaged H_2S concentration	23
Table 5.9	Average 1 hour H ₂ S concentration	24
Table 5.10	Adopted background air quality data	25
Table 6.1	Indicative equipment list at Blast Furnace and surrounding facilities	29
Table 6.2	Ancillary facilities	29
Table 6.3	Summary of potential construction emissions to air	31
Table 6.4	Summary of sources exclusive to 5BF or 6BFscenarios	33
Table 6.5	Source properties for stack sources	36
Table 6.6	Mass emission rates for stack sources	39
Table 6.7	Source properties for fugitive sources	41
Table 6.8	Mass emission rates for fugitive sources	43
Table 6.9	Emissions summary	46
Table 6.10	Potential events with elevated emissions	47
Table 7.1	Normalised exhaust flowrate for project stack sources	48
Table 7.2	Summary of emission limit assessment	49
Table 8.1	Location of identified sensitive receptors with respect to construction activities	50
Table 9.1	Predicted particulate concentrations (existing scenario)	54
Table 9.2	Top 10 ranked cumulative PM ₁₀ values for R05	54
Table 9.3	Predicted NO ₂ concentrations (existing scenario)	55
Table 9.4	Predicted SO ₂ concentrations (existing scenario)	56
Table 9.5	Predicted H ₂ S concentrations (existing scenario)	60
Table 9.6	Predicted particulate concentrations (future scenario)	62
Table 9.7	Top 10 ranked cumulative PM ₁₀ values for R05	63
Table 9.8	Predicted NO ₂ concentrations (future scenario)	63
Table 9.9	Predicted SO ₂ concentrations (future scenario)	64
Table 9.10	Top 10 ranked cumulative 1 hour SO ₂ values for R06	65
Table 9.11	Predicted odorous air pollutant concentrations (future scenario)	69
Table 9.12	Predicted particulate concentrations (percentage change from existing to future	71
Table 9.13	scenario) Predicted NO ₂ concentrations (percentage change from existing to future	11
Table 9.15	scenario)	72
Table 9.14	Predicted SO ₂ concentrations (percentage change from existing to future	
	scenario)	72
Table 9.15	Predicted odorous air pollutant concentrations (percentage change from existing	
	to future scenario)	73
Table 10.1	Summary of best practice assessment	75

Figure index

Figure 5.1	Regional project site location	15
Figure 5.2	Key project features	16
Figure 5.3	Location of identified sensitive receptors	19
Figure 5.4	Monthly climate temperature statistics from BoM Bellambi AWS (1997-2021)	26
Figure 5.5	Monthly climate rainfall statistics from BoM Bellambi AWS (1997-2021)	27
Figure 6.1	PKSW layout and source locations	35
Figure 8.1	Location of proposed construction activities	51
Figure 9.1	Predicted incremental 24 hour PM ₁₀ concentration for existing scenario (µg/m ³ , 100 th percentile)	57
Figure 9.2	Predicted incremental 1 hour NO ₂ concentration for existing scenario (µg/m ³ , 100 th percentile)	58
Figure 9.3	Predicted incremental 1 hour SO ₂ concentration for existing scenario (μ g/m ³ , 100 th percentile)	59
Figure 9.4	Predicted incremental 1 second H ₂ S concentration for existing scenario (μ g/m ³ , 99 th percentile)	61
Figure 9.5	Predicted incremental 24 hour PM_{10} concentration for future scenario (μ g/m ³ , 100 th percentile)	66
Figure 9.6	Predicted incremental 1 hour NO ₂ concentration for future scenario (µg/m ³ , 100 th percentile)	67
Figure 9.7	Predicted incremental 1 hour SO ₂ concentration for future scenario (µg/m ³ , 100 th percentile)	68
Figure 9.8	Predicted incremental 1 second H_2S concentration for future scenario ($\mu g/m^3$, 99 th percentile)	70

Appendices

Appendix A Meteorological modelling methodology

Terms and abbreviations

Term/acronym	Definition
µg/m³	Micrograms per cubic metre
5BF	No. 5 Blast Furnace
6BF	No. 6 Blast Furnace
AMO	Aeronautical Meteorological Office
AQIA	Air Quality Impact Assessment
AQMS	Air Quality Monitoring Station
Background concentrations	Ambient pollutant concentrations
BFG	Blast Furnace Gas
BlueScope	BlueScope Steel (AIS) Pty Ltd
ВоМ	Bureau of Meteorology
CALMET	CALMET is a meteorological model which includes a diagnostic wind find generator containing objective analysis and parameterised treatments of slope flows, kinematic terrain effects, terrain blocking effects, a divergence minimisation procedure, and a micro-meteorological model for overland and overwater boundary layers.
CALPUFF	CALPUFF is a non-steady-state Lagrangian Gaussian puff model which contains modules for complex terrain effects, overwater transport, coastal interaction effects, building downwash, wet and dry removal, and simple chemical transformation.
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
Cumulative impact	Incremental impact plus background
DPIE	Department of Planning, Industry and Environment
EPA NSW Environment Protection Authority	
GHD	GHD Pty Ltd
H ₂ S	Hydrogen Sulfide
Incremental impact	Predicted impact from the PKSW site (includes 5BF and PKSW sources for existing scenario and includes 6BF and PKSW sources for future scenario).
NO ₂	Nitrogen Dioxide
NOx	Oxides of Nitrogen - a mixture of nitric oxide and nitrogen dioxide
Pasquill-Gifford	Stability classification used in atmospheric dispersion models to define the turbulent state of the atmosphere
peak-to-mean ratio	A conversion factor that adjusts mean dispersion-model predictions to the peak concentrations perceived by the human nose
PKSW	Port Kembla Steel Works
PM10	Particulate matter with an equivalent aerodynamic diameter of 10 micrometres or less
PM _{2.5}	Particulate matter with an equivalent aerodynamic diameter of 2.5 micrometres or less
POEO Act	Protection of the Environment Operations Act 1997
SEARs	Requirements and specifications for an environmental assessment prepared by the Secretary of the Department of Planning, Industry and Environment
Sensitive receptor	A location where people are likely to work or reside; this may include a residential dwelling, school, hospital, office or public recreational area. An odour assessment should also consider the location of known or likely future receptors.
SO ₂	Sulphur Dioxide

Term/acronym	Definition
SS projects	State Significant projects
ТАРМ	TAPM is an air pollution model that predicts three-dimensional meteorology and air pollution concentrations.
TSP	Total Suspended Particulates
UTM	Universal Transverse Mercator coordinate system
WRF	Weather Research and Forecast model is a next-generation mesoscale numerical weather prediction system designed for both atmospheric research and operational forecasting applications

1. Introduction

1.1 Background and project overview

BlueScope Steel (AIS) Pty Ltd (BlueScope) is one of Australia's leading manufacturers and with its parent company, BlueScope Steel Limited, is a global leader in finished and semi-finished steel products. BlueScope's Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate. 5BF will be decommissioned prior to operation of 6BF commencing such that there will be no concurrent ironmaking from both 5BF and 6BF.

The project enables critical steelmaking operations to continue whilst BlueScope evaluates innovative "green steel" technologies that are starting to be piloted globally but will not be commercialised at scale in time to maintain production once the current campaign of the 5BF concludes. The project has been declared Critical State Significant Infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP).

This air quality impact assessment report has been prepared by GHD Pty Ltd (GHD) as part of the EIS for the project. The EIS has been prepared to support the application for project approval and addresses the environmental assessment requirements of the Secretary's Environmental Assessment Requirements (SEARs) pertaining to air quality.

1.2 Purpose of this report

GHD Pty Ltd (GHD) has been commissioned by BlueScope to prepare an Air Quality Impact Assessment (AQIA). This report will support the preparation of an Environmental Impact Statement (EIS) under the EP&A Act for the project.

This report addresses the relevant criteria in the NSW Secretary's Environmental Assessment Requirements (SEARs) for the project issued in July 2021 (as outlined in Section 2.2) and assesses the potential air quality related impacts associated with construction and operation of the project.

The purpose of this report is to document the results of the AQIA which included:

- Review of project information related to sources of emissions to air. This includes construction methodology, operation of the project and emission controls, process drawings and flow and emission rates.
- Definition of the existing environment at the project site, including identification of air quality sensitive receptors, and completing a review of available ambient air quality monitoring data for the previous 5 years.
- Preparation of a site-representative meteorological data set based on review of site-based weather station, and local Bureau of Meteorology data. Meteorological modelling was completed using the Weather Research and Forecast model (WRF) and CALMET models.
- Air dispersion modelling using the CALPUFF model for existing and future scenarios to quantitatively predict the change in ground level pollutant concentrations for comparison against the EPA criteria.
- Conducting a Best Available Techniques Assessment (BAT) for the proposed design and operation of the relined blast furnace and associated infrastructure.

- Discussion of the findings of dispersion modelling and an overview of proposed mitigation measures and controls associated with the project.
- A qualitative construction air quality assessment of potentially emission generating construction activities and providing management measures to minimise potential air quality impacts at sensitive receptors during project construction activities.

1.3 Limitations

The preparation of this AQIA relied on the following assumptions or was limited by the following:

- Project description including details of the construction, commissioning and operation of the project were provided by BlueScope.
- An emissions inventory for the existing and proposed operation of the project was provided by BlueScope.
- Meteorological and dispersion modelling was undertaken in accordance with the methodology outlined in Section 3.3.
- Cumulative impacts with the Port Kembla Gas Terminal project including ship and Floating Storage and Regasification Unit (FSRU) configuration (including fuel type) has been assumed based on best available information however is subject to change. GHD has assumed a moderate worst case of FSRU using gas and a LNG carrier running on marine diesel oil. Some LNG carriers may run on gas which has lower emissions and the FSRU can run on marine diesel oil for up to 72 hours per year only.

This report has been prepared by GHD for BlueScope Steel (AIS) Pty Ltd and may only be used and relied on by BlueScope Steel (AIS) Pty Ltd for the purpose agreed between GHD and BlueScope Steel (AIS) Pty Ltd as set out in Section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than BlueScope Steel (AIS) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of air emissions) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

GHD has prepared this report on the basis of information provided by BlueScope Steel (AIS) Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

2. Legislative and policy context

2.1 Secretary's Environmental Assessment Requirements

The SEARs relevant to air quality, together with a reference to where they are addressed in this report, are outlined in Table 2.1.

Table 2.1Air quality SEARs

Requirement	Where address in report	
Planning Secretary's Environmental Assessment Requirements (SEARs) (SSI-22545215)		
Air quality and odour – including:		
 a quantitative assessment of the potential air quality, dust and odour impacts of construction, commissioning and operation, in accordance with relevant Environment Protection Authority guidelines 	This report	
 cumulative assessment of air quality emissions from operation of the site as a whole and comparison with background data and impact assessment criteria 	Section 9	
 details of all air quality and odour control equipment, benchmarked against best practice, and monitoring for all discharge points and fugitive emissions 	Section 10	
 an assessment of the greenhouse gas emissions of the project and any measures to minimise emissions intensity, improve energy efficiency and adopt new technologies to reduce emissions in the medium to long term 	Refer GHG chapter of the EIS	
- details of proposed mitigation, management and monitoring measures.	Section 11	

2.2 Legislative and policy context to the AQIA

The relevant legislation and government guidance for the air quality assessment of the project are:

- NSW Protection of the Environment Operations Act 1997 (POEO Act)
- NSW Protection of the Environment Operations (Clean Air) Regulation 2021 (POEO Clean Air Regulation)
- National Environment Protection Council (NEPC) National Environment Protection (Ambient Air Quality) Measure 2021 (the Air NEPM)
- Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (DEC, 2007)
- Technical framework Assessment and management of odour from stationary sources in NSW (the Technical Framework), NSW Department of Environment and Conservation (DECC 2006)
- NSW EPA Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales (2017) (the Approved Methods)
- Guidance on the assessment of dust from demolition and construction, Institute of Air Quality Management (2016) (IAQM guidance)

The POEO Act provides the statutory framework for managing pollution in NSW, including the procedures for issuing licences for environmental protection on aspects such as waste, air, water and noise pollution control. The POEO Act requires that no occupier of any premises causes air pollution (including odour) through a failure to maintain or operate equipment or deal with materials in a proper and efficient manner. For point source emissions where no standard of concentration and/or rate has been set, and for non-point source emissions, the operator must also take all practicable means to minimise and prevent air pollution (sections 124, 125, 126 and 128 of the POEO Act). The POEO Act includes the concept of 'offensive odour' (section 129) and states it is an offence for scheduled activities to emit 'offensive odour', subject to limited defences.

The POEO Clean Air Regulation provides regulatory measures to control emissions from motor vehicles, fuels, and industry.

The National Environment Protection Council of Environmental Ministers, now the National Environment Protection Council (NEPC), set uniform national standards for ambient air quality in February 2016. The document containing these standards is known as the Air NEPM, which also contains goals for the identified relevant pollutants inclusive of particulates and concentration limits, averaging periods and number of allowed exceedances for each of the identified pollutants.

The Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (DEC, 2007) lists the methods to be used for the sampling and analysis of air pollutants in NSW for statutory purposes. While no emission sampling was conducted as part of this assessment, BlueScope has a responsibility to undertake, where possible, all sampling in accordance with requirements outlined in the Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (DEC, 2007). This includes sampling type, duration, location and a number of other requirements.

The Technical Framework provides a legislative context for the control of odour and presents odour assessment criteria guidelines. It provides a framework for different levels of odour assessment, strategies to mitigate odour, and guidance for performance monitoring, regulation and enforcement.

The Approved Methods lists the statutory methods for modelling and assessing emissions of air pollutants from stationary sources in NSW. It considers the above-mentioned legislation and guidance to provide pollutant assessment criteria.

The IAQM guidance provides guidance on the assessment of dust from demolition and construction activities. It provides a qualitative step by step process to assess the risk of dust impacts.

2.3 Emission limits

2.3.1 POEO Clean Air Regulation

The POEO Clean Air Regulation outlines air quality standards of concentration that apply to general and specific activities and plant for both scheduled and non-scheduled premises. Standards of concentration relevant to the project have been reproduced in Table 2.2 and were sourced from the Iron and steel: primary production (Group 6) category. Emissions to air from relevant project operations must comply with these emission limits.

Air impurity	Plant	Standard of concentration (Dry, 273 K, 101.3 kPa)
Iron and steel: primary production (g	roup 6)	
Solid particles (Total)	Any fuel burning equipment Any sinter plant Any kiln Any power-generating plant Any furnace	50 mg/m ³
	Any crushing, grinding, separating or materials handling activity	20 mg/m ³
Nitrogen dioxide (NO ₂) or nitric oxide (NO) or both, as NO ₂ equivalent	Any fuel burning equipment Any sinter plant Any kiln Any power-generating plant Any furnace	500 mg/m ³

Table 2.2	Relevant standards of	of concentration

Air impurity	Plant	Standard of concentration (Dry, 273 K, 101.3 kPa)
Hydrogen sulfide (H ₂ S)	Any fuel burning equipment Any sinter plant Any kiln Any power-generating plant Any furnace Any reduction control system not followed by combustion	5 mg/m ³
Volatile organic compounds (VOCs), as n-propane equivalent	Any activity or plant using a non-standard fuel	40 mg/m ³ VOCs or 125 mg/m ³ CO
Type 1 substances and Type 2 substances (in aggregate)	Any activity or plant	1 mg/m ³
Cadmium (Cd) or mercury (Hg) individually	Any activity or plant	0.2 mg/m ³
Dioxins or furans	Any sinter plant	0.1 ng/m ³
Smoke	Any fuel burning equipment Any sinter plant Any kiln Any power-generating plant Any furnace	Ringelmann 1 or 20% opacity

2.3.2 Environmental Protection Licence conditions

The PKSW site operates under NSW EPA issued Environmental Protection Licence (EPL) number 6092, which establishes conditions and discharge limits that the site must operate in accordance with. The EPL conditions relevant to the project and air quality have been identified below.

Under special condition E1 (Approval for Alternative Standard of Concentration for Hydrogen Sulphide Emissions) of EPL6092, the EPA authorises use of an alternative standard of concentration for H₂S from the processes carried out at the 5BF slag granulators. The limit conditions stipulated in condition E1.2 are reproduced in Table 2.3.

Table 2.3	EPL limit conditions
-----------	----------------------

Discharge Point	Pollutant	Unit of Measure	100% Limit	Averaging Period
Discharge Point 10, No.5 Blast Furnace, No.2 Slag Granulator	H ₂ S	g/s	1.2	Block average (Minimum of 15 minutes)
Discharge Point 11, No.5 Blast Furnace, No.1 Slag Granulator	H ₂ S	g/s	1.2	Block average (Minimum of 15 minutes)
Discharge Point 129, No.5 Blast Furnace, No.3 Slag Granulator	H ₂ S	g/s	1.2	Block average (Minimum of 15 minutes)

As part of the project and proposed future operations of PKSW, H₂S emissions will no longer be released from slag granulator stacks however, some H₂S emissions may be released via the 6BF slag granulation cooling tower. For this assessment, a conservative approach to modelling of the 6BF slag granulation cooling tower emissions was used, applying the current emissions from the 5BF slag granulator stack. This is anticipated to be an overestimation of future emissions.

2.4 Air quality impact assessment

Assessment criteria for the project was predominantly taken from the NSW EPA's Approved Methods, with the exception of NO₂ and SO₂ which were sourced from the Air NEPM air quality objectives as they represent the most recent and stringent standards for protection of the air quality environment. The outcome of the criteria is ambient air quality that minimises the risk of adverse health impacts from exposure to air pollution. Achieving compliance with the impact assessment criteria will help demonstrate the project will operate in a manner that protects human and environmental health.

An alternative 1 hour H₂S criteria was sourced from the California Ambient Air Quality Standards for comparative purposes. This additional hourly H₂S criteria has been included based on an earlier review at the site by Environ (2012) which concluded that the Californian EPA 1 hour average (public welfare) criterion of 42 ug/m³ should be considered for adoption for the assessment of cumulative impacts due to other H₂S sources in the region including PKSW. Environ states that given the uncertainty in short-term measured and modelled concentrations, the longer 1 hour averaging period is considered to provide a more robust basis for a criterion. It is noted that this approach was previously submitted to and accepted by the NSW EPA. GHD therefore has included both the short-term NSW H₂S criteria for odour nuisance and the hourly criterion for health impacts.

The adopted air quality assessment criteria are summarised in Table 2.4.

The application of each impact assessment criteria is variable for each pollutant based on the following factors:

- Averaging period the period over which modelled concentrations are averaged.
- Statistic the statistic of the modelled concentrations. As an example for a 1-hour averaging period, the 'maximum statistic' would be the highest predicted value at any receptor for the entire modelling period. The 99.9th percentile statistic would be (approximately) the ninth highest hour in a one year modelling period.
- Impact location the location at which the impacts are to be assessed. For some pollutants, impacts are assessable only at sensitive receptor locations, while some impacts are assessable at and beyond the boundary of the site. The criteria apply at ground level where receptors are likely to be exposed.
- Impact type the type of impact assessed. For some pollutants, the impacts are assessable only for the project's and PKSW contribution to pollutant concentrations at the relevant impact location (referred to as 'incremental impacts'). For other pollutants, the cumulative impact (which includes both the incremental concentration as well as the background concentration) is assessed.

Pollutant	Averaging	Statistic	Impact	Impact type	Criteri	a (µg/m³)
	period		location		EPA Assessment Criteria	Air NEPM
Airborne par	ticulate matter an	d common gase	ous pollutants			
TSP	Annual	Maximum	Sensitive receptor	Cumulative	90	-
PM ₁₀	24 hour	Maximum	Sensitive receptor	Cumulative	50	50
	Annual	Maximum	Sensitive receptor	Cumulative	25	25
NO ₂	1 hour	Maximum	Sensitive receptor	Cumulative	246	164
	Annual	Maximum	Sensitive receptor	Cumulative	62	31
SO ₂	1 hour	Maximum	Sensitive receptor	Cumulative	570	286 (planned to be reduced to 215 in 2025)
	24 hour	Maximum	Sensitive receptor	Cumulative	228	57

Table 2.4 Air quality impact assessment criteria

Pollutant	Averaging period			Impact type	Criteri	a (µg/m³)
			location		EPA Assessment Criteria	Air NEPM
Principal air to	xics					
Benzene	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	29	-
Dioxins and furans	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	2.00E-06	-
Individual air to	oxics	·		·	· ·	
Ammonia	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	330	-
Benzo[a]pyren e equivalent	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	0.4	-
Chlorine	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	50	-
Cyanide (as CN)	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	90	-
Ethyl-benzene	1 hour	99.9 th percentile	At or beyond site boundary	Incremental	8000	-
Odorous air po	llutants	·		·	· ·	
H ₂ S	1 second	99.9 th percentile	Sensitive receptor	Incremental	1.38	-
	1 hour	Maximum	Sensitive receptor	Cumulative	42	-
Phenol	1 hour	99.9 th percentile	Sensitive receptor	Incremental	20	-
Styrene	1 hour	99.9 th percentile	Sensitive receptor	Incremental	120	-
Toluene	1 hour	99.9 th percentile	Sensitive receptor	Incremental	360	-
Xylene	1 hour	99.9 th percentile	Sensitive receptor	Incremental	190	-

3. Methodology

3.1 General

This AQIA of the construction, commissioning and operation of the project was completed in accordance with EPA and contemporary guidance to assess air quality impacts from the project. Atmospheric dispersion modelling was undertaken to evaluate the potential worst-case impacts from the project under routine operations and inform recommendations of appropriate mitigation measures to minimise any potential impacts.

3.2 Approach

3.2.1 Air quality species of interest

The air pollutants examined in this report include:

- Airborne particulate matter ('particulates'), including Total Suspended Particulates (TSP) and particulate matter with diameter smaller than 10 microns (PM₁₀)
- Common gaseous pollutants including nitrogen dioxide (NO2) and sulphur dioxide (SO2)
- Odour in the form of hydrogen sulphide (H₂S)

PKSW emits air toxics including ammonia, benzene, benzo[a]pyrene, chlorine, cyanide (as CN), dioxins and furans, ethyl-benzene, polycyclic aromatic hydrocarbon (as benzo[a]pyrene equivalent) and xylene, however the blast furnaces are not a significant source of these emissions. These pollutants have therefore not been included in the assessment of 6BF as the project will not contribute to cumulative emissions.

While the PKSW site will emit fine particulates ($PM_{2.5}$), the project is replacing the operation of 5BF with the newer 6BF, and therefore $PM_{2.5}$ emissions are not likely to increase due to the project. Ambient air quality including $PM_{2.5}$ concentrations are discussed in Section 5.4. A review of the last five years of data shows annual average $PM_{2.5}$ levels below the ambient air quality goal of 8 µg/m³ at the three nearest DPIE sites (Kembla Grange, Albion Park South and Wollongong) for all years except 2019 which was heavily influenced by bushfires.

Improvements on current operations proposed as part of the project, such as the operation of a secondary dedusting hood to capture emissions at tapholes, are expected to result in a reduction of particulate emissions from the cast house which would otherwise be anticipated to be one of the primary sources of fine particulates. It is noted that PM_{2.5} is not identified as a substance likely to trigger NPI reporting thresholds in the *National Pollutant Inventory Emission Estimation Technique Manual for Iron and Steel Production (1999)*. PM_{2.5} from the project and has therefore not been included in the emission inventory or dispersion modelling.

3.2.2 Construction and commissioning assessment methodology

Construction assessment

Based on a review of the proposed construction methodology, agency requirements, and identification of emissions to air that could occur during construction, a qualitative-based approach that focused on management was adopted to assess the construction of the project. A risk-based approach in accordance with IAQM guidance was adopted to assess potential particulate impacts during the construction of the project.

Commissioning assessment

Emissions to air during commissioning will occur for a relatively short period of time at the beginning of the project's operational phase. Where possible, engineering controls will be used to reduce any emissions during this period. No air emissions sampling data from commissioning was available at the time of this assessment and therefore emissions to air during commissioning cannot be accurately quantified. On this basis, a qualitative approach that focused on management was adopted to assess the commissioning of the project.

3.2.3 Operation assessment methodology

The quantitative assessment of the operation of the project comprised of three parts:

- Air quality impact assessment
- Emission limit assessment
- Best practice assessment

3.2.3.1 Air quality impact assessment

A quantitative air quality assessment utilising air quality dispersion modelling was undertaken to assess potential worst case air quality impacts from operation of the project in accordance the Approved Methods. The modelling methodology adopted for this assessment is outlined in Section 3.3.

Air quality dispersion modelling was undertaken for two scenarios:

- Existing operations (Existing) includes operation of 5BF, sources associated with operation of 5BF, and general site operations and does not include sources associated with the operation of 6BF. The existing scenario was included to provide a 'baseline' that allows a comparative assessment of the project against existing PKSW operations.
- Future operations (Future) includes operation of 6BF, sources associated with operation of 6BF, and general site operations and does not include sources associated with the operation of 5BF.

Potential cumulative air quality impacts with existing industry and facilities in the area were accounted for by including background air quality data recorded from Department of Planning, Industry and Environment (DPIE) Air Quality Monitoring Stations (AQMS). It is noted that monitoring data at these AQMS include emissions from the existing PKSW operations. Using these as a baseline will at times double up the predicted cumulative emissions, and it is a complex process to determine the ambient air quality without PKSW in operation. To be conservative, and unless stated later in this report, GHD has added the ambient air quality data to predicted concentrations from PKSW to predict a total cumulative level for comparison with criteria.

Potential cumulative air quality impacts with proposed and approved major projects in the area were reviewed on a case by case basis and potential cumulative impacts were incorporated where considered appropriate.

3.2.3.2 Emission limit assessment

An assessment of air emission concentrations against the relevant air emission limits was carried out for the operation of the project. Emission limits which are considered relevant to assessment of the project were sourced from the POEO Clean Air Regulation.

The findings of the emission limit assessment are summarised in Section 7.

3.2.3.3 Best practice assessment

The best practice assessment was carried out with consideration of the European Union Best Available Techniques (BAT) Reference Document (BREF) for Iron and Steel Production Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control).

The best practice assessment benchmarked the proposed operations for the project against industry best practices. The findings of the best practice assessment are summarised in Section 10.

3.3 Modelling methodology

3.3.1 Dispersion model selection

A review of the surrounding terrain, air quality emission sources and distance to nearby receptors was undertaken to inform the choice of dispersion model used for this assessment.

Given the site's location which may be subject to coastal fumigation events, and the scale of the site where nonsteady state wind fields will likely be occurring (i.e. the 10 m high weather station is not likely representative at all areas of the model domain, including heights) GHD found CALPUFF to be the most appropriate dispersion modelling software to use for the project.

CALPUFF is an advanced non-steady-state, Gaussian puff dispersion model that uses a three dimensions spatially varying wind field that is capable of accounting for complex terrain features and varying wind fields.

3.3.2 Emission inventory development

A detailed air emissions inventory for the site was provided by BlueScope. It is understood that the emissions inventory was developed based on sampling data where available and Load Base Licencing approved emission factors or National Pollutant Inventory emissions estimation techniques where sampling data was not available. Emissions data used in the assessment represents the site operating under typical operating conditions.

Emissions used for 6BF operation are based on historical sampling data.

H₂S emissions applied to the 6BF slag granulation cooling tower are based on emissions measured at the 5BF slag granulatior stacks and are expected to be an over-estimation of actual future emissions.

It is considered likely that upgrades to the stoves will result in an improvement (reduction) of emissions to air. The improvements cannot be quantified until the project is operational and sampling can be undertaken. As such, historical data from 6BF was used and is expected to be conservative.

A review of historical sampling data of 6BF sources was undertaken for Type 1 and 2 substances, mercury and cadmium. Measured concentrations were very low and were found to represent less than 1% of the emission standard of concentration limits stipulated in the POEO Clean Air Regulation for mercury and cadmium, and 4% for Type 1 and 2 substances. These have been assessed in the emissions limit assessment in Section 7, however were not included in dispersion modelling.

3.3.3 Dispersion modelling

Predicted air quality impacts were modelled in accordance with the Approved Methods using an approved computer software model CALPUFF.

CALPUFF model settings were selected based on the recommendations provided in the *Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the Approved Methods for the Modelling and Assessments of Air Pollutants in NSW, Australia* (J Barclay and J Scire, Atmospheric Studies Group TRC Environmental Corporation, 2011), with the exception of the MDISP parameter for which the model default value was used.

For this assessment, the CALPUFF dispersion model was used to predict ground-level concentrations from the project. The CALPUFF dispersion model utilised a meteorological dataset of one year in duration. The grid size used in the CALPUFF model was equivalent to the CALMET domain (use of CALMET further discussed in Section 3.3.4). The same grid resolution of 250 metres used for the CALMET model was used in CALPUFF.

Building wake effects from existing buildings and large structures on site were included through use of the Building Profile Input Program (BPIP) PRIME algorithm. The dispersion model accounted for wake effects from approximately 1,400 building and structures.

The source properties and emission rates utilised in the dispersion modelling are detailed in Section 6.

The dispersion model was configured to predict pollutant concentrations at identified sensitive receptor locations and for a sampling grid centred on the PKSW site. Impacts at and beyond the site boundary were calculated using the sampling grid.

3.3.4 Meteorological modelling

Local meteorology including long term wind speed and direction, as well as atmospheric stability, influence how air pollutants are dispersed into the local environment.

Site specific meteorological data used to drive the dispersion model was generated by use of the WRF and CALMET meteorological models to produce a three-dimensional wind field which also accounts for local variations in the terrain. Prognostic WRF data was used as an 'initial guess field' for the CALMET meteorological model.

A representative year was chosen for modelling purposes based on review of Southern Oscillation Index (SOI) for the past 10 years and an analysis of BoM data recorded at Port Kembla Automatic Weather Station (AWS) for the last 5 calendar years (01/01/2016 - 31/12/2020). The review resulted in the selection of the 2017 calendar year (01/01/2017 - 01/01/2018) as the representative year for modelling purposes.

Details of the procedure undertaken to produce the site-specific meteorology are provided in Appendix A.

4. Description of the project

4.1 **Project overview**

This section provides a high level summary of the project from an air quality context. The EIS should be referred to for more detailed description. Additional details of air emissions from the project are provided in Section 6 and details on emission controls and the best practice review are provided in Section 10.

The project includes the reline of 6BF over a period of approximately three years to return it to service and commence ironmaking shortly after 5BF ceases operation.

The reline of the furnace initially involves removal of remaining burden material and iron skull, followed by stripping of the staves, refractories and hearth from inside the shell. In places, repairs to the furnace shell will be required. Once stripped, installation of the new hearth, sidewall refractories and staves will be completed, together with repairs/replacement of the tuyeres, tapholes, furnace cooling systems and instrumentation. Significant work will also be required to prepare each of the 6BF ancillary systems for continuous operation across the length of the new campaign. Following construction, 6BF will be commissioned and ramped up for operation. Cold commissioning of 6BF will occur while 5BF remains operational, however ironmaking at 5BF will conclude prior to ironmaking commencing at 6BF.

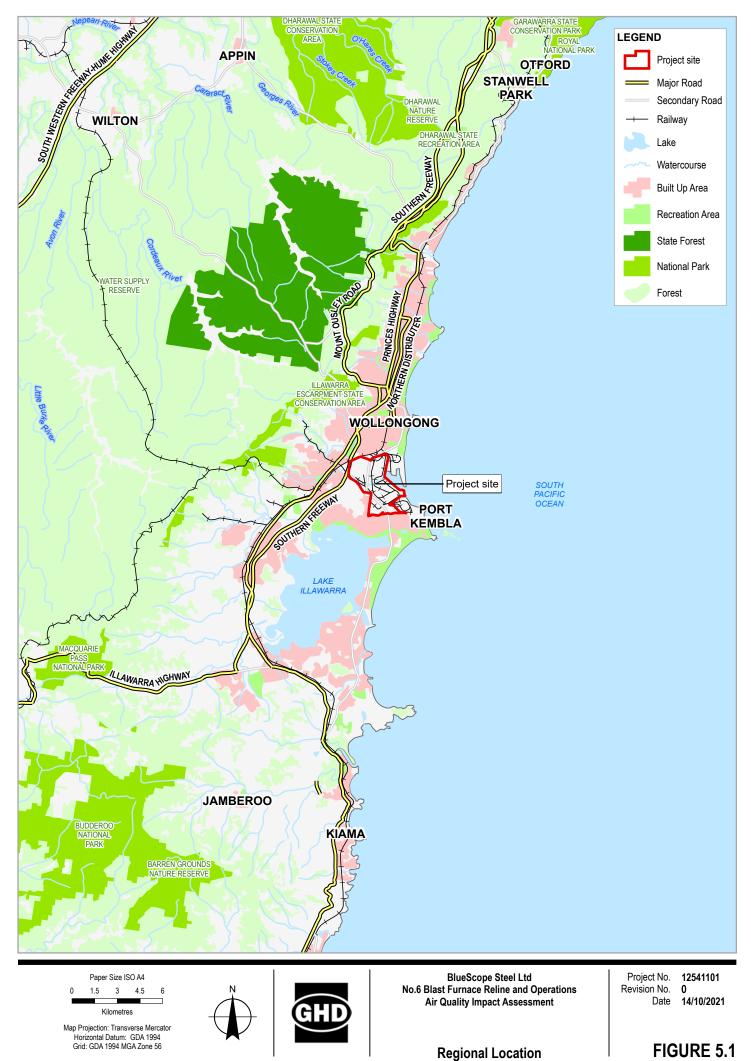
The project will see advances in technology being used including several improvements in 6BF compared to the currently operating 5BF, resulting in lower overall emissions from the site.

A summary of the project relevant to the assessment of construction and operational air quality is provided in Table 4.1.

Project element	Summary
Construction	Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.
Access	The majority of the construction traffic will access the site via the major roads that service the Port Kembla industrial area, including the Princes Motorway and Princes Highway, Shellharbour Road, Springhill Road, Five Islands Road and Masters Road. No changes to existing access arrangements are proposed.
Ironmaking components and systems	 Raw materials handling Sinter plant Blast furnace Stockhouse and charging system Blast furnace vessel Cooling system Casthouse Hot blast system Off gas system Slag handling
Air emissions	 Flue gas discharged from the stoves waste heat stack Filtered and unfiltered air from the casthouse and stockhouse Steam and H₂S from the slag granulation cooling tower Blast furnace gas (BFG) from furnace top bleeders during maintenance and overpressure events BFG discharged through primary relief valve via a silencer during charging H₂S and SO₂ from slag pits SO₂ from casthouse Dust from the raw materials and charging conveyors, off gas system, dust handling system, and traffic

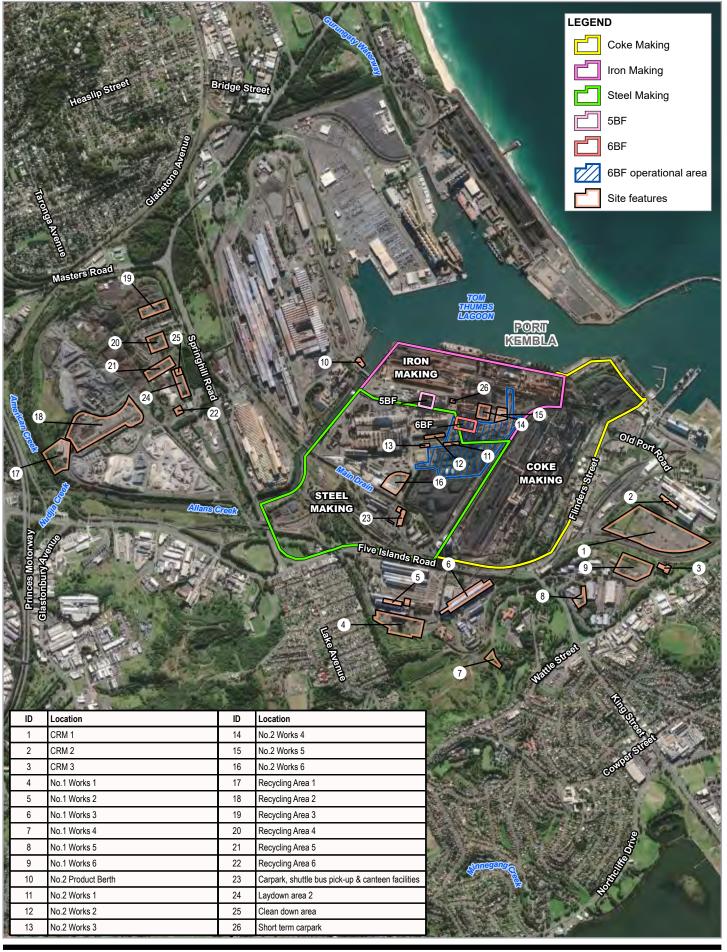
Table 4.1Project summary

Project element	Summary
Blast furnace slag	Two types of slag are produced from the blast furnace, granulated slag and rock slag. Slag is sold for use in other products, such as cement and road base.
Commissioning	 Commissioning involves the following: All services brought back into live condition Various parts of plant re heated Pressure and leak tests conducted Cooling systems filled and flushed Furnace dried out and charged with kindling and burden material Gas system purged and furnace 'blown in' Furnace progressively heated until regular casting of iron and slag commences Full production reached within one to two months
Operations	 Operation of 6BF will be generally the same as existing operations utilised at 5BF, including: Processing and transport of raw materials (iron ore, coal, coke, fluxes) Production of sinter (agglomeration of iron ore, coke and limestone dust) for use within the blast furnace. Production of approximately 2.7 Mtpa of iron from 6BF Processing of approximately 0.88 Mtpa of blast furnace slag for use as construction products
Construction work hours	 Where practical, and subject to the final construction program, construction will be carried out during the following construction hours: Monday to Friday: 7.00 am to 6.00 pm. Saturday: 7.00 am to 6.00 pm. Sundays and public holidays: no work. A number of construction activities will be scheduled to be undertaken as night works. Final construction phase will require 24 hour construction (estimated to be a period of 5 months). Further, 24 hour construction may be required for an extended period if 6BF is required online earlier than 2026.
Construction duration	Approximately 3 years
Operational duration	Approximately 20 years


5. Existing environment

5.1 Project location

PKSW is located within an industrial site of approximately 750 hectares in the Wollongong Local Government Area (LGA), approximately 80 kilometres from Sydney and 2.5 kilometres from the City of Wollongong (refer to Figure 5.1).


The PKSW site comprises the No.1 Works, No.2 Works, Steelhaven and the Recycling area. The No.2 Works is divided into two sections by Allans Creek. The southern half of the No.2 Works comprises the Cokemaking, Ironmaking and Steelmaking facilities, while the northern half includes the Rolling Mills and Recycling Area. All sectors of PKSW are internally linked by road and rail and are currently supplied with electricity, water and gas services.

The land to which this project applies, including all connecting infrastructure and materials handling elements that require upgrades as part of the project, is within the southern section of the No.2 Works, being part of the land on which ironmaking facilities are located. The relevant land title is Lot 1 DP 606434. Ancillary construction facilities will also be required and will be located within the wider PKSW site as shown in Figure 5.2.

G:22112541101\GISIMaps\12541101_AQL_Assessment_A.aprx\12541101_AQIA001_RegionalLocality_A Print date: 15 Oct 2021 - 09:24

Data source: Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3, 2006. Created by: tmorton

Paper Size ISO A4 0.6 0.2 0.4 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment

Project No. 12541101 Revision No. 0 Date 14/10/2021

Key project features

G:22112541101\GISIMapsi12541101_AQLAssessment_A.aprx\12541101_AQIA002_KeyFeatures_A Print date: 15 Oct 2021 - 09:25

0.8

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar Created by: tmorton

FIGURE 5.2

5.2 Receiving environment

The receiving environment plays a critical role in the potential for air emissions to lead to air impacts. The terrain and land use within the receiving environment have an influence on the local meteorological conditions and subsequently impact how air pollutants disperse within an environment. The location and densities of land uses sensitive to air quality impacts (sensitive receptors) relative to the source of air emissions plays a significant role in the magnitude and extent of potential impacts.

The land use, terrain and sensitive receptors surrounding the project location are discussed in the following report sections.

5.2.1 Land use

The PKSW site is zoned IN3 – Heavy Industrial under *State Environmental Planning Policy (Three Ports) 2013* (Three Ports SEPP). PKSW and the adjacent Springhill Works together comprise the largest site in the Port Kembla industrial area, occupying approximately 750 ha, and are mostly built around the western and northern side of Port Kembla's Inner Harbour. The PKSW site is a multi-use industrial area which includes storage, manufacturing, port berths, private internal roads and offices. Access to PKSW is provided by Springhill Road, Five Islands Road, Flinders Street and Christy Drive, and then private internal roads in PKSW.

The port of Port Kembla is located between the Pacific Ocean and the Port Kembla heavy industrial area and is zoned SP1 – Special Activities. The Inner Harbour, specifically developed as an all-weather shipping port, covers approximately 60 ha with around 2,900 m of commercial shipping berths. BlueScope operates five berths in the Inner Harbour that supply materials for the PKSW.

The area surrounding the Port Kembla industrial area is primarily occupied by residential development. These urban areas provide small and large-scale retail outlets, community services (e.g. medical facilities, hospital, schools and sporting facilities) and commercial facilities (e.g. banking and post office). The closest urban developments to PKSW are the suburbs of Cringila, Berkeley, Lake Heights, Warrawong and Port Kembla to the south, Unanderra, Cobblers Hill, Mount St Thomas, Coniston and Figtree to the north and west. The urban area of Cringila is located adjacent to the No. 1 Works and No. 2 Works areas and is nearest to the project area, being approximately 1.2 kilometres to the southwest.

5.2.1 Terrain

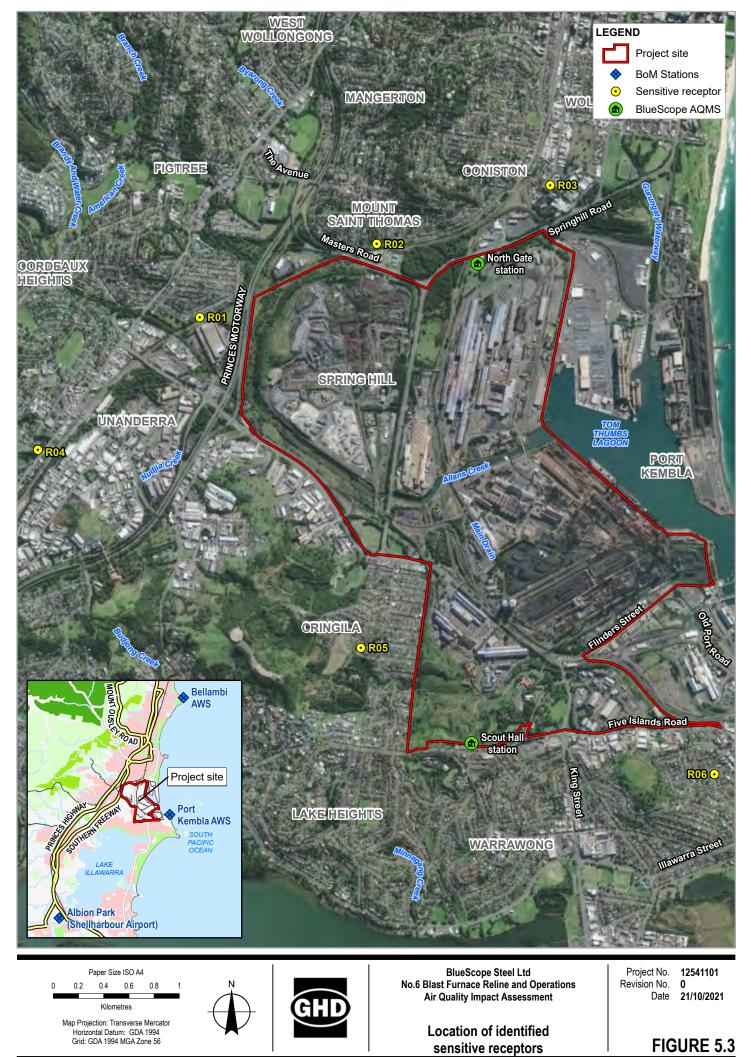
The PKSW site is generally flat and resides upon a base of artificial fill, including dredged sand and mud, rocks and local soil materials. The terrain within 10 km of the PKSW site is considered complex due to a land-sea interface bordering the site to the east and the Illawarra escarpment which is located approximately 6 kilometres to the northwest.

5.2.2 Sensitive receptors

The Approved Methods defines a sensitive receptor as:

'A location where people are likely to work or reside; this may include a dwelling, school, hospital, office or public recreational area. An air quality impact assessment should also consider the location of known or likely future sensitive receptors.'

The selection of identified sensitive receptors is consistent with the previous air quality assessment undertaken by *BlueScope Steel, Port Kembla Site Air Emissions Modelling – PRP131* (Environ, 2012) to readily allow comparison of predicted impacts between assessments and to analyse changes in predictions over time.


The locations of identified sensitive receptors are listed in Table 5.1 with universal transverse Mercator coordinates (eastings and northings), receptor type, locality with respect to the project and description. The locations of representative sensitive receptors in the surrounding area are shown in Figure 5.2.

ERM (2021) also conducted a peer review of the BSL Air Emission Site Wide Model produced in 2011. In its review ERM states that there have been no material changes to land use or occupancy surrounding the facility since the production of the 2011 model. Based on this, ERM concluded that sensitive receptor locations did not require significant review or amendment.

In addition to the identified sensitive receptor locations, the assessment predicted pollutant concentrations for a sampling grid centred on PKSW so that results can be determined at any location within the sampling grid.

Table 5.1	Location of identified sensitive receptors
-----------	--

Receptor ID	UTM c	UTM coordinates (m)		Approximate	Description
	Easting	Northing		distance and direction from project boundary	
R01	303054	6186079	Residential	~410 m northwest	Residence 1
R02	304458	6186662	Residential	~180 m north	Residence 2
R03	305835	6187128	Educational	~360 m northwest	Coniston Primary School
R04	301769	6185029	Residential	~1,630 m west	Unanderra Community Centre
R05	304332	6183457	Educational	~460 m west	Cringila Primary School
R06	307138	6182455	Residential	~400 m south	Warrawong Community Centre

\lghdnetlghd\AUINewcastlelProjects\22\12541101\GIS\Maps\12541101_AQI_Assessment_A.aprx\12541101_AQIA003_SensitiveReceptors_A Print date: 21 Oct 2021 - 19:03

Data source: LPI: DCDB/DTDB, 20 Australia) 250K Topographic Data Series 3, 2006. World Imagery: Earthstar Geographics World Imagery: Maxar. Created by: tmorton

5.3 Existing and future sources of air pollutants

5.3.1 Facilities reporting to the NPI

The National Pollutant Inventory (NPI), operated under the *National Environment Protection (National Pollutant Inventory) Measure 1998*, provides publicly available information about emissions of 93 pollutants throughout Australia. Facilities that exceed prescribed threshold values are required to report their emissions to the NPI on a yearly basis.

A review of facilities reporting to the NPI in the area surrounding the project site revealed 18 facilities within a 5 km radius of the site; of these, five were identified to emit emissions of relevant pollutants that are assessable as cumulative impacts (pollutants including oxides of Nitrogen (NO_x) and SO_2). These five facilities are described in Table 5.2. Annual emissions of relevant pollutants from each facility are presented in Table 5.3.

Name of operation	Proximity to the PKSW boundary	Description of operation
Bisalloy Steels Unanderra	~550 m west	Manufacture of quenched and tempered steel plate
BOC Gases Port Kembla	~50 m west	Refines atmospheric gases to produce saleable products.
Boral Asphalt Port Kembla	Within PKSW site boundary	Hot mix asphalt manufacturing
IXOM Port Kembla Site	~1,500 m southeast	Sulfuric acid regeneration/manufacture, sodium bisulfite manufacture, sulfuric acid import, storage and despatch
Port Kembla Milling	~50 m southeast	Cement milling

Table 5.2 Existing operations reporting emissions to the NPI

 Table 5.3
 Annual emissions reported to NPI for each facility for the 2019/2020 reporting period (kg/year)

Name of operation	NOx	SO ₂
Bisalloy Steels Unanderra [Unanderra-NSW]		67
BOC Gases Port Kembla [Cringila-NSW]		10
Boral Asphalt Port Kembla [Port Kembla-NSW]		0.5
IXOM Port Kembla Site [Port Kembla-NSW]	3,189	23,567
Port Kembla Milling [Port Kembla-NSW]		2,130

5.3.2 State significant projects

A review of the DPIE Major Projects website was completed to understand future sources of air pollutants which may contribute to cumulative impacts with the project. New state significant projects (SS projects), that is, both State Significant Developments and State Significant Infrastructure, with potential for air emissions are summarised in Table 5.4.

Table 5.4 Summary of nearby state significant projects with emissions to air

Name of SS project	Proximity to the PKSW boundary	Project status	Description of project	Expected impact on air quality at project sensitive receptors
Port Kembla Gas Terminal	~500 m east	Approved	Development of a liquefied natural gas (LNG) import terminal to receive and distribute LNG shipments sourced from global suppliers.	Emissions of particulates, combustion pollutants (NOx and SO ₂) and volatile organic compounds from engines on board the Floating Storage and Regasification Unit (FSRU) and LNG carrier vessels.
Tallawarra B Power Station	~8 km southwest	Approved	Construction and operation of the proposed Tallawarra Stage B Gas Turbine Power Station. The power station will consist of 2 or 3 open cycle gas turbine generators with a nominal capacity of 300-450MW, or one combined cycle gas turbine generator with a nominal capacity of 400MW.	Emissions of particulates, combustion pollutants (NOx and SO ₂) and volatile organic compounds from operation of gas turbine(s).
Name unknown, project proposed by Australian Industrial Power (AIP) / Squadron Energy group	N/A	N/A	Development of a dual-fuel (gas and green hydrogen) power station at Port Kembla.	Project is in its early stages and information about the anticipated emissions is not yet available.

Based on a review of project characteristics, the following was determined for each SS project:

- Port Kembla Gas Terminal there is potential for cumulative impacts from the Port Kembla Gas Terminal due to close proximity of the 6BF reline project. Background pollutant concentrations from the Port Kembla Gas Terminal project should be included in the cumulative assessment.
- Tallawarra B Power Station it is considered unlikely that cumulative impacts will occur from the Tallawarra B
 Power Station project due to significant separation distance between projects and relative location of sensitive
 receptors with respect to both projects (i.e. sensitive receptors are located between both projects, therefore
 receptors will only be impacted by one project at a time based on prevailing meteorological conditions). No
 allowance for pollutant concentrations from the future operating Tallawarra B Power Station is considered
 necessary.

It is noted that a sub-project of the No. 6 Blast Furnace Upgrade is the Commodity Logistics and Import Project (CLIP), which involves an upgrade of the raw materials unloading berth infrastructure at PKSW. The CLIP is a critical component of the No. 6 Blast Furnace Upgrade. Installation and commissioning of the infrastructure is required as early as November 2024. As it is a separate stage of the overall project, CLIP will be assessed separately (in a separate EIS) and is not included in this assessment.

5.4 Background air quality

An assessment of the total impact, which includes the project impact as well as the background concentrations, is required for the following pollutants:

- TSP
- PM10
- PM_{2.5}
- NO₂
- SO₂
- H₂S

To assess the total impact, representative background levels of each pollutant must be established.

5.4.1 Background DPIE AQMS data

DPIE operates air quality monitoring stations (AQMS) in many locations across NSW. A summary of data available from the nearest DPIE AQMS is provided in Table 5.5.

•	•	
Station name	Distance to the PKSW boundary	Pollutants of interest that are measured
Wollongong	~4 km north	PM10, PM2.5, NO2, O3 and SO2
Kembla Grange	~6.5 km west	PM10, PM2.5, NO2 and O3
Albion Park South	~17 km southwest	PM ₁₀ , PM _{2.5} , NO ₂ , O ₃ and SO ₂

 Table 5.5
 Summary of data reviewed as part of the assessment

Based on proximity to the PKSW site, use of data from the Wollongong AQMS was prioritised, followed by Kembla Grange, then lastly data from Albion Park South.

A summary of the ambient air quality data recorded at each AQMS over the last 5 years is provided in Table 5.6.

 Table 5.6
 5 year summary of available background air quality data recorded by DPIE

Pollutant	Averaging period	Recorded background concentration by year (µg/m ³					
		2016	2017	2018	2019	2020	
Wollongong]						
PM10	24 hour maximum	52.9	55.2	59.7	117.6	121.6	
	Maximum 24 hour (below assessment criteria)	49.5	47.2	47.3	48.7	48.1	
	70th percentile	20.7	20.6	23.1	25.1	20.4	
	Annual average	17.3	18.1	19.8	22.6	18.8	
PM _{2.5}	24 hour maximum	33.7	24.7	47.6	81.5	100.9	
	Maximum 24 hour (below assessment criteria)	20.1	24.7	21.8	24.5	22.0	
	70th percentile	8.3	8.3	8.3	9.0	7.4	
	Annual average	7.4	7.1	7.3	9.0	7.8	
NO ₂	1 hour maximum	88.2	116.9	88.2	82.0	84.1	
	Annual average	13.0	12.9	13.8	12.2	13.2	
SO ₂	1 hour maximum	57.2	134.4	65.8	97.2	57.2	
SO ₂	24 hour maximum	13.1	10.5	10.5	13.1	23.6	
	Annual average	1.7	2.3	2.6	2.6	1.7	
Kembla Gra	inge						
PM10	24 hour maximum	56.3	67.7	71.8	115.8	187.7	
	Maximum 24 hour (below assessment criteria)	47.3	48.0	49.1	49.8	48.3	
	70th percentile	23.9	23.5	26.4	29.5	22.5	
	Annual average	20.0	20.5	22.7	25.5	21.5	
PM _{2.5}	24 hour maximum	32.0	21.3	21.9	70.1	100.4	
	Maximum 24 hour (below assessment criteria)	18.2	21.3	21.9	24.6	22.6	
	70th percentile	7.8	8.0	8.0	8.9	6.5	
	Annual average	6.6	6.9	7.1	8.8	6.8	
NO ₂	1 hour maximum	80.0	75.9	75.9	86.1	77.9	
	Annual average	10.0	9.2	10.0	10.3	8.2	
SO ₂	1 hour maximum	-	-	-	-	-	
	24 hour maximum	-	-	-	-	-	
	Annual average	-	-	-	-	-	
		1					

Pollutant	Averaging period	Recorded background concentration by year (µg/m ³)					
		2016	2017	2018	2019	2020	
Albion Park	South						
PM10	24 hour maximum		44.6	94.4	104.3	153.3	
	Maximum 24 hour (below assessment criteria)	43.1	44.6	49.9	47.0	45.4	
	70th percentile	18.3	17.5	20.4	21.3	17.7	
	Annual average		15.3	17.8	19.5	17.1	
PM _{2.5}	24 hour maximum	30.7	19.3	29.4	49.4	96.3	
	Maximum 24 hour (below assessment criteria)	20.8	19.3	20.6	24.8	21.4	
	70th percentile	8.0	7.3	7.7	9.4	6.5	
	Annual average	7.2	6.6	6.8	8.6	6.8	
NO ₂	1 hour maximum	88.2	77.9	80.0	84.1	80.0	
	Annual average	7.7	7.4	8.1	7.8	5.8	
SO ₂	1 hour maximum	62.9	85.8	88.7	71.5	62.9	
	24 hour maximum	15.7	21.0	21.0	21.0	13.1	
	Annual average	1.7	1.9	2.0	2.2	0.8	

5.4.2 Background BlueScope collected data

BlueScope currently operates two air quality monitoring stations, North Gate and Scouts Hall, and has undertaken historic air quality sampling in a number of locations. North Gate AQMS is located approximately 2 km northwest of the 6BF and has been in operation since December 2015. Scouts Hall AQMS is located approximately 1.8 km southwest of the 6BF and has been in operation for approximately 34 years. Refer Figure 5.3 for station locations.

A summary of the ambient PM₁₀ data recorded at North Gate AQMS and Scouts Hall AQMS over the last 5 years is provided in Table 5.7. It is noted that the air quality monitoring stations are not fully compliant with the Australian Standard, and therefore are included for comparative purposes only.

Pollutant	Averaging period	Recorded background concentration by year (µg/m³)					
		2016	2017	2018	2019	2020	
North Gate							
PM ₁₀	24 hour maximum	176.5	499.7	205.8	499.7	499.4	
	Maximum 24 hour (below assessment criteria)	49.0	49.7	49.5	48.8	49.1	
	70th percentile	26.0	24.4	29.2	31.4	27.1	
	Annual average	22.6	26.2	27.8	39.1	37.4	
Scouts Hall							
PM 10	24 hour maximum	63.1	76.2	79.5	109.5	131.2	
	Maximum 24 hour (below assessment criteria)	48.3	47.9	49.6	48.1	49.1	
	70th percentile	21.2	21.4	27.1	28.7	21.3	
	Annual average	17.6	18.8	22.7	24.2	19.9	

 Table 5.7
 5 year summary of available background PM₁₀ data recorded by BlueScope¹

¹ Extraneous data was removed from dataset. Due to unrepresentative 'spikes' identified in the recorded data, any 3 minute average PM₁₀ concentration greater than 500 ug/m³ was filtered out of dataset.

The maximum and average 1 hour averaged H₂S concentrations recorded by BlueScope at Cringila and Scouts Hall for the most recent three years of data are summarised in Table 5.8 and Table 5.9 respectively.

Based on the recorded average 1 hour averaged H_2S concentrations, a background 1 hour H_2S concentration of 2 $\mu g/m^3$ (equal to the highest monthly average H_2S concentration recorded) was adopted.

Month	Maximum 1 hour average H ₂ S concentration recorded (μg/m ³)						
	Cringila			Scouts Hall			
	2013	2014	2015	2013	2014	2015	
Jan	10.6	15.2	7.9	30.3	7.8	20.4	
Feb	3.5	10.1	2.6	9.2	9.7	9.4	
Mar	4.3	7.8	1.4	12.8	7.1	9.5	
Apr	5.0	35.7	-	9.7	83.2	-	
May	14.5	5.4	4.4	3.4	79.8	5.5	
Jun	31.0	9.6	10.6	6.1	3.9	5.3	
Jul	9.0	3.6	4.2	5.4	2.5	5.5	
Aug	3.0	3.9	7.8	6.1	3.2	4.8	
Sep	10.9	4.7	-	8.9	4.0	2.6	
Oct	12.3	4.0	-	8.7	50.7	7.1	
Nov	5.6	5.2	-	7.5	12.7	13.2	
Dec	7.2	5.7	-	5.7	9.6	-	

 Table 5.8
 Maximum 1 hour averaged H₂S concentration

"-" denotes sampling was not undertaken during this time period.

Table 5.9Average 1 hour H2S concentration

Month	Average 1 hour H ₂ S concentration recorded (µg/m ³)							
	Cringila				Scouts Hall			
	2013	2014	2015	2013	2014	2015		
Jan	1.8	1.1	1.0	1.6	0.9	0.8		
Feb	0.8	1.4	0.5	0.9	1.0	0.7		
Mar	0.8	1.8	1.3	0.8	0.9	1.1		
Apr	1.0	1.6	-	0.6	0.8	-		
May	1.0	1.0	0.7	0.6	0.7	0.7		
Jun	2.0	0.9	0.9	0.6	0.6	0.6		
Jul	1.1	0.9	1.0	0.7	0.5	0.6		
Aug	1.1	0.8	1.2	0.7	0.4	0.5		
Sep	1.2	0.9	-	0.9	0.5	0.6		
Oct	1.4	0.9	-	0.8	0.9	0.9		
Nov	1.0	1.1	-	0.9	0.8	0.9		
Dec	1.1	1.0	-	0.8	0.8	-		
"-" denote	s sampling was	not undertaken du	ring this time period	d.	· ·	·		

5.4.3 Adopted background data

A summary of the background air quality data adopted in this assessment is provided in Table 5.10. As noted in Section 3.2.3.1, inclusion of background data is considered conservative as the background data contains contributions from existing PKSW operations. Using the background data may result in a 'doubling up' of concentrations from PKSW, however it was decided to include the background data in this assessment to provide a conservative assessment.

Pollutant	Averaging period	Adopted background value
TSP	Annual	36.2 $\mu g/m^3$, equal to twice the annual PM_{10} concentration recorded at Wollongong AQMS for the modelling period
PM ₁₀	24 hour	Daily variable from Wollongong AQMS (i.e. a different value was used for each 24 hour period, refer to Table 5.6 for general statistics including; 24 hour maximum, maximum 24 hour (below assessment criteria), 70th percentile and annual average)
NO ₂	1 hour	Hourly variable from Wollongong AQMS, if unavailable then from Kembla Grange AQMS, if unavailable from either station then from Albion Park South AQMS (refer to Table 5.6 for general statistics including; 1 hour maximum and annual average)
O ₃	1 hour	Hourly variable from Wollongong AQMS, if unavailable then from Kembla Grange AQMS, if unavailable from either station then from Albion Park South AQMS
SO ₂	1 hour	Hourly variable from Wollongong AQMS (refer to Table 5.6 for general statistics including; 1 hour maximum, 24 hour maximum and annual average)
	24 hour	Daily variable from Wollongong AQMS (refer to Table 5.6 for general statistics including; 1 hour maximum, 24 hour maximum and annual average)
H ₂ S	1 hour	2 $\mu\text{g/m}^3$, equal to the highest monthly average H_2S concentration recorded by BlueScope

 Table 5.10
 Adopted background air quality data

5.5 Climate and meteorology

The local climate and meteorology (weather) within the study area is of critical importance when assessing the potential for air quality impacts at sensitive receptors.

The meteorological environment relevant to a project site is best understood through review of data collected from long-running monitoring weather stations, most commonly operated by the Bureau of Meteorology (BoM) as well as state authorities (DPIE in this case) and in some instances private entities (such as BlueScope). Simulation of the meteorological environment (modelling) is a useful tool in understanding the environment where suitable meteorological observations are not available.

5.5.1 Available observations

The BoM operates a network of Automatic Weather Stations (AWS) across Australia. A BoM AWS typically measure critical meteorological parameters including wind speed, wind direction, temperature, relative humidity, and pressure, with some stations also measuring cloud coverage.

The nearest AWS to the project site include:

- Port Kembla AWS (068253) 2 km southeast
- Bellambi AWS (068228) 11 km north
- Albion Park (Shellharbour Airport) (068241) 15 km southwest

It is noted that long term climate statistics of temperature and rainfall are not available from the closest BoM station (Port Kembla AWS), therefore climate statistics were sourced from the second closest station (Bellambi AWS).

BlueScope's Northgate and Scouts Hall air quality monitoring stations record wind speed and direction, however they do not include temperature or rainfall and are not fully compliant with Australian Standards for wind speed and direction and therefore weren't referenced in this section. A review of the wind roses recorded at BlueScope's Northgate and Scouts Hall air quality monitoring stations is provided in Appendix A.

5.5.1.1 Temperature

Figure 5.4 shows monthly temperature statistics for data measured at BoM Bellambi AWS for the period 1997 through 2021. The median monthly maximum temperature and median monthly minimum temperature are used to show the typical temperature range for each month of the year. This is shown along with the monthly average temperature.

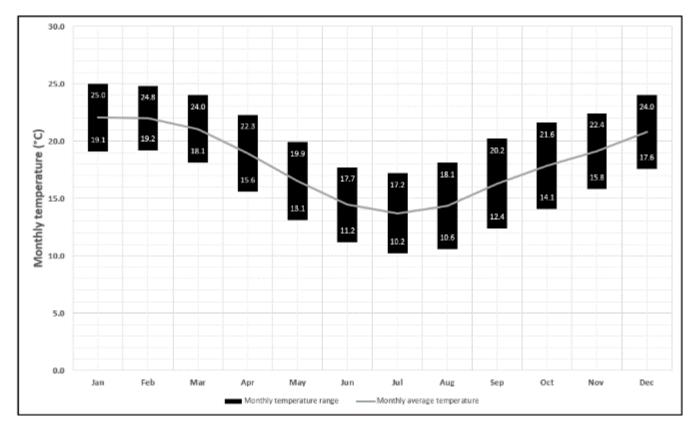


Figure 5.4 Monthly climate temperature statistics from BoM Bellambi AWS (1997-2021)

5.5.1.2 Rainfall

Figure 5.5 shows monthly rainfall statistics for data measured at BoM Bellambi AWS for the period 1997 through 2021. The statistics shown include average monthly rainfall amount (mm) and average number of days per month where rainfall is greater than 1 mm (number of 'rain days').

The data shows that the number of rain days and the total rainfall amounts are greater during the summer and autumn months.

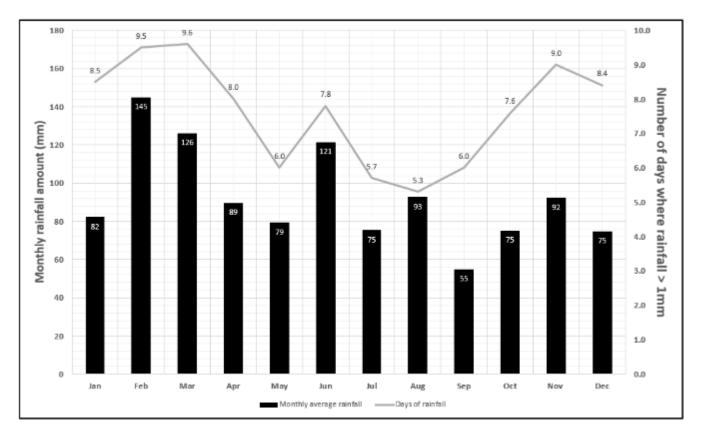


Figure 5.5 Monthly climate rainfall statistics from BoM Bellambi AWS (1997-2021)

6. Project air emissions

6.1 **Project construction**

6.1.1 Construction overview

The reline and transition to operation of 6BF will be completed in approximately three years which, assuming a construction start during 2023, will see completion of construction in 2026. The actual construction start and completion dates will depend on factors including the operational performance of the 5BF facility, and the timing of when furnace condition requires that it be decommissioned.

Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.

Construction activities will indicatively involve the following tasks:

- Removal of the remaining burden materials
- Removal of the iron skull
- Removal of worn carbon block refractories in the hearth
- Removal of worn refractories in the remainder of the vessel
- Demolition of other equipment including:
 - Cooling staves which protect the blast furnace shell
 - Hot blast main refractory lining where required, including the expansion joints
 - Clarifier tank and associated equipment where required
- Repairs to the blast furnace shell where required
- Installation of a new clarifier tank and associated equipment
- Installation of the new hearth, sidewall refractories and staves
- Replacement of tuyeres, tapholes and instrumentation
- Repair, maintenance and/or upgrade of ancillary equipment including:
 - Furnace cooling systems
 - Hot blast system including the stoves, with the addition of a Stove Waste Gas Heat Recovery (WGHR) system
 - Gas system, with addition of a Top Gas Recovery Turbine (TRT)
 - Furnace top, including the charging equipment, bleeder valves and outrigger crane
 - Casthouse floors and associated equipment
 - Stockhouse (raw materials feed system)
 - Automation and power systems
 - Services
 - Installation of a new slag granulation system

A list of indicative equipment required for the reline construction activities is presented in Table 6.1.

Table 6.1 Indicative equipment list at Blast Furnace and surrounding facilities

Indicative construction equ	ipment		
Excavators ranging from 5t to 40t	Bobcats (skid steer loaders)	Water blasters	Rail tamper
Cranes of various capacity ranging from 15t to 800t	Plate compactors	Grit blasters	Various brick saws and mixers
Dump trucks	Explosives equipment (drilling rig)	Semi trailers	Material hoists and winches
Front end loaders	Air compressors	Abbey hoists	Refractory gunning machine
Telescopic boom excavator	Diesel welders	Forklifts	Temporary stove burners, fuel pipe and fans.
Liquids tankers	Welding Machines	Sykes pumps	Alimak passenger and goods lifts
Tear-Out machine	Temporary conveyors	Nitrogen welding and cutting gases	Scaffolding
Boom and scissor lifts	Vacuum loading (suck) trucks	Concrete mixers	Concrete pumps
Fuel trucks	Flat Bed Trucks	Vibratory roller	Rock-breaker
Piling Rigs	Concrete saw		

Where practical, and subject to the final construction program, construction will be carried out during the following construction hours:

- Monday to Friday: 7.00 am to 6.00 pm
- Saturday: 7.00 am to 6.00 pm
- Sundays and public holidays: no work

A number of construction activities will be scheduled to be undertaken as night works.

The final construction phase will require 24 hour construction (estimated to be a period of 5 months). Further, 24 hour construction may be required for an extended period if 6BF is required to be online earlier than 2026.

The project will require approximately 31,000 m² of indoor storage and 57,000 m² of outdoor storage. The delivery of materials and equipment to the work sites will be staged as required with minimal storage available in the area immediately adjacent to 6BF. Indicative laydown areas are shown on Figure 5.2.

Construction support facilities, car parks and laydown areas identified are on areas of the site which have been historically used for similar activities including during previous reline events. A summary of proposed laydown areas is provided in Table 6.2.

ID	Location	Activity	Size (m ²)	Indoor/Outdoor	Comments
4	No.1 Works 1	Storage	28,500	Outdoor	Currently used as coke storage (rarely used)
5	No.1 Works 2	Storage	5,000	Indoor	No change to the use of the space as it is used today
6	No.1 Works 3	Storage	36,500	20,000 indoor 16,500 outdoor	No change to the use of the space as it is used today
7	No.1 Works 4	Storage	6,400	Outdoor	-
8	No.1 Works 5	Storage	4,000	500 indoor 3,500 outdoor	-

Table 0.2 Afficiliary facilities	Table 6.2	Ancillary facilities
----------------------------------	-----------	----------------------

ID	Location	Activity	Size (m ²)	Indoor/Outdoor	Comments		
9	No.1 Works 6	Storage	17,000	Outdoor	No change to the use of the space as it is used today		
1	CRM 1	Storage	80,000	Outdoor	-		
2	CRM2	M2 Storage 3,000 Indoor		Operations indoor			
3	CRM3	Storage	2,800	Indoor	Operations indoor		
11	No.2 Works 1	Construction	1,000	Outdoor	-		
12	No.2 Works 2	Construction	3,000	Outdoor	-		
13	No.2 Works 3	Construction	1,500	Outdoor	-		
14	No.2 Works 4	Storage	3,000	Outdoor	-		
15	No.2 Works 5	Storage	7,000	Outdoor	-		
16	No.2 Works 6	Storage	7,000	Outdoor	-		
10	No.2 Products Berth	Storage	2,500	Outdoor	-		
17	Recycling Area 1	Storage / cleaning	14,000	3,000 indoor 11,000 outdoor	No change to the use of the space as it is used today		
18	Recycling Area 2	Processing	88,000	Outdoor	No change to the use of the space as it is used today		
19	Recycling Area 3	Processing	25,000	Outdoor	No change to the use of the space as it is used today		
20	Recycling Area 4	Storage / Processing	11,000	Outdoor	-		
21	Recycling Area 5	Storage / Processing	20,000	Outdoor			
22	Recycling Area 6	Storage	4,500	Outdoor	No change to the use of the space as it is used today		
23	Springhill Electrical	Storage	3,000	Indoor	Operations indoor		

6.1.2 Construction emissions

The key emissions to air from the construction of the project were identified upon review of the construction methodology. It is anticipated that particulates (TSP and PM₁₀) including some contaminants and vehicle exhaust emissions may occur during construction.

Relatively minor particulate emissions are expected from removal, demolition, repair and installation activities with the use of localised emission controls such as watering. Construction particulate emissions will vary based on the specific activities being undertaken at any time (i.e. particulate emissions will not occur at all times).

It is anticipated that some particulate emissions may include contaminants and heavy metals from removal of infrastructure. With dust management measures in place, contaminant emission will be relatively minor and will be controlled at the source.

Some activities will have a higher potential for particulate emissions including blasting, heavy demolition and use of rock breaking equipment. Activities with a higher potential for particulate emissions will be managed by implementation of a construction dust management plan including management measures outlined in Section 11.

Minor vehicle exhaust emissions are expected throughout the construction period however, sources will be discontinuous, transient, and mobile, and therefore the air quality risk associated with vehicle emissions during construction is low.

An overview of potential emissions to air that could occur during construction of the project is summarised in Table 6.3.

Table 6.3	Summary of potential construction emissions to air
-----------	--

Construction activity	Activity description	Overview of emission sources
Removal activities including removal of remaining burden materials, iron skull, worn carbon block refractories, worn refractories in the remainder of the vessel	 Use of mobile plant and equipment to remove burden materials Iron skull demolition using explosives (noting that only small sections of the skull will be blasted away at any one time to minimise the amount of explosive used) Jack picking and breaking up refractory material into smaller pieces for extraction Removal of material by the telescopic boom excavator 	 Minor particulate emissions from use of plant/equipment Particulate emissions from blasting and heavy demolition
Demolition activities including demolition of cooling staves, hot blast main refractory lining, clarifier tank and associated equipment where required	 Use of power tools and mobile plant/equipment to undertake demolition as required 	 Minor particulate emissions from use of plant/equipment
Repair, maintenance and upgrade activities including repairs to the blast furnace shell and repair, maintenance and/or upgrade of ancillary equipment	 Use of power tools and mobile plant/equipment to undertake repairs, maintenance and upgrades as required 	 Minor particulate emissions from use of plant/equipment
Installation activities including installation of a new clarifier tank (and associated equipment), the new hearth, sidewall refractories and staves and a new slag granulation system	 Use of power tools and mobile plant/equipment to install new equipment as required 	 Minor particulate emissions from use of plant/equipment
General construction activities and preparation of construction areas including stockpiles, storage and laydown	 Use of power tools and mobile plant/equipment to install new equipment as required 	 Minor particulate emissions from use of plant/equipment

It is anticipated that the majority of particulate emissions will occur from:

- Construction areas (No.2 Works 1, No.2 Works 2 and No.2 Works 3)
- Processing areas (Recycling Area 4 and Recycling Area 5)

Material and plant storage areas (which account for majority of ancillary areas) are not expected to emit significant particulate emissions. It is assumed that any material with potential to release particulate emissions will be stored in designated storage areas away from the site boundary.

6.2 Project commissioning

6.2.1 Commissioning overview

Prior to operation, the project will undergo a period of commissioning, a once off procedure that is necessary to allow commencement of operation. It is anticipated the commissioning process will take several months to occur, after which, the furnace will be blown in and then gradually uprated over a period of approximately 6 weeks until full production is achieved.

The commissioning process is outlined as follows:

- Quality assurance documentation checked.
- Handover from construction to commissioning.
- Cooling systems filled and flushed.
- Hydraulic and lubrication systems filled and flushed.
- System pressure and leak tests conducted.
- All services brought back into live condition.

- Cold commissioning of all equipment e.g. running of conveyors, drives, vibro-feeders, screens, probes, stockrods, tapping drills, clayguns, manipulators, tilting spouts, tilting platforms, fans, blowers, pumps, stroking valves and cylinders, setting limits, speeds and flows, etc.
- Control system commissioning including interlock and functionality testing for each plant area.
- Furnace pressure and leak tests conducted. Various parts of plant reheated.
- The furnace proper will be dried out using hot blast at limited temperatures, then charged with kindling (comprising firewood/railway sleepers and coke) and filled with a mix of burden material (coke and iron ore).
- The gas systems will be purged ready for use and the furnace will be 'blown in'. This involves the introduction
 of hot blast air through the tuyeres, with gas initially discharged through the furnace bleeders until its
 composition is satisfactory for internal use, at which time the gas is then diverted into the gas cleaning
 system.
- The furnace is progressively heated until regular casting of iron and slag commences, although the iron quality is not usable initially and it will take several days to produce useable iron which can be converted to steel.
- The furnace is then uprated to target production over the following weeks, reaching full production after a period of approximately 6 weeks.

6.2.2 Commissioning emissions

During commissioning, the primary emissions to air are expected to comprise of combustion pollutants including carbon monoxide (CO), carbon dioxide (CO₂), hydrogen (H₂), and particulates, that will occur during charging, purging and heating of the furnace.

During blow-in, gas generated during the initial combustion period varies slightly in composition when compared to blast furnace gas and is unable to be re-used in other areas at PKSW. As a result, this gas will be vented through the furnace top bleeders being directed through the gas cleaning system. This will result in visible emissions for a period of approximately two to three hours. Once the composition of the blast furnace gas is suitable for re-use in other areas at PKSW, it will be reintroduced to the interworks gas system and the bleeding to atmosphere will stop.

During blow-in, the tapholes at the bottom of the blast furnace are open allowing the escape of combusting gas mixtures, which will be ignited, until enough slag is generated to seal the tapholes. As soon as the tapholes are sealed off, ironmaking will commence and runner covers will be installed as operations allow. Molten liquids will be diverted to temporary pits external to the casthouse until such time as the quality is deemed sufficient to return to normal ladle operations. It is estimated it will take 3-4 days before the normal de-dusted casthouse cover arrangement can be adopted. Casthouse dedusting system will be operating throughout the recovery with reduced capacity initially due to the removal of the runner covers.

It is noted that emissions control at 6BF is expected to be an improvement over that of 5BF due to the presence of the secondary dedusting hood, including during commissioning.

No air emissions sampling data from commissioning was available at the time of this assessment and therefore emissions to air during commissioning were not able to be quantified.

6.3 **Project operation**

6.3.1 Operational overview

Normal operation of PKSW will result in emissions to air from stacks, flares, and fugitive emissions from buildings and outdoor sources. Emissions to air are created by various operational activities including:

- Processing and transport of raw materials (iron ore, coal, coke, fluxes)
- Production of sinter (agglomeration of iron ore, coke and limestone dust) for use within the blast furnace
- Production of approximately 2.7 Mtpa of iron from 6BF
- Processing of approximately 0.88 Mtpa of blast furnace slag for reuse as construction products

The ironmaking process produces a number of point-source and fugitive air emissions, including:

- Flue gas discharged from the stoves waste heat stack
- Filtered and unfiltered air from the casthouse and stockhouse
- Steam and H₂S from the slag granulation cooling tower
- BFG from furnace top bleeders during maintenance and overpressure events
- BFG and nitrogen gas discharged through primary relief valve via a silencer during charging
- H₂S and SO₂ from slag pits
- SO₂ from the casthouse
- Dust from the raw materials and charging conveyors, off gas system and traffic

Surplus gases produced from the blast furnace vessel are directed from the top of the furnace to be treated by the gas cleaning system.

The gas cleaning system comprises a raw gas main, dust collector and a high energy scrubber. Collected dust is periodically discharged into a hopper, and agglomerated for transfer to the sinter plant feed beds via trucks.

Impurities are removed from the gas via washing with high velocity, recycled, closed loop water. This creates a slurry which is thickened and transferred via a pipeline to the sinter plant dewatering plant. The cleaned gas, BFG, is then piped to the 6BF hot blast stoves for use as a heating fuel, or to the BFG gas main to be used as an energy source for other processes throughout PKSW.

6.3.2 Operation emissions

A detailed emissions inventory including source properties and pollutant mass emissions for the site was provided by BlueScope based on site sampling data and NPI estimation techniques. The detailed emission inventory is provided across the following tables:

- Table 6.5 Source properties for stack sources
- Table 6.6 Mass emission rates for stack sources
- Table 6.7 Source properties for fugitive sources
- Table 6.8 Mass emission rates for fugitive sources

The 'scenario' column indicates which scenario the source was modelled in. An explanation of scenario naming is provided below:

- PKSW Sources located within the wider PKSW site. These sources are unaffected by the project and occur during the existing scenario and will continue to occur during the future scenario.
- 5BF 5BF sources related with use of 5BF, these sources will cease operation when 6BF starts operating.
- 6BF 6BF sources related with use of 6BF, these sources will be operating when 5BF has ceased ironmaking operation.

Sources unique to 5BF or 6BF scenarios are identified in Table 6.4.

Table 6.4 Summary of sources exclusive to 5BF or 6BFscenarios

5BF scenario sources	6BF scenario sources
Stack sources:	Stack sources:
– EPA007 – No 5 Blast Furnace Stove Heating Stack	– EPA003 – No 6 Blast Furnace Stove Waste Gas Stack
 EPA008 – No 5 Blast Furnace Cast House Dedusting	 EPA004 – No 6 Blast Furnace Cast House Dedusting
Stack 1	Stack
 EPA009 – No 5 Blast Furnace Stock House Dedusting	 EPA005 – No 6 Blast Furnace Stock House Dedusting
Stack	Stack
 EPA010 – No 5 Blast Furnace - No 2 Slag Granulator Stack EPA011 – No 5 Blast Furnace - No 1 Slag Granulator 	 EPA43 – 6BF BFG excess gas bleeder stack A 6BF BFG excess gas bleeder stack B 6BF Slag Granulation Cooling Towers
Stack	 6BF Slag Granulation Cooling Towers

5BF scenario sources	6BF scenario sources
 EPA129 – No 5 Blast Furnace - No 3 Slag Granulator Stack 	
 EPA118 – No 5 Blast Furnace Casthouse Dedusting Stack 	
 EPA42A – BFG Flare Stack A 	
 EPA42B – BFG Flare Stack B 	
 EPA42C – BFG Flare Stack C 	
Fugitive sources:	Fugitive sources:
 BF5SPIT1 – Blast Furnace 5 Slag Pit 1 	 BF6SPIT1 – Blast Furnace 6 Slag Pit 1
 BF5SPIT2 – Blast Furnace 5 Slag Pit 2 	 BF6SPIT2 – Blast Furnace 6 Slag Pit 2
	 BF6SPIT3 – Blast Furnace 6 Slag Pit 3
	 BF6SPIT4 – Blast Furnace 6 Slag Pit 4
	 BF6SPIT5 – Blast Furnace 6 Slag Pit 5
The following sources do not yet have an assigned ID:	
 Gas Processing VRS Outlet (Nº5 WHS) 	
 6BF BFG excess gas bleeder stack B 	
 6BF Slag Granulation Cooling Tower 	

The slag granulating system proposed for 6BF includes a condensing unit which uses water sprays to condense steam generated during granulation. This condensate is collected and circulated through a cooling tower with the water from slag dewatering. H₂S emissions from the granulation process may be emitted from the slag granulation cooling tower. It is expected that a reduction in H₂S concentration will be achieved by this process in comparison to existing operations, as the H₂S will be dissolved into the cooling tower water. H₂S emissions for this source were based on sampling of 5BF and no reductions were applied, which is likely to be conservative.

6.3.3 Site layout

The location of all sources are shown on Figure 6.1.

Paper Size ISO A4 0 0.2 0.4 0.6 0.8 1 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Project No. **12541101** Revision No. **0** Date **14/10/2021**

FIGURE 6.1

PKSW layout and source locations

G122112541101\GISIMaps\12541101_AQI_Assessment_A.aprx\12541101_AQIA004_PKSW_Sources_A Print date: 14 Oct 2021 - 16:33 Data source: LPI: DCDB/DTDB, 2017. Commonwealth of Australia (Geoscience Australia) 250K Topographic Data Series 3, 2006. World Imagery: Maxar. Created by: tmorto

Table 6.5 Source properties for stack sources

Scenario	ID	Description	Source properties						
			X coordinate (m)	Y coordinate (m)	Stack height (m)	Diameter (m)	Exhaust velocity (m/s)	Exhaust temperature (K)	
PKSW	EPA002	Sinter Machine Room Dedusting Stack	306690	6184247	45	5.0	12.1	329	
6BF	EPA003	No 6 Blast Furnace Stove Heating Stack	305975	6184445	70	4.0	7.6	400	
6BF	EPA004	No 6 Blast Furnace Cast House Dedusting Stack	305926	6184334	36	3.7	25.2	337	
6BF	EPA005	No 6 Blast Furnace Stock House Dedusting Stack	306339	6184260	26	3.0	28.3	304	
PKSW	EPA006	No 6 Blast Furnace Highline Dedusting Stack	306409	6184426	30	1.8	26.8	303	
5BF	EPA007	No 5 Blast Furnace Stove Heating Stack	305892	6184645	61	5.9	3.5	400	
5BF	EPA008	No 5 Blast Furnace Cast House Dedusting Stack 1	305767	6184718	23	3.3	13.0	337	
5BF	EPA009	No 5 Blast Furnace Stock House Dedusting Stack	306197	6184569	25	2.4	13.9	300	
5BF	EPA010	No 5 Blast Furnace - No 2 Slag Granulator Stack	305832	6184716	70	4.0	3.3	340	
5BF	EPA011	No 5 Blast Furnace - No 1 Slag Granulator Stack	305859	6184741	70	4.0	3.3	340	
5BF	EPA129	No 5 Blast Furnace - No 3 Slag Granulator Stack	305852	6184753	70	4.0	3.3	340	
PKSW	EPA014	No 5 Coke Oven Battery Heating Stack	306454	6183941	90	2.6	14.4	442	
PKSW	EPA015	No 6 Coke Oven Battery Heating Stack	306583	6184023	90	2.8	16.5	447	
PKSW	EPA016	No 7a Coke Oven Battery Heating Stack	306653	6184128	140	7.7	2.2	423	
PKSW	EPA018	No 4/5 Coke Oven Battery Quench Tower Stack	306321	6183786	52	5.5	14.7	338	
PKSW	EPA019	No 6 Coke Oven Battery Quench Tower Stack	306693	6184003	52	5.1	15.4	339	
PKSW	EPA020	No 7a Coke Oven Battery Quench Tower Stack	306655	6184139	35	14.0	2.0	339	
PKSW	EPA021	No 7a Battery Fume Suppression Plant No 1 Stack	306601	6184147	26	3.0	9.9	315	
PKSW	EPA022	No 7a Battery Fume Suppression Plant No 2 Stack	306585	6184162	26	3.0	11.4	312	
PKSW	EPA023	Coke Screen House Dedusting Stack	306833	6184047	17	1.8	17.1	301	
PKSW	EPA024	BOS No 1 Vessel Flare Stack	305620	6184746	114	8.0	20.4	1273	
PKSW	EPA025	BOS No 2 Vessel Flare Stack	305591	6184759	114	8.0	20.4	1273	
PKSW	EPA027	BOS No 2 Secondary Dedusting Stack	305342	6184766	30	4.5	23.7	327	
PKSW	EPA030	Lime Kiln Waste Heat Stack	305326	6184519	28	2.4	18.9	434	
PKSW	EPA031	Lime Kiln Storage bins - Enacon Baghouse Stack	305554	6184370	11	0.6	10.9	303	
PKSW	EPA032	Lime Kiln Storage bins - Bahco Baghouse Stack	305568	6184365	3	0.7	11.5	297	
PKSW	EPA033	Lime Kiln Transfer House Stack	305704	6184631	56	0.4	7.6	295	
PKSW	EPA034	Slab Handling - Slab Scarfing Machine Stack	305348	6184602	37	2.6	5.6	301	
PKSW	EPA035	Raw Material Road Rail Dump Station Stack	305784	6185046	52	1.7	14.5	299	

Scenario	ID	Description	Source properties						
			X coordinate (m)	Y coordinate (m)	Stack height (m)	Diameter (m)	Exhaust velocity (m/s)	Exhaust temperature (K)	
PKSW	EPA038	No 2 Blower Station 23 Boiler Stack	306097	6184544	60	3.7	8.9	400	
PKSW	EPA039	No 2 Blower Station 24 Boiler Stack	306079	6184559	60	3.7	8.9	400	
PKSW	EPA040	No 2 Blower Station 25 Boiler Stack	306042	6184569	61	3.7	8.9	400	
PKSW	EPA046	Hydrogen Reformer Furnace Stack	305540	6185070	32	0.5	20.7	979	
PKSW	EPA047	No 1 Walking Beam Furnace Stack	305153	6185471	97	4.7	5.5	400	
PKSW	EPA048	3500mm Furnace No 1 Stack	305033	6185503	25	2.5	19.5	400	
PKSW	EPA049	3500mm Furnace No 2 Stack	305040	6185534	19	3.2	11.9	353	
PKSW	EPA052	GEGA M/C Cut to Length Stack	305002	6185364	15	1.2	16.9	304	
PKSW	EPA076	No 4/5 Battery Fume Control Stack	306489	6183855	24	2.8	10.7	318	
PKSW	EPA077	No 6 Battery Fume Control Stack	306513	6183872	24	2.8	9.7	317	
PKSW	EPA090	No 5 & 6 Hammer Mills Dedusting Stack	306326	6184033	12	0.6	12.0	294	
PKSW	EPA092	CAS Baghouse Stack	305544	6184645	30	0.7	10.6	330	
PKSW	EPA093	Lime Kiln Discharge Building Baghouse Stack	305415	6184402	5	0.7	17.1	313	
PKSW	EPA100	Gas Processing Sulphate Plant Stack	305946	6183659	18	0.9	8.6	344	
PKSW	EPA105	PCI Hot Gas Exhaust Stack	306522	6184172	62	1.3	8.4	435	
PKSW	EPA106	PCI Facility - Stacks Serving Depressurising Bag Filters	306479	6184180	55	0.5	8.1	404	
PKSW	EPA107	Sinter Plant Waste Gas Cleaning	306678	6184361	100	6.5	16.7	414	
PKSW	EPA108	Scrap Cutting Dust Collector Baghouse	305238	6184349	15	1.0	10.5	337	
PKSW	EPA113	Ecocem Slag Dryer Dust Collector	305813	6185928	10	0.8	14.5	375	
PKSW	EPA115	Metserv Iron Dumping/Cutting Shed Baghouse Stack	303749	6185549	20	1.6	12.3	315	
PKSW	EPA117	No 1, 2 & 3 Slab Caster Stacks	305545	6184614	40	0.4	50.0	330	
PKSW	EPA117A	No 1, 2 & 3 Slab Caster Stacks	305608	6184577	40	0.4	50.0	330	
PKSW	EPA117B	No 1, 2 & 3 Slab Caster Stacks	305580	6184588	40	0.4	50.0	330	
PKSW	EPA117C	No 1, 2 & 3 Slab Caster Stacks	305573	6184591	40	0.4	50.0	330	
5BF	EPA118	No 5 Blast Furnace Casthouse Dedusting Stack	305737	6184700	22	2.8	17.0	335	
PKSW	EPA120	No 2 Walking Beam Furnace Stack	305158	6185464	45	3.1	10.1	548	
PKSW	EPA132	OzRock Rotary Kiln Drier Stack	305255	6183450	25	0.6	16.0	358	
PKSW	EPA138	No2 Blower Station Package Boiler No. 11	306139	6184395	30	1.9	4.5	397	
PKSW	EPA139	No2 Blower Station Package Boiler No. 12	306150	6184408	30	1.9	4.5	397	
PKSW	EPA44 ²	COG Flare Stacks (42" Bleeder)	306189	6184159	57	0.6	20.0	1273	
PKSW	EPA45 ²	COG Flare Stacks (30" Bleeder)	305762	6183599	29	0.8	20.0	1273	
5BF	EPA42A ²	BFG Flare Stack A	305931	6184598	85	1.6	20.0	1273	
5BF	EPA42B ²	BFG Flare Stack B	305920	6184591	85	1.6	20.0	1273	
5BF	EPA42C ²	BFG Flare Stack C	305931	6184587	85	0.9	20.0	1273	
PKSW		Gas Processing VRS Outlet (Nº5 WHS)	306454	6183941	90	0.5	2.9	348	
PKSW	SP05	Springhill 5 (MCL1 Selas Stack)	304730	6184908	39	1.6	5.6	479	

Scenario	ID	Description	Source properties						
			X coordinate (m)	Y coordinate (m)	Stack height (m)	Diameter (m)	Exhaust velocity (m/s)	Exhaust temperature (K)	
PKSW	SP06	Springhill 6 (MCL2 Selas Stack)'	304740	6184906	39	1.7	13.0	813	
PKSW	SP07	Springhill 7 (MCL2 Selas Stack)	304759	6184912	28	1.5	9.9	1440	
PKSW	SP09	Springhill 9 (MCL2 Passivation Stack)	304741	6184789	10	0.4	6.3	307	
PKSW	SP10	Springhill 10 (MCL1 Passivation Exhaust)	304712	6184810	10	0.4	9.9	296	
PKSW	SP12	Springhill 12 (CPL3 Prime Oven Incinerator)	304682	6184902	35	1.2	11.3	650	
PKSW	SP13	Springhill 13 (CPL3 Finish Oven Incinerator)	304682	6184899	35	1.2	14.8	641	
6BF	EPA43	6BF BFG excess gas bleeder stack A	306128	6184517	88	1.6	20.0	1273	
6BF		6BF BFG excess gas bleeder stack B	306131	6184514	88	1.6	20.0	1273	
6BF		6BF Slag Granulation Cooling Tower	306053	6184172	35	15.6	3.8	323	

Table 6.6 Mass emission rates for stack sources

Scenario	ID	Description		Pollutant emission rates (g/s)					
			TSP	PM 10	SO ₂	NOx	H ₂ S		
PKSW	EPA002	Sinter Machine Room Dedusting Stack	1.1	0.64					
BF	EPA003	No 6 Blast Furnace Stove Heating Stack	1.1	0.85	20	6.1	0.02		
BF	EPA004	No 6 Blast Furnace Cast House Dedusting Stack	3.7	1.6					
6BF	EPA005	No 6 Blast Furnace Stock House Dedusting Stack	3	0.59					
PKSW	EPA006	No 6 Blast Furnace Highline Dedusting Stack	0.036	0.036					
5BF	EPA007	No 5 Blast Furnace Stove Heating Stack	0.88	0.29	23	9.8			
5BF	EPA008	No 5 Blast Furnace Cast House Dedusting Stack 1	0.68	0.3					
5BF	EPA009	No 5 Blast Furnace Stock House Dedusting Stack	1.4	0.28					
5BF	EPA010	No 5 Blast Furnace - No 2 Slag Granulator Stack		0.13			0.16		
5BF	EPA011	No 5 Blast Furnace - No 1 Slag Granulator Stack		0.13			0.16		
5BF	EPA129	No 5 Blast Furnace - No 3 Slag Granulator Stack		0.13			0.16		
PKSW	EPA014	No 5 Coke Oven Battery Heating Stack	0.84	0.46	6.3	20	0.0017		
PKSW	EPA015	No 6 Coke Oven Battery Heating Stack	1.9	1.2	7.4	24	0.0024		
PKSW	EPA016	No 7a Coke Oven Battery Heating Stack	1.1	0.76	10	17	0.0019		
PKSW	EPA018	No 4/5 Coke Oven Battery Quench Tower Stack	2.4	0.37	0.14	0.08	0.24		
PKSW	EPA019	No 6 Coke Oven Battery Quench Tower Stack	3.4	0.53	0.2	0.12	0.24		
PKSW	EPA020	No 7a Coke Oven Battery Quench Tower Stack	3.2	0.5	0.19	0.11	0.24		
PKSW	EPA021	No 7a Battery Fume Suppression Plant No 1 Stack	0.051	0.033	0.45	0.13	0.0089		
PKSW	EPA022	No 7a Battery Fume Suppression Plant No 2 Stack	0.051	0.033	0.45	0.13	0.0089		
PKSW	EPA023	Coke Screen House Dedusting Stack	0.25	0.2					
PKSW	EPA024	BOS No 1 Vessel Flare Stack	0.16	0.16	0.045	0.52	0.00091		
PKSW	EPA025	BOS No 2 Vessel Flare Stack	0.33	0.33	0.04	0.52	0.00091		
PKSW	EPA027	BOS No 2 Secondary Dedusting Stack	0.68	0.21	1.3	0.61			
PKSW	EPA030	Lime Kiln Waste Heat Stack	0.15	0.077	3.9	7.1			
PKSW	EPA031	Lime Kiln Storage bins - Enacon Baghouse Stack	0.037	0.023					
PKSW	EPA032	Lime Kiln Storage bins - Bahco Baghouse Stack	0.019	0.011					
PKSW	EPA033	Lime Kiln Transfer House Stack	0.0015	0.00072					
PKSW	EPA035	Raw Material Road Rail Dump Station Stack	0.26	0.063					
PKSW	EPA038	No 2 Blower Station 23 Boiler Stack	0.57	0.18	13	5.4			
PKSW	EPA039	No 2 Blower Station 24 Boiler Stack	0.57	0.18	13	5.4			
PKSW	EPA040	No 2 Blower Station 25 Boiler Stack	0.28	0.28	20	9.5			
PKSW	EPA047	No 1 Walking Beam Furnace Stack	0.11	0.1	13	7.2			
PKSW	EPA048	3500mm Furnace No 1 Stack	0.028	0.028	3.6	1.9			
PKSW	EPA049	3500mm Furnace No 2 Stack	0.028	0.028	3.6	1.9			
PKSW	EPA052	GEGA M/C Cut to Length Stack	0.07	0.06	0.05	0.04			
PKSW	EPA076	No 4/5 Battery Fume Control Stack	0.037	0.032	0.21	0.11	0.0062		
PKSW	EPA077	No 6 Battery Fume Control Stack	0.037	0.032	0.21	0.11	0.0062		
PKSW	EPA090	No 5 & 6 Hammer Mills Dedusting Stack	0.045	0.022					
PKSW	EPA092	CAS Baghouse Stack	0.022	0.021					
PKSW	EPA093	Lime Kiln Discharge Building Baghouse Stack	0.1	0.014		1.2			
PKSW	EPA100	Gas Processing Sulphate Plant Stack	0.066	0.045					

Scenario	ID	Description		Pollutant emission rates (g/s)						
			TSP	PM 10	SO ₂	NOx	H ₂ S			
PKSW	EPA105	PCI Hot Gas Exhaust Stack	0.053	0.033						
PKSW	EPA106	PCI Facility - Stacks Serving Depressurising Bag Filters	0.0056	0.014						
PKSW	EPA107	Sinter Plant Waste Gas Cleaning	1.2	0.84	46	82				
PKSW	EPA113	Ecocem Slag Dryer Dust Collector		0.074		0.051				
PKSW	EPA115	Metserv Iron Dumping/Cutting Shed Baghouse Stack	0.086	0.046		0.1				
PKSW	EPA117	No 1, 2 & 3 Slab Caster Stacks	0.21	0.18						
PKSW	EPA117A	No 1, 2 & 3 Slab Caster Stacks	0.21	0.18						
PKSW	EPA117B	No 1, 2 & 3 Slab Caster Stacks	0.21	0.18						
PKSW	EPA117C	No 1, 2 & 3 Slab Caster Stacks	0.21	0.18						
5BF	EPA118	No 5 Blast Furnace Casthouse Dedusting Stack	0.85	0.36						
PKSW	EPA120	No 2 Walking Beam Furnace Stack	0.55	0.55	15	8				
PKSW	EPA132	OzRock Rotary Kiln Drier Stack	0.27							
PKSW	EPA138	No2 Blower Station Package Boiler No. 11	0.00051	0.00038	0.0026	0.039	0.00079			
PKSW	EPA139	No2 Blower Station Package Boiler No. 12	0.00051	0.00038	0.0026	0.039	0.00079			
PKSW	EPA44	COG Flare Stacks (42" Bleeder)	0.022	0.022	2.9	0.38				
PKSW	EPA45	COG Flare Stacks (30" Bleeder)	0.022	0.022	2.9	0.38				
5BF	EPA42A	BFG Flare Stack A	0.047	0.0095	0.32	0.012				
5BF	EPA42B	BFG Flare Stack B	0.047	0.0095	0.32	0.012				
5BF	EPA42C	BFG Flare Stack C	0.047	0.0095	0.32	0.012				
PKSW		Gas Processing VRS Outlet (№5 WHS)	0.00094	0.00094	0.0098		0.038			
PKSW	SP05	Springhill 5 (MCL1 Selas Stack)				0.16				
PKSW	SP06	Springhill 6 (MCL2 Selas Stack)				0.25				
PKSW	SP07	Springhill 7 (MCL2 Selas Stack)				0.11				
PKSW	SP09	Springhill 9 (MCL2 Passivation Stack)	0.0017	0.0031						
PKSW	SP10	Springhill 10 (MCL1 Passivation Exhaust)	0.000021							
PKSW	SP12	Springhill 12 (CPL3 Prime Oven Incinerator)	0.03	0.03	0.31	0.19				
PKSW	SP13	Springhill 13 (CPL3 Finish Oven Incinerator)	0.05	0.05	0.058	0.29				
6BF	EPA43	6BF BFG excess gas bleeder stack A	0.14	0.029	0.96	0.036				
6BF		6BF BFG excess gas bleeder stack B	0.14	0.029	0.96	0.036				
6BF		6BF Slag Granulation Cooling Tower					0.48			

Table 6.7 Source properties for fugitive sources

Scenario	ID	Description				Sou	urce properties				
			Source type	X coordinate (m)	Y coordinate (m)	Stack or volume height (m)	Diameter (m)	Exhaust velocity (m/s)	Exhaust temperature (K)	Sigma Y (m)	Sigma Z (m)
PKSW	SINTC01	Sinter Cooler Fugitive Emissions 01	POINT	306521.7	6184365.07	10.0	6.2	4.0	579		
PKSW	SINTC02	Sinter Cooler Fugitive Emissions 02	POINT	306517.7	6184368.07	10.0	6.2	4.0	579		
PKSW	SINTC03	Sinter Cooler Fugitive Emissions 03	POINT	306514.7	6184372.07	10.0	6.2	3.0	487		
PKSW	SINTC04	Sinter Cooler Fugitive Emissions 04	POINT	306512.7	6184377.07	10.0	6.2	3.0	487		
PKSW	SINTC05	Sinter Cooler Fugitive Emissions 05	POINT	306512.7	6184383.07	10.0	6.2	3.0	487		
PKSW	SINTC06	Sinter Cooler Fugitive Emissions 06	POINT	306514.7	6184388.07	10.0	6.2	3.0	487		
PKSW	SINTC07	Sinter Cooler Fugitive Emissions 07	POINT	306517.7	6184392.07	10.0	6.2	3.4	459		
PKSW	SINTC08	Sinter Cooler Fugitive Emissions 08	POINT	306522.7	6184396.07	10.0	6.2	3.4	459		
PKSW	SINTC09	Sinter Cooler Fugitive Emissions 09	POINT	306527.7	6184397.07	10.0	6.2	3.4	459		
PKSW	SINTC10	Sinter Cooler Fugitive Emissions 10	POINT	306532.7	6184397.07	10.0	6.2	3.4	459		
PKSW	SINTC11	Sinter Cooler Fugitive Emissions 11	POINT	306537.7	6184396.07	10.0	6.2	1.6	409		
PKSW	SINTC12	Sinter Cooler Fugitive Emissions 12	POINT	306542.7	6184392.07	10.0	6.2	1.6	409		
PKSW	SINTC13	Sinter Cooler Fugitive Emissions 13	POINT	306545.7	6184388.07	10.0	6.2	1.6	409		
PKSW	SINTC14	Sinter Cooler Fugitive Emissions 14	POINT	306527.7	6184363.07	10.0	6.2	4.0	579		
PKSW	SINTV01	Sinter Building Fugitive Emissions 01	VOLUME	306570.4	6184351.6	10.0				9.3	9.3
PKSW	SINTV02	Sinter Building Fugitive Emissions 02	VOLUME	306600	6184329.3	10.0				9.3	9.3
PKSW	SINTV03	Sinter Building Fugitive Emissions 03	VOLUME	306629.7	6184303.7	10.0				9.3	9.3
PKSW	BOS01	BOS01 Roof Vent Fugitive Emissions	VOLUME	305566	6184702	41.2				3.7	1.2
PKSW	BOS02	BOS02 Roof Vent Fugitive Emissions	VOLUME	305543	6184713	41.2				3.7	1.2
PKSW	BOS03	BOS03 Roof Vent Fugitive Emissions	VOLUME	305511	6184728	41.2				3.7	1.2
PKSW	CRSH	Crusher	VOLUME	306870	6184188	2.5				1.2	2.3
PKSW	HMP01	Hot Metal Pit 01	VOLUME	303856	6185603	2.5				12.0	2.3
PKSW	HMP02	Hot Metal Pit 02	VOLUME	303914	6185602	2.5				12.0	2.3
PKSW	HMP03	Hot Metal Pit 03	VOLUME	303980	6185603	2.5				12.0	2.3
PKSW	HMP04	Hot Metal Pit 04	VOLUME	304033	6185603	2.5				12.0	2.3
PKSW	HMP05	Hot Metal Pit 05	VOLUME	304099	6185603	2.5				12.0	2.3
PKSW	MHND	Materials Handling - VE	VOLUME	306856	6184063	5.0				2.3	4.7

Scenario	ID	Description				Sou	rce properties				
			Source type	X coordinate (m)	Y coordinate (m)	Stack or volume height (m)	Diameter (m)	Exhaust velocity (m/s)	Exhaust temperature (K)	Sigma Y (m)	Sigma Z (m)
PKSW	CSP1	Recycling Area - Crushing/Screening Plant 01 - VE	VOLUME	304217	6185047	2.5				27.7	2.3
PKSW	CSP2	Recycling Area - Crushing/Screening Plant 02 - VE	VOLUME	304164	6185136	2.5				27.7	2.3
PKSW	MRP	Recycling Area - Metal Recovery Plant - VE	VOLUME	303998	6185792	2.5				25.4	2.3
PKSW	SCP	Slag Cooling Pot	VOLUME	305661	6184730	2.5				7.7	2.3
PKSW	SSP01	Slag Stockpile 01	VOLUME	305596	6184814	2.5				4.7	2.3
PKSW	SSP02	Slag Stockpile 02	VOLUME	305616	6184804	2.5				4.7	2.3
PKSW	SSP03	Slag Stockpile 03	VOLUME	305637	6184792	2.5				4.7	2.3
PKSW	SSP04	Slag Stockpile 04	VOLUME	305658	6184781	2.5				4.7	2.3
PKSW	SPBLG	Springhill Building Fugitives	VOLUME	304773	6185005	8.9				26.5	46.2
PKSW	B4STD	Battery 4 (standpipe emissions)	POINT	306350	6183817	15.0	0.5	6.0	923		
PKSW	B5STD	Battery 5 (standpipe emissions)	POINT	306455	6183877	15.0	0.5	6.0	923		
PKSW	B6STD	Battery 6 (standpipe emissions)	POINT	306572	6183947	15.0	0.5	6.0	923		
PKSW	B7STD	Battery 7A (standpipe emissions)	POINT	306626	6184097	15.0	0.5	6.0	923		
5BF	BF5SPIT1	Blast Furnace 5 Slag Pit 1	VOLUME	305740	6184774	2.5				3.5	2.3
5BF	BF5SPIT2	Blast Furnace 5 Slag Pit 2	VOLUME	305791	6184801	2.5				3.5	2.3
6BF	BF6SPIT1	Blast Furnace 6 Slag Pit 1	VOLUME	305881	6184279	5.0				13.7	4.7
6BF	BF6SPIT2	Blast Furnace 6 Slag Pit 2	VOLUME	305807	6184344	5.0				13.7	4.7
6BF	BF6SPIT3	Blast Furnace 6 Slag Pit 3	VOLUME	305968	6184236	5.0				13.7	4.7
6BF	BF6SPIT4	Blast Furnace 6 Slag Pit 4	VOLUME	305925	6184255	5.0				13.7	4.7
6BF	BF6SPIT5	Blast Furnace 6 Slag Pit 5	VOLUME	305843	6184312	5.0				6.8	2.3
PKSW	DG01	Diffuse gas COG, BFG & NG EF's 01	VOLUME	306291.52	6183877.23	1.0				4.7	0.5
PKSW	DG02	Diffuse gas COG, BFG & NG EF's 02	VOLUME	306334.84	6183894	1.0				4.7	0.5
PKSW	GPF01	Gas Processing Fugitives01	VOLUME	305843.82	6183726.98	1.0				11.6	0.5
PKSW	GPF02	Gas Processing Fugitives02	VOLUME	306243.07	6183941.56	1.0				11.6	0.5
PKSW	GPF03	Gas Processing Fugitives03	VOLUME	306608.9	6184145.58	1.0				11.6	0.5
PKSW	GPF04	Gas Processing Fugitives04	VOLUME	306044.33	6184458.65	1.0				11.6	0.5
PKSW	GPF05	Gas Processing Fugitives05	VOLUME	305528.99	6184701.36	1.0				11.6	0.5
PKSW	GPF06	Gas Processing Fugitives06	VOLUME	305319.72	6185124.59	1.0				11.6	0.5
PKSW	GPF07	Gas Processing Fugitives07	VOLUME	305373.63	6185636.73	1.0				11.6	0.5
PKSW	GPF08	Gas Processing Fugitives08	VOLUME	305461.23	6186078.12	1.0				11.6	0.5
PKSW	COF01	Coke Ovens Fugitives01	VOLUME	306444.43	6183871.87	1.0				4.7	0.5
PKSW	COF02	Coke Ovens Fugitives02	VOLUME	306538.94	6183928.09	1.0				4.7	0.5
PKSW	COF03	Coke Ovens Fugitives03	VOLUME	306630.2	6183983.09	1.0				4.7	0.5
PKSW	COF04	Coke Ovens Fugitives04	VOLUME	306573.98	6184064.16	1.0				4.7	0.5
PKSW	COF05	Coke Ovens Fugitives05	VOLUME	306613.08	6184085.75	1.0				4.7	0.5

Table 6.8 Mass emission rates for fugitive sources

Scenario	ID	Description		Pollutant emission rates (g/s)					
			TSP	PM 10	SO ₂	NOx	H ₂ S		
PKSW	SINTC01	Sinter Cooler Fugitive Emissions 01	0.14	0.033					
PKSW	SINTC02	Sinter Cooler Fugitive Emissions 02	0.14	0.033					
PKSW	SINTC03	Sinter Cooler Fugitive Emissions 03	0.14	0.033					
PKSW	SINTC04	Sinter Cooler Fugitive Emissions 04	0.14	0.033					
PKSW	SINTC05	Sinter Cooler Fugitive Emissions 05	0.14	0.033					
PKSW	SINTC06	Sinter Cooler Fugitive Emissions 06	0.14	0.033					
PKSW	SINTC07	Sinter Cooler Fugitive Emissions 07	0.14	0.033					
PKSW	SINTC08	Sinter Cooler Fugitive Emissions 08	0.14	0.033					
PKSW	SINTC09	Sinter Cooler Fugitive Emissions 09	0.14	0.033					
PKSW	SINTC10	Sinter Cooler Fugitive Emissions 10	0.14	0.033					
PKSW	SINTC11	Sinter Cooler Fugitive Emissions 11	0.14	0.033					
PKSW	SINTC12	Sinter Cooler Fugitive Emissions 12	0.14	0.033					
PKSW	SINTC13	Sinter Cooler Fugitive Emissions 13	0.14	0.033					
PKSW	SINTC14	Sinter Cooler Fugitive Emissions 14	0.14	0.033					
PKSW	SINTV01	Sinter Building Fugitive Emissions 01	0.14	0.033					
PKSW	SINTV02	Sinter Building Fugitive Emissions 02	0.14	0.033					
PKSW	SINTV03	Sinter Building Fugitive Emissions 03	0.14	0.033					
PKSW	BOS01	BOS01 Roof Vent Fugitive Emissions	4.3	0.8					
PKSW	BOS02	BOS02 Roof Vent Fugitive Emissions	4.3	0.8					
PKSW	BOS03	BOS03 Roof Vent Fugitive Emissions	4.3	0.8					
PKSW	CRSH	Crusher	1	0.42					
PKSW	HMP01	Hot Metal Pit 01	0.002	0.0016					
PKSW	HMP02	Hot Metal Pit 02	0.002	0.0016					
PKSW	HMP03	Hot Metal Pit 03	0.002	0.0016					
PKSW	HMP04	Hot Metal Pit 04	0.002	0.0016					
PKSW	HMP05	Hot Metal Pit 05	0.002	0.0016					
PKSW	MHND	Materials Handling - VE	0.039	0.039					
PKSW	CSP1	Recycling Area - Crushing/Screening Plant 01 - VE	0.27	0.14					
PKSW	CSP2	Recycling Area - Crushing/Screening Plant 02 - VE	0.27	0.14					
PKSW	MRP	Recycling Area - Metal Recovery Plant - VE	0.68	0.35					
PKSW	SCP	Slag Cooling Pot	5.5	2.9					
PKSW	SSP01	Slag Stockpile 01	1.4	0.73					
PKSW	SSP02	Slag Stockpile 02	1.4	0.73					
PKSW	SSP03	Slag Stockpile 03	1.4	0.73					
PKSW	SSP04	Slag Stockpile 04	1.4	0.73					
PKSW	SPBLG	Springhill Building Fugitives	0.059	0.059					
PKSW	B4STD	Battery 4 (standpipe emissions)	0.082	0.082	0.83	0.15	0.0019		
PKSW	B5STD	Battery 5 (standpipe emissions)	0.082	0.082	0.83	0.15	0.0019		
PKSW	B6STD	Battery 6 (standpipe emissions)	0.082	0.082	0.83	0.15	0.0019		
PKSW	B7STD	Battery 7A (standpipe emissions)	0.082	0.082	0.83	0.15	0.0019		
5BF	BF5SPIT1	Blast Furnace 5 Slag Pit 1					0.003		

Scenario	ID	Description			Pollutant emission	n rates (g/s)	
			TSP	PM 10	SO ₂	NOx	H₂S
5BF	BF5SPIT2	Blast Furnace 5 Slag Pit 2					0.003
6BF	BF6SPIT1	Blast Furnace 6 Slag Pit 1					0.0046
6BF	BF6SPIT2	Blast Furnace 6 Slag Pit 2					0.0046
6BF	BF6SPIT3	Blast Furnace 6 Slag Pit 3					0.0046
6BF	BF6SPIT4	Blast Furnace 6 Slag Pit 4					0.0046
6BF	BF6SPIT5	Blast Furnace 6 Slag Pit 5					0.0046
PKSW	DG01	Diffuse gas COG, BFG & NG EF's 01	0.044	0.022	0.99	0.79	
PKSW	DG02	Diffuse gas COG, BFG & NG EF's 02	0.044	0.022	0.99	0.79	
PKSW	GPF01	Gas Processing Fugitives01					0.0011
PKSW	GPF02	Gas Processing Fugitives02					0.0011
PKSW	GPF03	Gas Processing Fugitives03					0.0011
PKSW	GPF04	Gas Processing Fugitives04					0.0011
PKSW	GPF05	Gas Processing Fugitives05					0.0011
PKSW	GPF06	Gas Processing Fugitives06					0.0011
PKSW	GPF07	Gas Processing Fugitives07					0.0011
PKSW	GPF08	Gas Processing Fugitives08					0.0011
PKSW	COF01	Coke Ovens Fugitives01	0.63	0.32	0.92	0.13	0.013
PKSW	COF02	Coke Ovens Fugitives02	0.63	0.32	0.92	0.13	0.013
PKSW	COF03	Coke Ovens Fugitives03	0.63	0.32	0.92	0.13	0.013
PKSW	COF04	Coke Ovens Fugitives04	0.63	0.32	0.92	0.13	0.013
PKSW	COF05	Coke Ovens Fugitives05	0.63	0.32	0.92	0.13	0.013

6.4 Comparison of existing to future emissions

A comparison of emissions to air for the existing and future scenarios is provided in Table 6.9.

To simplify data interpretation and for comparative purposes, emissions were summarised by the following classifications:

- Source type:
 - Stack sources
 - Fugitive sources
 - All sources
- Scenario:
 - PKSW sources that are unaffected by the project that occur during the existing scenario and will
 continue to occur during the future scenario (i.e. background emissions from the remainder of plant)
 - **5BF** source related to 5BF operation only (i.e. emissions from 5BF only)
 - 6BF sources related to the project (6BF) operation only (i.e. emissions from 6BF only)
 - Existing includes PKSW sources and 5BF sources (i.e. the current PKSW plant operation including 5BF)
 - Future includes PKSW sources and 6BF sources (i.e. the future PKSW plant operation including the relined 6BF)

The comparison between existing and future scenarios identified the following trends with regard to pollutant mass emission rates:

- Particulate minor increase (~7% increase) in particulate emissions. This is attributed to increased particulate emissions from 6BF stack sources (6BF stove heating stack, 6BF cast house dedusting stack, 6BF stockhouse dedusting stack). It is noted that emission rates from 6BF stack sources were estimated based on historic sampling data during the previous 6BF campaign. It is considered likely that upgrades to 6BF as part of the project will result in an improvement (reduction) of emissions to air. The improvements cannot be quantified until the project is operational and sampling can be undertaken. Therefore, using historic sampling data to estimate emissions from 6BF is considered conservative.
- Common gaseous pollutants (SO₂ and NO_x) slight decrease (~1% decrease) in common gaseous pollutant emissions.
- H₂S minor increase (~3% increase) in H₂S emissions. This is attributed to use of historic sampling data for 6BF slag pits. It is understood that 6BF slag pits are also larger and more exposed (no buildings for barriers) compared to 5BF slag pits, contributing to the minor increase in expected H₂S emissions.

Table 6.9Emissions summary

Scenario			Pollutant emission rates (g/s)		
	TSP	PM 10	SO ₂	NOx	H ₂ S
Stack sources					
PKSW	21.1	9.1	165.1	194.8	0.78
5BF	3.9	1.7	24.2	9.9	0.48
6BF	8.1	3.1	21.9	6.1	0.50
Existing	25.0	10.7	189.2	204.7	1.27
Future	29.1	12.2	186.9	201.0	1.29
Change from existing to future (%)	16%	13%	-1%	-2%	2%
Fugitive sources					
PKSW	32.1	11.9	9.9	2.82	0.0814
5BF					0.006
6BF					0.0230
Existing	32.1	11.9	9.9	2.82	0.0874
Future	32.1	11.9	9.9	2.82	0.104
Change from existing to future (%)	0%	0%	0%	0%	20%
All sources (stack and fugitive sources)					
Existing	57.2	22.6	199.1	207.5	1.35
Future	61.3	24.1	196.8	203.8	1.39
Change from existing to future (%)	7%	6%	-1%	-2%	3%

6.5 Other than normal operating conditions

During other than normal operating conditions, for example, upset furnace conditions, there may be short periods of higher emissions.

Potential events that may result in higher short term emissions are presented in Table 6.10. These events are difficult to anticipate and the likelihood of any of these occurring is very low; events associated with the bleeders or casthouse floor have a very short duration. Given the short duration, significant ground level impacts at sensitive receptors are not anticipated.

Plant section	Emission	Duration	Frequency	
Bleeders opening	Bleeders opening as a safety mechanism when there is excessive pressure in the furnace, releasing blast furnace gas. Also include steam and	About 10 seconds	This event will occur during commissioning. On average, bleeders opening occurs twice per year.	
	particulates.			
Casthouse floor	Elevated particulate matter in significant fugitive emission. Highly visible to community.	From 30 seconds up to 5 minutes	These emissions can occur several times per year however, the secondary dedusting hood is expected to reduce this frequency.	
	Local release of BFG through the taphole at the casthouse floor.	From 30 seconds up to 5 minutes	These emissions can occur several times per year however, the secondary dedusting hood is expected to reduce this severity.	
Pollution control device	Baghouse trip or extraction hood failure presents a heightened risk of casthouse floor emissions.	Extended period	This is a rare event that may occur during the furnace campaign.	
	Failure of filters in baghouse could result in exceedance of licence limits for particulate matter at cast house dedusting or stock house dedusting stacks.	Extended period	This is a rare event that may occur during the furnace campaign.	

7. Emissions limit assessment

7.1 Methodology

The emissions limit assessment assessed air emission concentrations from the project against the relevant air emission standard of concentration limits stipulated in the POEO Clean Air Regulation.

Project air emission concentrations were calculated based on pollutant mass emission rates and stack volumetric flowrates provided in the emissions inventory. A review of the POEO Clean Air Regulation identified that standards of concentration listed for Iron and steel: primary production (Group 6) were most appropriate to assess the project. Standards of concentration are listed for TSP, NO₂ and H₂S.

7.2 Emissions limit assessment

The emissions limit assessment was undertaken for the following sources that are proposed as part of the project:

- EPA003 No 6 Blast Furnace Stove Waste Gas Stack
- EPA004 No 6 Blast Furnace Cast House Dedusting Stack
- EPA005 No 6 Blast Furnace Stock House Dedusting Stack

The 6BF BFG excess gas bleeder stack A (EPA43) and 6BF BFG excess gas bleeder stack B are considered to be flare sources (emergency use). No POEO standard of concentration exists for this type of source. Consequently, 6BF BFG excess gas bleeder stack A and B were not considered in the emissions limit assessment. Similarly, no POEO standard of concentration exists for 6BF slag granulation cooling tower and there are significant logistical constraints associated with sampling air emissions from a cooling tower. Therefore, the 6BF slag granulation cooling tower was not considered in the emissions limit assessment.

A summary of normalised exhaust flowrates for project sources is provided in Table 7.1. The findings of the emissions limit assessment are summarised in Table 7.2, noting that concentrations were only shown for pollutants where an applicable standard of concentration exists. For type 1 and 2 substances, mercury and cadmium historical emission sampling of 6BF in 2009 was used as a conservative estimate of emission concentrations.

The project is compliant with the relevant POEO standards of concentration listed for Iron and steel: primary production.

ID	Description	Source properties			
		Actual exhaust flowrate (m³/s)	Actual flowrate to normalised flowrate ratio	Normalised exhaust flowrate (Nm ³ /s, 273 K, 101.3 kPa, dry)	
EPA003 ³	No 6 Blast Furnace Stove Waste Gas Stack	95.5	1.63	58.4	
EPA004	No 6 Blast Furnace Cast House Dedusting Stack	271.2	1.244	218.2	
EPA005	No 6 Blast Furnace Stock House Dedusting Stack	200.3	1.124	178.9	

Table 7.1 Normalised exhaust flowrate for project stack sources

³ A ratio of actual to normalised flowrate was not available for EPA003. BlueScope provided an estimated of exhaust moisture between 6 – 15%. Normalisation calculation were based on an exhaust temperature of 399.5 K, pressure of 101.3 kPa and moisture of 10.5% (average of advised range).

⁴ The ratio of actual flowrate to normalised flowrate was determined from the average of historical sampling data

Table 7.2 Summary of emission limit assessment

ID	Description	Pollutant	concentration	(mg/Nm ³)			
		TSP	NOx	H2S	Type 1 substances and Type 2 substances (in aggregate) ⁵	Cadmium (Cd)⁵	Mercury (Hg)⁵
	dard of ion for Iron and ary production	50	500	5	1	0.2	0.2
EPA003	No 6 Blast Furnace Stove Waste Gas Stack	0.019	0.10	0.0003	-	-	-
EPA004	No 6 Blast Furnace Cast House Dedusting Stack	0.02	-	-	-	-	-
EPA005	No 6 Blast Furnace Stock House Dedusting Stack	0.02	-	-	0.040	0.00042	0.00023

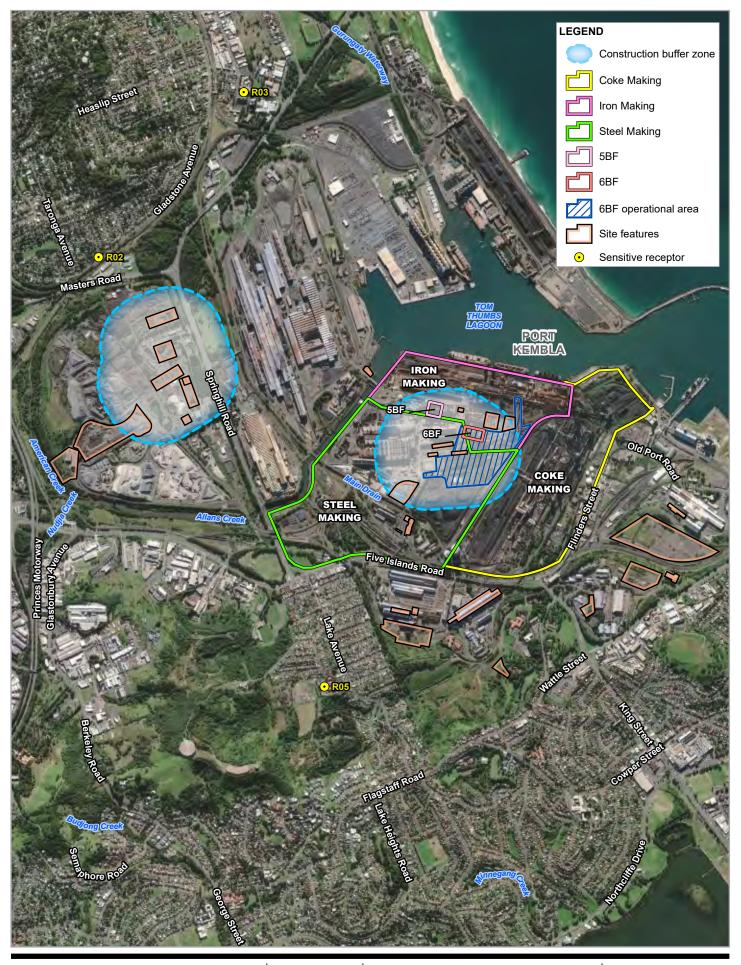
⁵ Normalised flowrate calculated based on most recent available sampling data

8. Construction and commissioning air quality assessment

8.1 Construction assessment

A risk-based approach in accordance with IAQM guidance was adopted to assess potential particulate impacts during the construction of the project.

The IAQM guidance recommends a detailed risk assessment be undertaken where there is a human receptor within 350 m, or an ecological receptor within 50 m of the construction footprint, or where there is a human or ecological receptor within 50 m of any haulage routes up to 500 m from the site entrance.


It is noted that construction activities will occur on the eastern portion of the PKSW site away from any identified sensitive receptors. The locations of identified sensitive receptors with respect to the site boundary and the construction activities area are provided in Table 8.1 and a 350 metre buffer distance from the construction areas (No.2 Works 1, No.2 Works 2 and No.2 Works 3) and processing areas (Recycling Area 4 and Recycling Area 5) is shown on Figure 8.1. All sensitive receptors were identified to be located outside the buffer distance (>350 m from construction activities) of the 6BF construction area and ancillary facilities construction areas.

Receptor ID	Receptor type	Approximate distance and direction from the PKSW boundary	Approximate distance and direction from 6BF construction area	Approximate distance and direction from nearest ancillary facilities construction areas
R01	Residential	~410 m northwest	~3400 m northwest	~640 m northwest
R02	Residential	~180 m north	~2700 m north	~520 m north
R03	Educational	~360 m northwest	~2700 m northwest	~1500 m northwest
R04	Residential	~1630 m west	~4300 m west	~1800 m west
R05	Educational	~460 m west	~1900 m west	~560 m west
R06	Residential	~400 m south	~2200 m south	~490 m south

 Table 8.1
 Location of identified sensitive receptors with respect to construction activities

As all sensitive receptors are located outside the construction area buffer distance (>350 m from construction activities) and particulate emissions during construction are expected to be relatively minor (refer Section 6.1.2), it is considered that there is low risk of particulate impacts and no further assessment is considered necessary in accordance with IAQM guidance.

Emissions to air during construction should be managed and reduced by implementation of the mitigation measures outlined in Section 11.1 to minimise the likelihood and severity of any potential air quality impacts.

Paper Size ISO A4
0.2
0.4
0.6
0.8

Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment

Location of proposed construction activities

Project No. 12541101 Revision No. 0 Date 21/10/202

21/10/2021

FIGURE 8.1

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar Created by: tmortor

8.2 Commissioning assessment

A qualitative management-based approach was adopted to assess project commissioning, as commissioning is a once-off process that is necessary for operations to commence and no commissioning air emissions sampling data was available at the time of this assessment.

During blow-in, runner covers are not initially installed (because the flow characteristics of the initial liquids are variable and require manual intervention) and consequently, there is potential for elevated emissions to air to occur for a relatively short period of time due to the casthouse dedusting system initially operating with a reduced effective capacity. The proposed commissioning procedure aligns with the industry standard approach that is adopted at similar facilities around the world. In addition, best practice methods (refer Section 11) will be implemented to minimise emissions to air where possible.

Due to relatively short duration of commissioning and implementation of industry standard and best practice methods, although the potential impact for any elevated emissions to air cannot be quantified there is considered to be a low risk of potential air quality impacts.

Emissions to air during commissioning should be managed and reduced by implementation of the mitigation measures outlined in Section 11.2 to minimise the likelihood and severity of any potential air quality impacts.

9. Operational air quality assessment

9.1 Operational assessment overview

Air quality dispersion modelling was undertaken to predict potential worst-case scenario air quality impacts from the project in accordance with the methodology outlined in Section 3. The assessment results have been compared with the relevant state and national air quality criteria and standards which exist to protect human health and the environment from air pollution.

The model predictions for existing and future scenarios are presented as tabulated results providing ground level concentrations at each sensitive receptor (with criteria exceedances highlighted) and as contour plots to illustrate the predicted pattern of dispersion and allow interpretation of predicted model results at any location within the sampling grid. The averaging period, statistic/percentile, impact location and impact type presented for each pollutant was chosen to align with assessment criteria (refer Section 2.3.2) for that particular pollutant species.

Predicted pollutant concentrations were presented for the following cases:

- **6BF** predicted concentrations from 6BF sources only.
- Incremental predicted concentrations from the PKSW site (includes 5BF and PKSW sources for existing scenario and includes 6BF and PKSW sources for future scenario).
- Cumulative with DPIE AQMS cumulative concentrations were calculated using background pollutant concentrations recorded by DPIE AQMS in accordance with Table 5.10. This scenario accounts for potential cumulative impacts with existing facilities (noting inclusion of DPIE AQMS data may conservatively overestimate cumulative impacts by 'double counting' the impact from current PKSW operations).
- Cumulative with DPIE AQMS and SS projects cumulative concentrations were calculated using background pollutant concentrations recorded by DPIE AQMS in accordance with Table 5.10 (as above) and contributions from SS projects (refer Section 5.3.2). Contributions from the Port Kembla Gas Terminal project were accounted for by including additional sources in the dispersion model in accordance with scenario 1 presented in *East Coast Gas Project Modification Air Quality Assessment* (GHD, 2019). Scenario 1 was considered the worst-case scenario operational situation that will likely occur, consisting of two gas fuelled engines active on board the Floating Storage and Regasification Unit and two liquid engines active on board the fuelled LNG carrier. This case accounts for potential cumulative impacts with existing facilities and future projects.

The following methodologies specific to a particular pollutant were adopted:

- A contemporaneous approach to calculating cumulative particulate concentrations was adopted. Predicted incremental concentrations were added to recorded daily variable background concentration for the same 24hour period to calculate predicted cumulative particulate concentration.
- 1 second H₂S concentrations were estimated by applying a peak to mean factor of 2.3. H₂S emissions from slag granulation (5BF slag granulator stacks and 6BF slag granulation cooling tower) were scaled to 60% and H₂S emissions from slag pits (5BF slag pits and 6BF slag pits) were scaled to 40% to align with the typical operating scenario, i.e. the H₂S emissions are spread between the two sources depending on operating conditions at the time. As discussed in Section 10, there are a number of additional processes in place which aim to further reduce H₂S emissions associated with 6BF.
- Chemical transformations were not modelled within CALPUFF, however the ozone limiting method (OLM) which is listed as Method 2 for estimating total NO₂ in the Approved Methods was adopted. Method 1 (Section 8.1.1) in the Approved Methods assumes 100 % of NO will be converted to NO₂. This is considered extremely conservative as in reality, only a fraction of NO will be converted to NO₂. Therefore, a more detailed assessment has been undertaken for all receptors using Method 2 (Section 8.2.2) of the Approved Methods. Method 2 is based on NO reacting with ozone in the atmosphere to form NO₂. Hourly variable background ozone and NO₂ data was sourced from nearby DPIE AQMS in accordance with Table 5.10.

Predicted pollutant concentrations for the existing and future scenarios are presented in Sections 9.2 and 9.3 respectively.

9.2 Existing

9.2.1 Particulates and common gaseous pollutants

Predicted incremental and cumulative particulate concentrations are presented in Table 9.1 and a contour dispersion plot of incremental 24 hour PM_{10} is shown on Figure 9.1. An exceedance of the 24 hour PM_{10} criteria was predicted at R05 for the 'Cumulative with DPIE AQMS and other SS projects' scenario. This predicted exceedance comprised an incremental concentration of 3.6 µg/m³ and a background concentration of 46.6 µg/m³ resulting in a cumulative concentration of 50.2 µg/m³. Therefore, the exceedance was primarily attributed to elevated background concentrations.

Receptor		Predicted particulate concentrations (µg/m ³)											
	Incremental			Cumula	Cumulative with DPIE AQMS			Cumulative with DPIE AQMS and other SS projects					
	TSP	TSP PM ₁₀		TSP	P	M ₁₀	TSP	P	PM ₁₀				
	Annual	24 hour	Annual	Annual	24 hour	Annual	Annual	24 hour	Annual				
Criteria	90	50	25	90	50	25	90	50	25				
R01	0.6	5.8	0.4	36.9	47.2	18.1	36.9	47.2	18.2				
R02	1.1	8.7	0.8	37.4	47.5	18.5	37.4	47.5	18.5				
R03	1.5	6.9	0.9	37.7	50.0	18.6	37.7	50.0	18.7				
R04	0.4	6.3	0.3	36.7	47.2	18.0	36.7	47.2	18.0				
R05	3.1	19.6	1.8	39.4	50.1	19.5	39.4	50.2	19.5				
R06	1.9	7.7	1.2	38.1	48.1	18.9	38.1	48.2	19.0				

Table 9.1	Predicted particulate concentrations (existing scenario)
Table 9.1	Predicted particulate concentrations (existing scenario

The top 10 ranked cumulative PM_{10} values for the worst impacted receptor (R05) are summarised in Table 9.2. An exceedance of the 24 hour PM_{10} criteria is predicted for one 24 hour period at R05 (equivalent to 0.3% of the time).

Rank	Date of predicted	Breakdown of predicted concentration components (µg/m³)					
	concentration	Incremental	Background	Cumulative			
1	20/12/2017	3.6	46.6	50.2			
2	10/02/2017	1.7	46.3	48.0			
3	19/12/2017	3.8	44.2	48.0			
4	24/09/2017	0.3	47.2	47.5			
5	09/01/2017	1.6	45.6	47.2			
6	13/01/2017	0.8	45.8	46.6			
7	26/03/2017	19.6	23.9	43.5			
8	17/01/2017	3.3	40.1	43.4			
9	13/03/2017	7.4	35.7	43.1			
10	02/12/2017	2.5	40.4	42.9			

Table 9.2Top 10 ranked cumulative PM10 values for R05

Predicted incremental and cumulative NO₂ concentrations are presented in Table 9.3 and a contour dispersion plot of incremental 1 hour NO₂ is shown on Figure 9.2. No exceedances of the EPA or NEPM assessment criteria were predicted at sensitive receptor locations.

An area of off-site incremental exceedance of the NEPM criteria was predicted to the southeast of PKSW (refer Figure 9.2), near Adaptalift Group warehouse (which is located approximately 30 m southeast of the PKSW boundary).

Receptor	Predicted NO ₂ concentrations (µg/m ³)							
	Incremental		Cumulativ	e with DPIE AQMS	Cumulative with DPIE AQMS and other SS projects			
	1 hour	Annual	1 hour	1 hour Annual		Annual		
EPA criteria	246	62	246	62	246	62		
NEPM criteria	164	31	164	31	164	31		
R01	75.5	1.5	107.2	13.1	107.2	13.5		
R02	77.2	2.8	107.2	14.4	107.2	15.0		
R03	71.4	4.4	107.2	16.0	107.2	17.1		
R04	62.3	1.2	107.2	12.8	107.2	13.1		
R05	92.6	4.7	108.9	16.3	108.9	17.0		
R06	68.4	2.6	113.8	14.1	116.2	15.0		

 Table 9.3
 Predicted NO₂ concentrations (existing scenario)

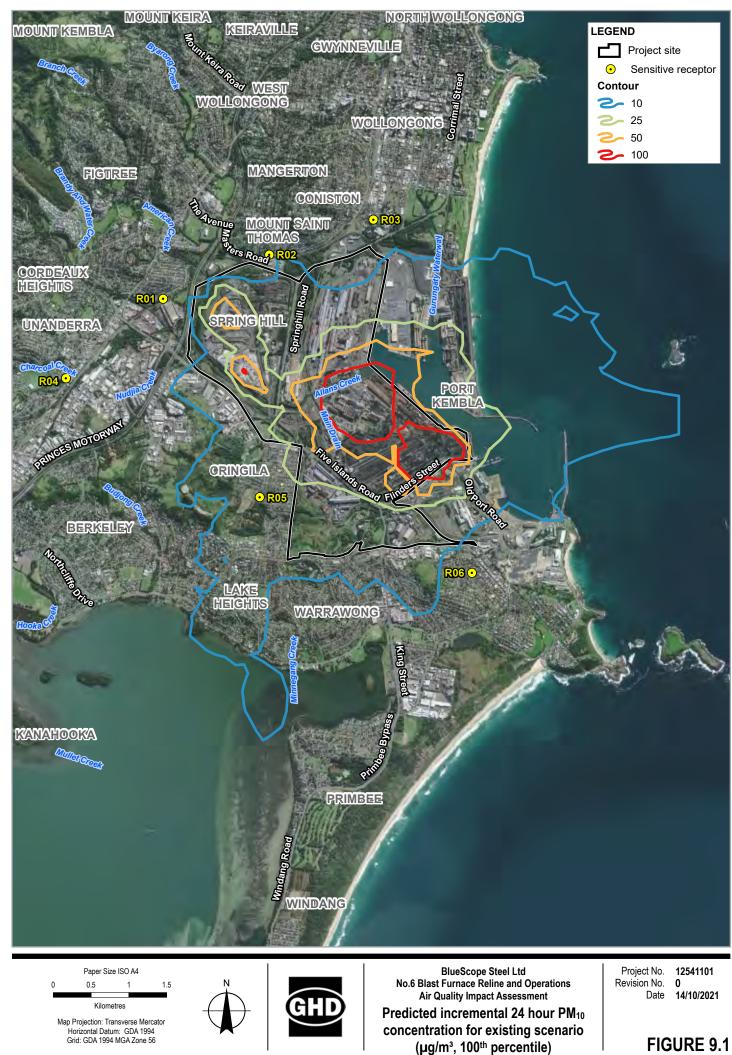
Predicted incremental and cumulative SO₂ concentrations are presented in Table 9.4 and a contour dispersion plot of incremental 1 hour SO₂ is shown on Figure 9.3.

Compliance was predicted against the EPA criteria for all sensitive receptors.

The following exceedances of the NEPM criteria were predicted:

- An incremental exceedance of the 1 hour criteria at R06
- Cumulative exceedances of the 1 hour criteria at R05 and R06

An area of off-site incremental exceedance of the EPA criteria was predicted to the southeast of PKSW (refer Figure 9.3), near the Ampol Port Kembla Diesel Stop (which is located approximately 30 m southeast of the PKSW boundary).


The exceedances of the NEPM criteria require interpretation in the context that the 1 hour and 24 hour SO₂ standards were strengthened in the recent revision (May 2021) of the Air NEPM. The 1 hour SO₂ criteria was strengthened from 570 μ g/m³ to 286 μ g/m³ (representing a 50% reduction) while the 24 hour criteria was strengthened from 228 μ g/m³ to 57 μ g/m³ (representing a 75% reduction). The NEPC notes that the strengthened SO₂ standards are now among the tightest in the world.

For assessment purposes, it is considered unrealistic to expect existing industry to be able to comply with the strengthened NEPM SO₂ criteria immediately. It is noted that compliance is predicted when comparing the 1 hour and 24 hour SO₂ predictions against the superseded NEPM criteria.

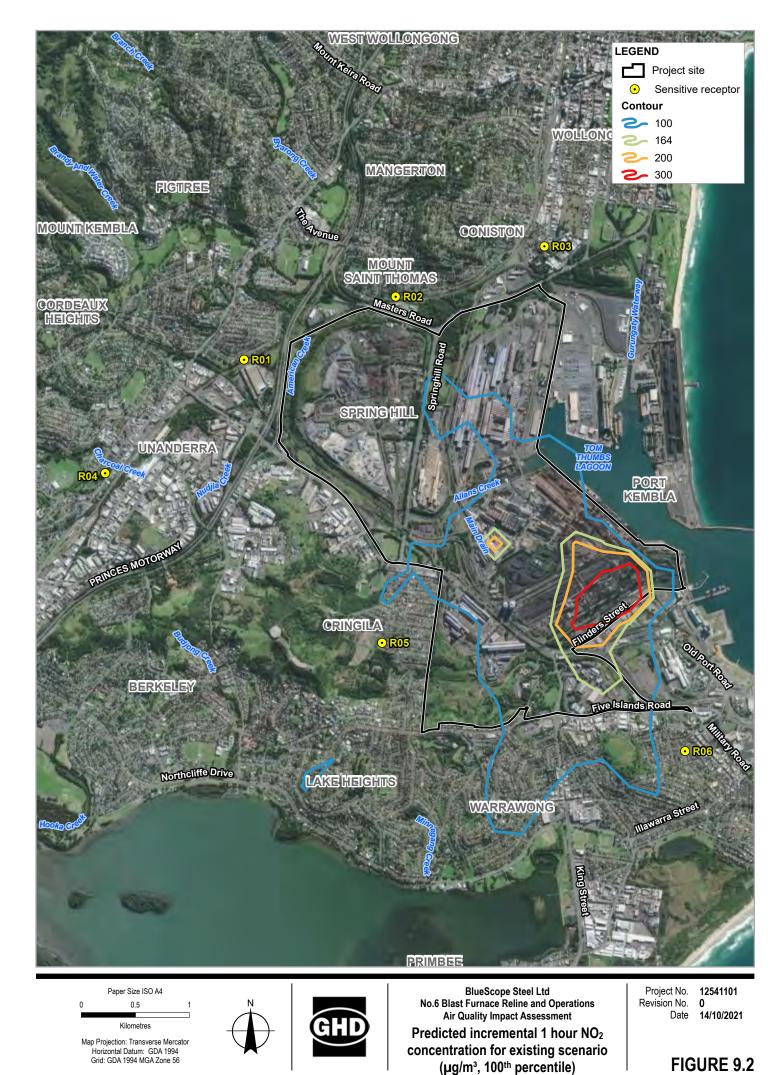
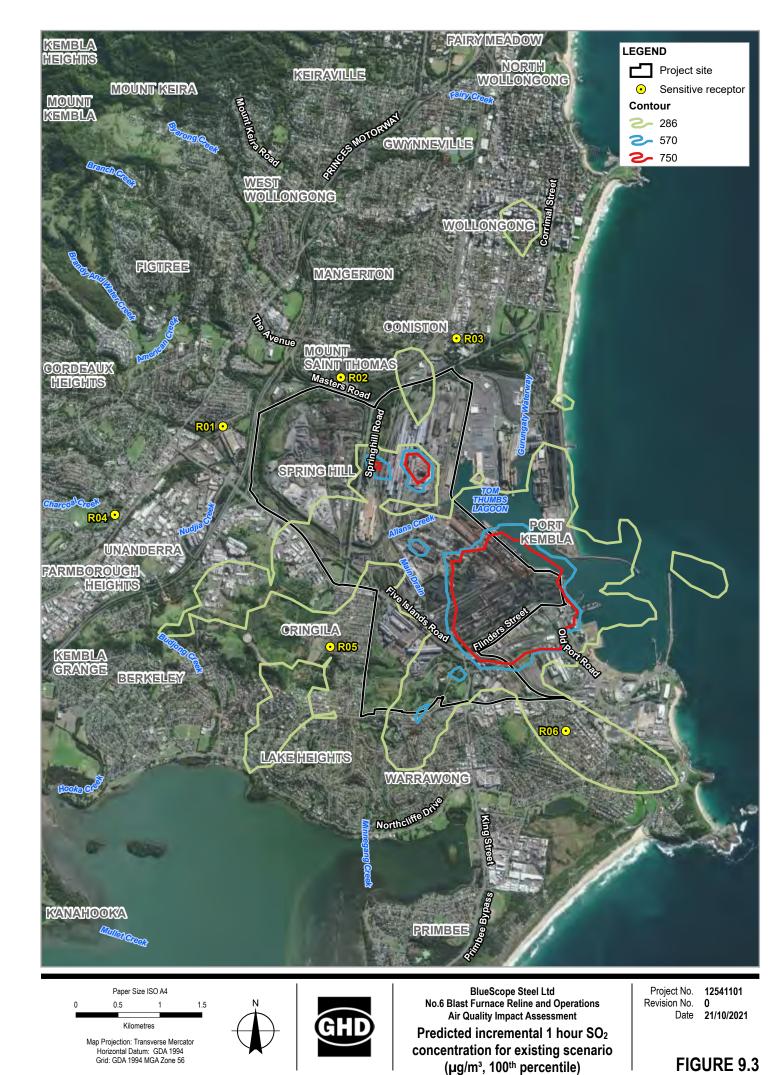

Therefore, a comparative approach (refer Section 9.4.1) was adopted to assess the relative impact of the project on predicted SO₂ concentrations.

Table 9.4 Predicted SO₂ concentrations (existing scenario)

Receptor	Predicted SO ₂ concentrations (μg/m ³)							
	Incremental		Cumulative wi	ith DPIE AQMS	Cumulative with DPIE AQMS and other SS projects			
	1 hour	24 hour	1 hour	24 hour	1 hour	24 hour		
EPA criteria	570	228	570	228	570	228		
NEPM criteria	286	57	286	57	286	57		
R01	171.1	25.1	171.1	29.6	173.0	30.0		
R02	167.5	48.4	167.5	54.1	168.5	54.3		
R03	180.4	29.3	233.0	42.9	233.1	43.3		
R04	135.9	28.3	135.9	28.3	139.5	29.6		
R05	283.1	31.1	285.9	45.4	304.4	46.6		
R06	341.9	36.0	341.9	36.0	342.1	36.6		



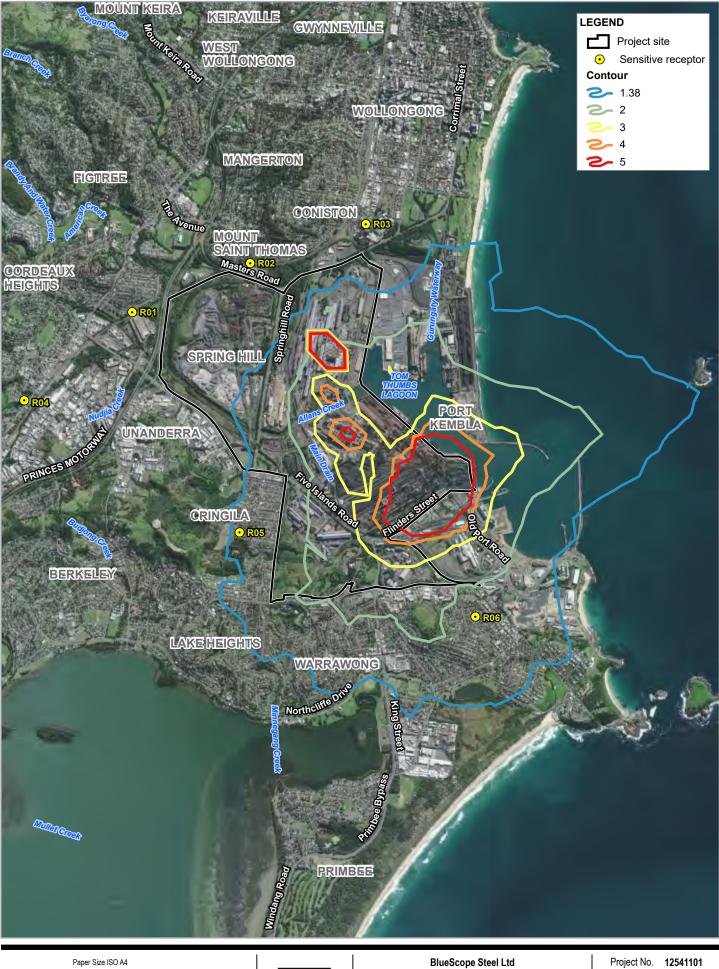
G:l22l12541101\GISIMapsi12541101_AQI_Assessment_A.aprx\12541101_AQIA006_24hr_PM10_Exg_A Print date: 10 Nov 2021 - 15:34 Data source: LPI: DCDB/DTDB, 2017. Commonwealth of Australia (Geoscience Australia) 250K Topographic Data Series 3, 2006. World Imagery: Maxar. Created by: tmortor

G:\22\12541101\GISIMaps\12541101_AQL_Assessment_A.aprx\12541101_AQIA007_1hr_NO2_Exg_A Print date: 10 Nov 2021 - 15:33

Data source: LPI: DCDB/DTDB, 2017. Commonwealth of Australia (Geoscience Australia) 250K Topographic Data Series 3, 2006. World Imagery: Maxar. Created by: tmorte

G\22\12541101\G\SMaps\12541101_AQ_Assessment_A.aprx\12541101_AQ\A008_1hr_SO2_Exg_A Print date: 10 Nov 2021 - 15:32 Data source: LPI: DCDB/DTDB, 2017. Commonwealth of Australia (Geoscience Australia) 250K Topographic Data Series 3, 2006. World Imagery: Maxar. Created by: tmorto

9.2.2 Odorous air pollutants (H₂S)


Predicted H_2S concentrations are presented in Table 9.5 and a contour dispersion plot of incremental 1 second H_2S is shown on Figure 9.4. Exceedance of the 1 second H_2S criteria were predicted at R05 and R06. Compliance with the 1 hour criteria was predicted at all sensitive receptors.

An area of off-site incremental exceedance of the 1 second H₂S criteria was predicted to the south and east of PKSW (refer Figure 9.4). The NSW EPA criteria for H₂S (1 second, 99th percentile) allows for 88 hours per year (1% of the time) where the concentration may exceed 1.38 μ g/m³. At receptor R06, the 99th percentile criteria is exceeded, with the model predicting 98 additional hours per year (1.1% of the time) where the concentration is above the criteria level.

As discussed in *BlueScope Steel, Port Kembla Sub-hourly Modelling of Hydrogen Sulphide* (Environ, 2011) and *BlueScope Steel, Port Kembla Site Air Emissions Modelling – PRP131* (Environ, 2012), the 1 second H₂S criteria is considered very stringent and therefore the Californian EPA 1 hour (public welfare) criterion of 42 ug/m³ was included for comparative purposes. It is noted that this approach was previously submitted to and accepted by the NSW EPA. The predicted maximum 1 hour H₂S concentrations are significantly below the Californian criteria.

Receptor	Predicted	H ₂ S concentrations (µg/m ³)
Averaging period	1 second	1 hour
Statistic	99.9th percentile	Maximum
Impact type	Incremental	Cumulative
Criteria	1.38	42
R01	0.68	3.3
R02	0.96	3.5
R03	1.08	3.5
R04	0.59	3.1
R05	1.44	5.4
R06	1.82	4.2

Table 9.5Predicted H2S concentrations (existing scenario)

0.5 1 1.5 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Predicted incremental 1 second H₂S

concentration for existing scenario

Revision No. 0 Date 10/11/2021

FIGURE 9.4

G:\22\12541101\GIS\Maps\12541101_AQI_Assessment_A.aprx\12541101_AQIA010_1sH2S_Exg_A Print date: 10 Nov 2021 - 15:31 (µg/m³, 100th percentile) FIGURE 9.4 Data source: LPI: DCDB/DTDB, 2017. Commonwealth of Australia (Geoscience Australia) 250K Topographic Data Series 3, 2006. World Imagery: Maxar. Created by: tmortor

9.3 Future

9.3.1 Particulates and common gaseous pollutants

Predicted incremental and cumulative particulate concentrations are presented in Table 9.6 and a contour dispersion plot of incremental 24 hour PM_{10} is shown on Figure 9.5. Exceedance of the 24 hour PM_{10} criteria was predicted at R03 and R05 from the site.

The exceedance at R03 comprised an incremental concentration of 4.5 μ g/m³ and a background concentration of 45.6 μ g/m³ resulting in a cumulative concentration of 50.1 μ g/m³.

The exceedance at R05 comprised an incremental concentration of $3.7 \ \mu g/m^3$ and a background concentration of $46.6 \ \mu g/m^3$ resulting in a cumulative concentration of $50.3 \ \mu g/m^3$.

For both predicted exceedances, the incremental contribution was relatively minor (<10% of assessment criteria) whilst background concentrations were elevated (>90% of assessment criteria). Therefore, the exceedances were primarily attributed to elevated background (off-site) concentrations.

As previously discussed, the background concentration used in the assessment already includes some increment from PKSW therefore the results of this assessment are conservative. The proposed 6BF has a number of additional controls (refer Section 10) when compared to 5BF and additional particulate impacts from the project are considered to be unlikely.

Receptor		Predicted particulate concentrations (µg/m ³)										
			Incre	nental			Cumulative					
	Only 6BF sources			All PKSW future sources		Cumulative with DPIE AQMS		Cumulative with DPIE AQMS and other SS projects				
	TSP	PI	M 10	TSP	PI	M 10	TSP	P	M10	TSP	P	M 10
	Annual	24 hour	Annual	Annual	24 hour	Annual	Annual	24 hour	Annual	Annual	24 hour	Annual
Criteria	90	50	25	90	50	25	90	50	25	90	50	25
R01	0.1	0.6	0.04	0.7	6.1	0.5	36.9	47.2	18.2	36.9	47.2	18.2
R02	0.2	0.8	0.1	1.3	8.8	0.8	37.5	47.5	18.5	37.5	47.5	18.5
R03	0.3	0.7	0.1	1.6	6.8	1.0	37.9	50.1	18.7	37.9	50.2	18.7
R04	0.1	0.6	0.03	0.5	6.4	0.3	36.7	47.2	18.0	36.7	47.2	18.0
R05	0.4	1.3	0.1	3.3	19.7	1.8	39.6	50.2	19.5	39.6	50.3	19.6
R06	0.5	1.1	0.1	2.2	8.1	1.3	38.4	48.3	19.0	38.4	48.4	19.0

 Table 9.6
 Predicted particulate concentrations (future scenario)

The top 10 ranked cumulative PM_{10} values for the worst impacted receptor (R05) are summarised in Table 9.7. An exceedance of the 24 hour PM_{10} criteria is predicted for one 24 hour period at R03 and R05 (equivalent to 0.3% of the time).

Table 9.7	Top 10 ranked	cumulative	PM ₁₀	values	for R05
		•••••••	10		

Rank	Date of	Breakc	Breakdown of predicted concentration components (µg/m³)						
	predicted concentration	Incremental – only 6BF sources	Increment – All PKSW future sources	Background	Cumulative with DPIE AQMS and other SS projects				
1	20/12/2017	0.2	3.7	46.6	50.3				
2	10/02/2017	0.0	1.7	46.3	48.0				
3	19/12/2017	0.2	3.8	44.2	47.9				
4	24/09/2017	0.0	0.3	47.2	47.5				
5	09/01/2017	0.2	1.7	45.6	47.3				
6	13/01/2017	0.0	0.8	45.8	46.6				
7	26/03/2017	0.6	19.7	23.9	43.6				
8	17/01/2017	0.0	3.3	40.1	43.4				
9	13/03/2017	0.7	7.5	35.7	43.2				
10	02/12/2017	0.0	2.3	40.4	42.7				

Predicted incremental and cumulative NO₂ concentrations are presented in Table 9.8 and a contour dispersion plot of incremental 1 hour NO₂ is shown on Figure 9.6. No exceedances of the EPA or NEPM assessment criteria were predicted at sensitive receptor locations.

An area of off-site incremental exceedance of the NEPM criteria was predicted in an industrial area to the southeast of PKSW (refer Figure 9.6), near Adaptalift Group warehouse (which is located approximately 30 m southeast of the PKSW boundary). It is noted that the exceedance area predicted for the future scenario is smaller than that for the existing scenario and therefore the project is anticipated to have a beneficial impact on ambient NO₂ concentrations (net reduction) compared to existing operations (refer to Section 9.4 for a detailed comparison between predicted existing and future concentrations).

Receptor	Predicted NO ₂ concentrations (µg/m ³)									
		Incre	emental			Cum	ulative			
	Only 6BF sources		All PKSW future sources		Cumulative with DPIE AQMS		Cumulative with DPIE AQMS and other SS projects			
	1 hour	Annual	1 hour	Annual	1 hour	Annual	1 hour	Annual		
EPA criteria	246	62	246	62	246	62	246	62		
NEPM criteria	164	31	164	31	164	31	164	31		
R01	6.8	0.1	75.2	1.5	107.2	13.1	107.2	13.5		
R02	7.9	0.1	74.8	2.7	107.2	14.3	107.2	14.9		
R03	9.8	0.2	68.2	4.3	107.2	15.8	107.2	17.0		
R04	6.3	0.05	60.6	1.2	107.2	12.8	107.2	13.1		
R05	13.2	0.2	92.7	4.5	108.9	16.1	108.9	16.8		
R06	19.6	0.2	68.3	2.5	113.8	14.1	116.2	15.0		

Table 9.8 Predicted NO₂ concentrations (future scenario)

Predicted incremental and cumulative SO₂ concentrations are presented in Table 9.9 and a contour dispersion plot of incremental 1 hour NO₂ is shown on Figure 9.7.

Compliance was predicted against the EPA criteria for all receptors.

The following exceedances of the NEPM criteria were predicted:

- An incremental exceedance of the 1 hour criteria at R06
- Cumulative exceedances of the 1 hour criteria at R06

An area of off-site incremental exceedance of the EPA criteria was predicted in an industrial area to the southeast of PKSW (refer Figure 9.7), near the Ampol Port Kembla Diesel Stop which is located approximately 30 m southeast of the PKSW boundary. It is noted that the exceedance areas predicted for the future scenario are smaller than those predicted for the existing scenario. Therefore the project is anticipated to have a beneficial impact on ambient SO₂ concentrations (net reduction) compared to existing operations (refer to Section 9.4 for a detailed comparison between predicted existing and future concentrations).

The exceedances of the NEPM criteria require interpretation in the context that the 1 hour and 24 hour SO₂ standards were strengthened in the recent revision (May 2021) of the Air NEPM. The 1 hour SO₂ criteria was strengthened from 570 μ g/m³ to 286 μ g/m³ (representing a 50% reduction) while the 24 hour criteria was strengthened from 228 μ g/m³ to 57 μ g/m³ (representing a 75% reduction). The NEPC notes that the strengthened SO₂ standards are now among the tightest in the world.

For assessment purposes, it is considered unrealistic to expect existing industry to be able to comply with the strengthened NEPM SO₂ criteria immediately. It is noted that compliance is predicted when comparing the 1 hour and 24 hour SO₂ predictions against the superseded NEPM criteria.

Therefore, a comparative approach was adopted to assess the relative impact of the project on predicted SO₂ concentrations.

Incremental SO₂ emissions from new sources related to this project only (i.e. 6BF on its own) are well below the EPA and NEPM criteria (refer Table 9.11).

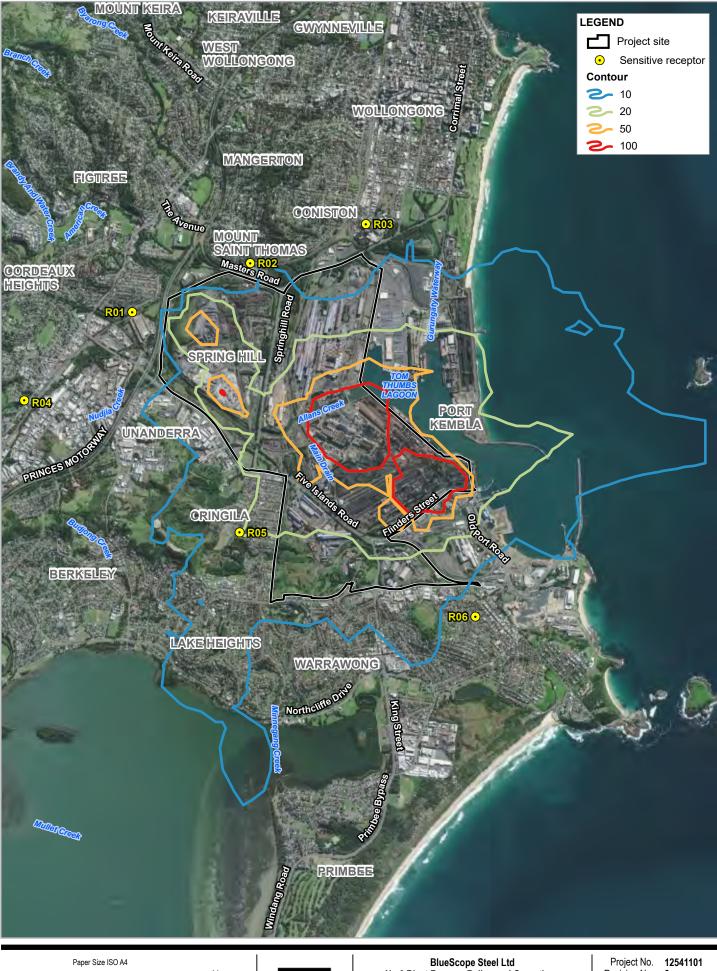

Receptor	Predicted SO ₂ concentrations (µg/m ³)									
		Incre	mental			Cum	ulative			
	Only 6BF sources		All PKSW future sources			Cumulative with DPIE AQMS		ive with DPIE and other SS ojects		
	1 hour	24 hour	1 hour	24 hour	1 hour	24 hour	1 hour	24 hour		
EPA criteria	570	228	570	228	570	228	570	228		
NEPM criteria	286	57	286	57	286	57	286	57		
R01	23.8	3.1	163.3	23.3	166.1	29.4	168.1	29.8		
R02	27.7	5.5	150.6	47.1	160.5	52.8	161.0	53.0		
R03	34.6	4.3	170.4	28.2	220.2	37.1	220.3	37.4		
R04	22.3	3.8	125.5	26.2	134.9	26.2	134.9	27.5		
R05	48.6	6.1	232.6	32.1	235.5	42.9	253.9	44.1		
R06	66.7	6.1	312.0	35.5	312.0	35.5	312.1	37.1		

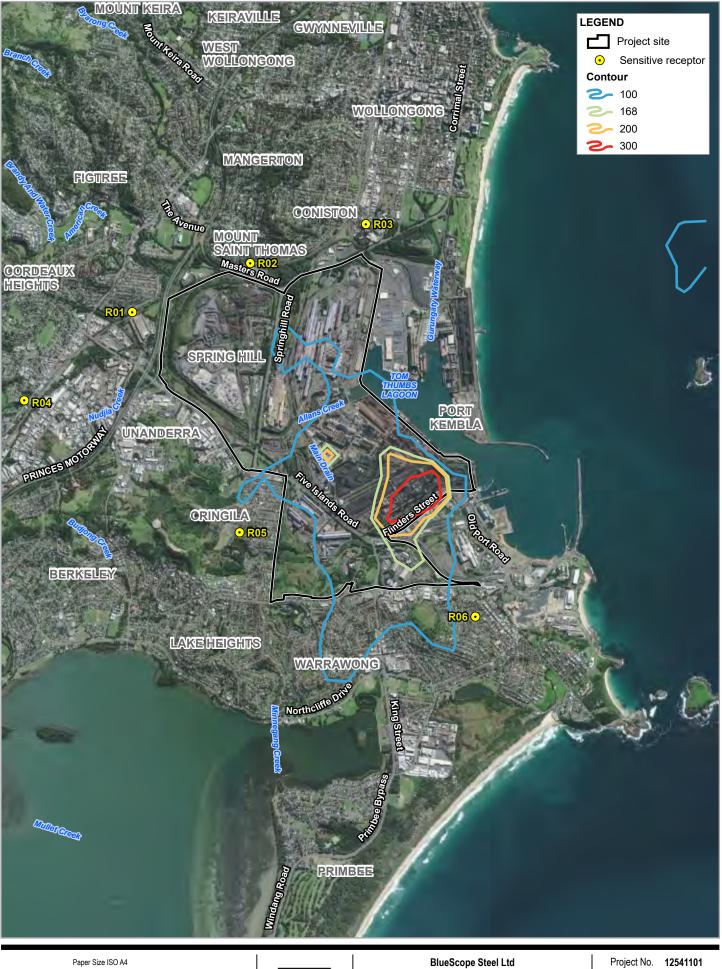
 Table 9.9
 Predicted SO₂ concentrations (future scenario)

The top 10 ranked cumulative SO_2 values for the worst impacted receptor (R06) are summarised in Table 9.11. Exceedances of the 1 hour SO_2 criteria are predicted for four 1 hour periods at R06 (equivalent to 0.05% of the time). Predicted 1 hour SO2 concentrations from the project (Incremental – only 6BF sources) are significantly below the EPA and NEPM assessment criterions.

Rank	Date and hour of	Breakdown of predicted 1 hour SO ₂ concentration components (µg/m ³)					
predicted concentration	Incremental – only 6BF sources	Increment – All PKSW future sources	Background	Cumulative with DPIE AQMS and other SS projects			
1	27/05/2017 7:00	66.7	312.0	0.1	312.1		
2	5/06/2017 19:00	50.2	202.3	5.5	207.9		
3	2/10/2017 0:00	27.6	184.5	0.1	184.6		
4	31/01/2017 6:00	29.5	161.5	2.9	164.4		
5	6/02/2017 3:00	26.0	126.5	34.9	161.4		
6	25/07/2017 18:00	29.3	154.9	0.0	154.9		
7	4/10/2017 2:00	6.4	129.8	8.9	138.8		
8	3/07/2017 3:00	21.1	137.7	0.0	137.7		
9	26/04/2017 4:00	23.1	135.4	0.0	135.4		
10	16/12/2017 22:00	0.0	0.0	134.4	134.4		

Table 9.10Top 10 ranked cumulative 1 hour SO2 values for R06

0.5 1.5 1 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56



No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Predicted incremental 24 hour PM₁₀ concentration for future scenario

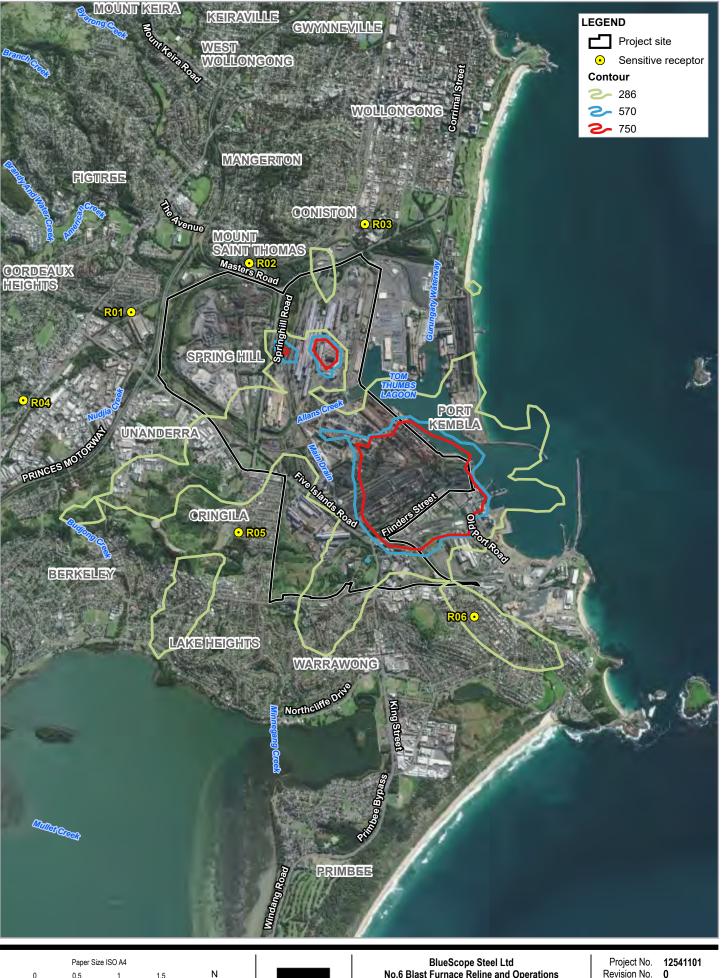
Revision No. 0 Date 10/11/2021

G:l22l12541101\GISIMaps\12541101_AQI_Assessment_A.aprx\12541101_AQIA011_24Hr_PM10_Future_A Print date: 10 Nov 2021 - 15:31

(µg/m³, 100th percentile) Data source: LPI: DCDB/DT Topographic Data Series 3, 2006, World Ima

0.5 1.5 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Predicted incremental 1 hour NO₂


concentration for future scenario

Revision No. 0 Date 10/11/2021

FIGURE 9.6

G:22112541101\GISIMapsi12541101_AQI_Assessment_A.aprxl12541101_AQIA012_1hr_NO2_Future_A Print date: 10 Nov 2021 - 15:30

(µg/m³, 100th percentile) Data source: LPI: DCDB/DT Topographic Data Series 3, 2006, World I

0.5 1 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Predicted incremental 1 hour SO₂

concentration for future scenario

Revision No. 0 Date 10/11/2021

FIGURE 9.7

G:22112541101\GISIMaps\12541101_AQI_Assessment_A.aprx\12541101_AQIA013_1hrSO2_Future_A Print date: 10 Nov 2021 - 15:34

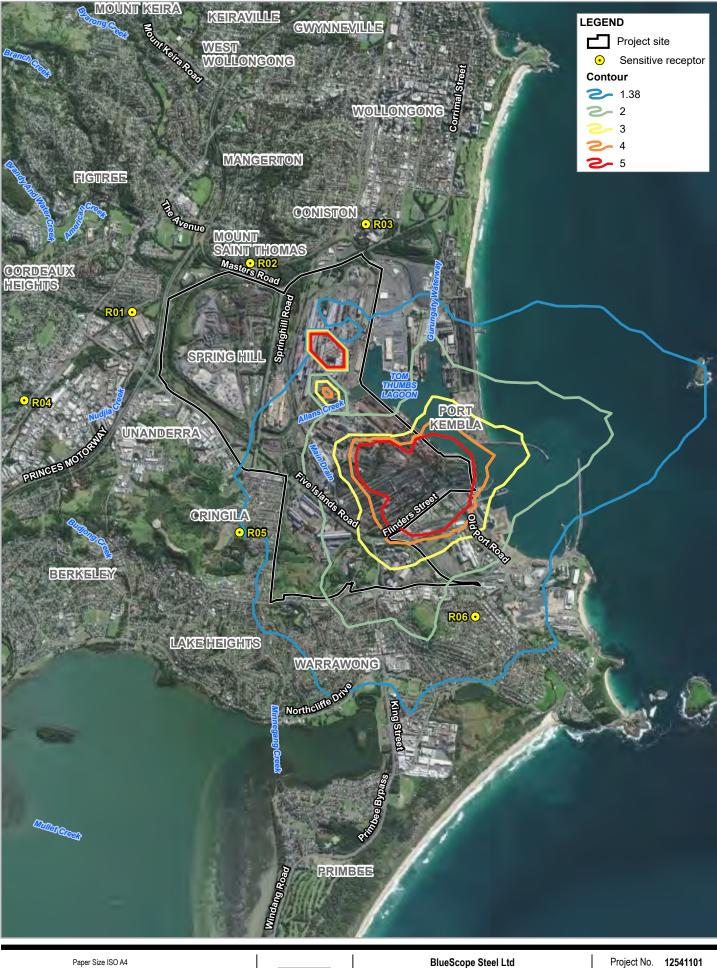
(µg/m³, 100th percentile) Data source: LPI: DCDB/DT Topographic Data Series 3, 2006, World Ima 9.3.2

9.3.2 Odorous air pollutants (H₂S)

Predicted H_2S concentrations are presented in Table 9.11 and a contour dispersion plot of incremental 1 second H_2S is shown on Figure 9.8. A minor exceedance of the 1 second H_2S criteria was predicted at R06, however there has been a reduction in concentration due to this project. As discussed in Section 3.2.1, 6BF is not anticipated to be a source of any other odorous pollutants, consequently only H_2S was considered.

The predicted incremental H_2S concentration, from 6BF only, shows that it contributes about one third of total H_2S emissions at the receptor locations. Given that modelled emissions from 6BF are likely conservative (as discussed in Section 6.3.2), the project is unlikely to lead to offsite odour impacts, and is predicted to reduce odour impacts at the sensitive receptor locations.

Compliance with the 1 hour criteria was predicted at all sensitive receptors.


An area of off-site incremental exceedance of the 1 second H_2S criteria was predicted to the south and east of PKSW (refer Figure 9.8). This is a peak concentration that would only likely occur for a short time over any one year period. The EPA criteria for H_2S (1 second, 99th percentile) allows for 88 hours per year (1% of the time) where the concentration may exceed 1.38 µg/m³. At receptor R06, the 99th percentile criteria is exceeded, with the model predicting only 53 additional hours per year (0.6% of the time) where the concentration is above the criteria level.

It is noted that the exceedance area predicted for the future scenario is smaller than that predicted for the existing scenario. Therefore, the project is anticipated to have a beneficial impact on ambient H₂S concentrations (net reduction) compared to existing operations (refer to Section 9.4 for a detailed comparison between predicted existing and future concentrations).

As discussed in *BlueScope Steel, Port Kembla Sub-hourly Modelling of Hydrogen Sulphide* (Environ, 2011) and *BlueScope Steel, Port Kembla Site Air Emissions Modelling – PRP131* (Environ, 2012), the 1 second H₂S criteria is considered very stringent and therefore the Californian EPA 1 hour (public welfare) criterion of 42 ug/m³ was included for comparative purposes. The predicted maximum 1 hour H₂S concentrations are significantly below the Californian criteria.

Receptor	P	redicted odorous air p	ollutant concentrations (lutant concentrations (μg/m³)		
	Incremental –	Incremental – Only 6BF sources		future sources		
Pollutant		H ₂ S		H ₂ S		
Averaging period	1 second	1 hour	1 second	1 hour		
Statistic	99.9th percentile	Maximum	99.9th percentile	Maximum		
Impact type	Incremental	Incremental	Incremental	Cumulative		
Criteria	1.38	42	1.38	42		
R01	0.19	0.3	0.64	3.0		
R02	0.27	0.6	0.81	3.1		
R03	0.31	0.8	0.94	3.4		
R04	0.15	0.2	0.53	2.9		
R05	0.38	1.5	1.35	7.0		
R06	0.44	0.7	1.59	3.9		

 Table 9.11
 Predicted odorous air pollutant concentrations (future scenario)

0.5 1.5 1 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

No.6 Blast Furnace Reline and Operations Air Quality Impact Assessment Predicted incremental 1 second H₂S concentration for future scenario

Revision No. 0 Date 10/11/2021

FIGURE 9.8

G:22112541101\GIS\Maps\12541101_AQI_Assessment_A.aprx\12541101_AQIA015_1sH2S_Future_A Print date: 10 Nov 2021 - 15:29

(µg/m³, 99th percentile) Data source: LPI: DCDB/DTD Topographic Data Series 3, 2006, World I

9.4 Comparison of existing to future impacts

A comparative analysis of predicted incremental and cumulative air quality concentrations is provided in this section. The analysis examined the relative impact of the project by presenting the difference in model predictions between existing and future scenarios. The difference was expressed as the percentage change (rounded to one decimal place) from existing to future scenario (i.e. a positive percentage indicates increased impacts are predicted during the future scenario while a negative percentage indicates decreased impacts are predicted during the future scenario).

9.4.1 Particulates and common gaseous pollutants

The difference in predicted particulate concentrations is provided in Table 9.12.

A minor increase in incremental particulate concentrations was predicted as a result of the project. It is attributed to the minor increase in particulate emissions from the future scenario as discussed in Section 6.4.

A less than 1% change between scenarios is predicted for cumulative predictions. This is attributed to low site contributions relative to the background concentrations which account for the majority of the cumulative impact at receptors. As background concentrations remain constant for both scenarios, minor changes to predictions are observed.

Receptor	Incremen	tal		Cumulativ	ve with DPIE	AQMS	Cumulative with DPIE A and other SS projects		AQMS
	TSP	PM10		TSP	PM 10		TSP	PM10	
	Annual	24 hour	Annual	Annual	24 hour	Annual	Annual	24 hour	Annual
R01	10.3%	3.8%	3.2%	0.2%	0.0%	0.1%	0.2%	0.0%	0.1%
R02	9.2%	0.7%	2.9%	0.3%	0.0%	0.1%	0.3%	0.0%	0.1%
R03	12.3%	-0.7%	4.0%	0.5%	0.2%	0.2%	0.5%	0.2%	0.2%
R04	12.2%	1.6%	3.5%	0.1%	0.0%	0.1%	0.1%	0.0%	0.1%
R05	5.7%	0.3%	0.9%	0.5%	0.2%	0.1%	0.5%	0.2%	0.1%
R06	18.0%	5.2%	4.9%	0.9%	0.4%	0.3%	0.9%	0.4%	0.3%

Table 9.12 Predicted particulate concentrations (percentage change from existing to future scenario)

The difference in predicted NO₂ concentrations is provided in Table 9.13. A decrease in incremental and cumulative NO₂ concentrations is predicted (i.e. the project is predicted to have a beneficial impact on ambient NO₂ concentrations (net reduction) compared to existing operations).

The following improvements were identified at sensitive receptor locations:

- Up to a 4.5% reduction of incremental 1 hour NO₂ concentrations
- Up to a 4.6% reduction of incremental 24 hour NO₂ concentrations
- No change in cumulative 1 hour NO₂ concentrations
- Up to a 1.2% reduction of cumulative (cumulative with DPIE AQMS and other SS projects) 24 hour NO₂ concentrations

 Table 9.13
 Predicted NO₂ concentrations (percentage change from existing to future scenario)

Receptor		Predicted NO ₂ concentrations (µg/m ³)						
	Incremental		Cumulativ	Cumulative with DPIE AQMS		Cumulative with DPIE AQMS and other SS projects		
	1 hour	Annual	1 hour	Annual	1 hour	Annual		
R01	-0.3%	-2.2%	0.0%	-0.3%	0.0%	-0.2%		
R02	-3.2%	-2.0%	0.0%	-0.4%	0.0%	-0.3%		
R03	-4.5%	-2.9%	0.0%	-0.8%	0.0%	-0.7%		
R04	-2.8%	-2.7%	0.0%	-0.3%	0.0%	-0.2%		
R05	0.1%	-4.6%	0.0%	-1.3%	0.0%	-1.2%		
R06	-0.2%	-1.3%	0.0%	-0.2%	0.0%	-0.2%		

The difference in predicted SO_2 concentrations is provided in Table 9.14. Generally, a decrease in incremental and cumulative SO_2 concentrations is predicted (i.e. the project is predicted to have a beneficial impact on ambient SO_2 concentrations (net reduction) compared to existing operations).

The following improvements were identified at sensitive receptor locations:

- Up to a 17.8% reduction of incremental 1 hour SO₂ concentrations.
- Up to a 7.3% reduction of incremental 24 hour SO₂ concentrations.
- Up to a 16.6% reduction of cumulative (cumulative with DPIE AQMS and other SS projects) 1 hour SO₂ concentrations.
- Up to a 13.7% reduction of cumulative (cumulative with DPIE AQMS and other SS projects) 24 hour SO₂ concentrations.

 Table 9.14
 Predicted SO₂ concentrations (percentage change from existing to future scenario)

Receptor		Predicted SO ₂ concentrations (µg/m ³)						
	Incremental		Cumulativ	Cumulative with DPIE AQMS		Cumulative with DPIE AQMS and other SS projects		
	1 hour	24 hour	1 hour	24 hour	1 hour	24 hour		
R01	-4.6%	-7.0%	-2.9%	-0.5%	-2.8%	-0.5%		
R02	-10.1%	-2.8%	-4.2%	-2.5%	-4.4%	-2.5%		
R03	-5.5%	-3.6%	-5.5%	-13.6%	-5.5%	-13.7%		
R04	-7.6%	-7.3%	-0.8%	-7.3%	-3.3%	-7.0%		
R05	-17.8%	3.4%	-17.6%	-5.4%	-16.6%	-5.2%		
R06	-8.8%	-1.4%	-8.8%	-1.4%	-8.8%	1.5%		

9.4.2 Odorous air pollutants

The difference in predicted H₂S concentrations is provided in Table 9.15.

A decrease in H_2S concentrations is predicted at all receptors with the exception of the indicative 1 hour maximum H_2S concentration at R05. This is due to future H_2S sources 'aligning' along a common wind direction so that worse case down wind impacts occur at R05 at the same time. Up to a 15.4% reduction in 1 second H2SH2S concentrations was predicted.

It is noted that an exceedance of the 1 second H₂S criteria was predicted at R05 for the existing scenario. Based on improvements to site operations as part of the project, compliance with the 1 second H₂S criteria was predicted at R05 for the future scenario.

 Table 9.15
 Predicted odorous air pollutant concentrations (percentage change from existing to future scenario)

Pollutant	H ₂ S		
Averaging period	1 second	1 hour	
Statistic	99.9th percentile	Maximum	
R01	-6.1%	-9.9%	
R02	-15.4%	-11.9%	
R03	-13.2%	-3.4%	
R04	-11.0%	-8.5%	
R05	-6.3%	27.9%	
R06	-12.5%	-6.9%	

10. Best practice assessment and emissions controls

10.1 Best practice assessment

The purpose of this chapter is to present the Best Available Techniques (BAT) Assessment for the proposed design and operation of the new blast furnace and associated infrastructure. This is a requirement of the SEARS, specifically EPA's guidance to DPIE in the development of the SEARS.

The BAT assessment has been based on a review of available technology internationally. The generally accepted best practices for steel making are those adopted by the European Union under the BAT Reference Document (BREF) for Iron and Steel Production Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control).

Relevant conclusions from the BREF, and how these are being addressed by BlueScope, are summarised in Table 10.1 below. Responses below directly address BAT conclusions in Chapter 9.5 BAT Conclusions for Blast Furnaces from the BREF document with a focus on Air Emissions (Bat 59 to 65).

The review of emissions from the operation of 6BF compared to 5BF indicates that it will generally result in a reduction of pollutants. Reference is made to the existing emission profile outlined in Section 6 which has been improved by the best practice emission controls, as identified in the following sections, to be used on the project to improve emissions for the operation of 6BF.

When reviewing the BAT assessment in Table 10.1 it should be noted that BlueScope undertakes a constant review of emerging BAT for managing emissions and seeks to constantly improve controls where practical, reasonable and feasible to do so in regards to international best practice.

10.2 Additional emission controls

To meet the conclusions of the BREF, BlueScope intends to implement the following additional process and emission controls as part of the project:

- Cast house floor fugitives Manipulator and trough covers, extraction from main trough, extraction at taphole with primary and secondary hood (noting that 5BF only has a primary hood), lowered tilting platforms during casting (also an improvement on 5BF).
- Iron Kish Extraction at iron ladles and slag tilting spouts. Both the iron ladles and Slag Pots will have level sensors to ensure they are filled in a controlled manner.
- Slag Handling Coldwater slag granulation with condensing unit. Slag pits air cooling for up to 24 hours before applying water to minimise H₂S generation during watering.
- Dust catcher A lock-hopper will be installed at the base of the dust catcher and will minimise BFG and dust emissions to the atmosphere.
- Dust suppression Sealed roads, street sweepers and truck wheel washes from stockhouse and slag handling areas.

Table 10.1Summary of best practice assessment

	EU BAT BREF	6BF Control	Conformance to BAT	Improvement status
Air emissions	59. BAT for displaced air during loading from the storage bunkers of the coal injection unit is to capture dust emissions and perform subsequent dry dedusting. The BAT-associated emission level for dust is <20 mg/Nm ³ , determined as the average over the sampling period (discontinuous measurement, spot samples for at least half an hour).	Emissions from PCI plant are all below 20 mg/m ³ . No changes to operation of this plant in relation to the project.	Conforms to BAT	Same as existing at 5BF
	60. BAT for burden preparation (mixing, blending) and conveying is to minimise dust emissions and, where relevant, extraction with subsequent dedusting by means of an electrostatic precipitator or bag filter.	Enclosed conveyors Dust suppression Dedusting at every material transfer in the Stockhouse via baghouse.	Conforms to BAT Current stockhouse stack testing at 5BF complies with Clean Air Act Group 6 limits	Same as existing at 5BF
	 61. BAT for casting house (tap holes, runners, torpedo ladles charging points, skimmers) is to prevent or reduce diffuse dust emissions by using the following techniques: covering the runners optimising the capture efficiency for diffuse dust emissions and fumes with subsequent off-gas cleaning by means of an electrostatic precipitator or bag filter function for tapping emissions is installed. When using BAT II, the BAT-associated emission level for dust is <1 – 15 mg/Nm³, determined as a daily mean value. 	Runners covered Primary dedusting damper and secondary dedusting hood to capture emissions at tapholes Dedusting at charging conveyor Dedusting with baghouse Tilting platforms to be lowered during casting	 i. Conforms to BAT ii. Conforms to BAT iii. Not used and not applicable - Nitrogen fume suppression presents a safety hazard and is only applicable where no dedusting system is installed Current 5BF casthouse stack results comply with Clean Air Act Group 6 limits 	Secondary dedusting hood is an improvement on 5BF and was in place for previous 6BF campaign. Lowered tilting platform during casting is an improvement on 5BF and was in place for previous 6BF campaign. The covered runners and dedusting are the same as existing at 5BF.
	62. BAT is to use tar-free runner linings.	Tar-free runner linings used	Conforms to BAT	Same as existing at 5BF and previous 6BF campaign
	 63. BAT is to minimise the release of blast furnace gas during charging by using one or a combination of the following techniques: I. bell-less top with primary and secondary equalising II. gas or ventilation recovery system III. use of blast furnace gas to pressurise the top bunkers. 	i. Bell-less top charging with equalising relief valves for material hopper. Primary equalisation with semi clean gas, secondary equalisation with nitrogen continuing to flow into the bin during material discharge. ii. Not applicable as a mixture of BFG and nitrogen is used to pressurise the furnace top bunkers.	Conforms to BAT	Same as existing at 5BF and previous 6BF campaign

EU BAT BREF	6BF Control	Conformance to BAT	Improvement status
Applicability of BAT II Applicable for new plants. Applicable for existing plants only where the furnace has a bell-less charging system. It is not applicable to plants where gases other than blast furnace gas (e.g. nitrogen) are used to pressurise the furnace top bunkers.	iii. Pressurisation using semi clean gas and nitrogen		
 64. BAT is to reduce dust emissions from the blast furnace gas by using one or a combination of the following techniques: using dry predusting devices such as: deflectors dust catchers cyclones velectrostatic precipitators. II. subsequent dust abatement such as: hurdle-type scrubbers venturi scrubbers annular gap scrubbers wet electrostatic precipitators. For cleaned blast furnace (BF) gas, the residual dust concentration associated with BAT is <10 mg/Nm³, determined as the average over the sampling period (discontinuous measurement, spot samples for at least half an hour). 	I. ii. Pre-dedusting with dust catcher II. iii. Subsequent abatement by annular gas scrubber	I. Conforms to BAT - ii. II. Conforms to BAT - iii. Gas cleaning complies with <10mg/m ³ BAT emission limit.	Same as 5BF with improvements compared to previous 6BF campaign
 65. BAT for hot blast stoves is to reduce emissions by using desulphurised and dedusted surplus coke oven gas, dedusted blast furnace gas, dedusted basic oxygen furnace gas and natural gas, individually or in combination. The BAT-associated emission levels, determined as daily mean values related to an oxygen content of 3 %, are: sulphur oxides (SOx) expressed as sulphur dioxide (SO2) <200 mg/Nm3 dust<10 mg/Nm3 nitrogen oxides (NOx), expressed as nitrogen dioxide (NO2) <100 mg/Nm3 	Stoves use dedusted BFG, dedusted COG (not desulphurised), and natural gas New design will improve combustion efficiency Installation of Waste Gas Heat Recovery	Conforms to BAT for gas re-use Stove emissions comply with Clean Air Act Group 6 limits Improved combustion efficiency will reduce CO emissions however, the extent of reduction is still being investigated. Current emissions do not comply to BAT-associated emission levels though it is anticipated that installation of WGHR will result in emission reductions.	Improvement on 5BF and previous 6BF campaign

	EU BAT BREF	6BF Control	Conformance to BAT	Improvement status
Production residues	 68. BAT is to prevent waste generation from blast furnaces by using one or a combination of the following techniques: I. appropriate collection and storage to facilitate a specific treatment II on-site recycling of coarse dust from the blast furnace (BF) gas treatment and dust from the cast house dedusting, with due regard for the effect of emissions from the plant where it is recycled III. hydrocyclonage of sludge with subsequent onsite recycling of the coarse fraction (applicable whenever wet dedusting is applied and where the zinc content distribution in the different grain sizes allows a reasonable separation) IV. slag treatment, preferably by means of granulation (where market conditions allow for it), for the external use of slag (e.g. in the cement industry or for road construction). 	i. Dust catcher, sludge dewatering ii. Flue dust is recycled at Sinter Plant iii. Potential for hydroclonage currently under investigation. Learnings will be applied to 6BF. iv. Slag granulation undertaken where possible, remainder formed as rock slag.	Conforms to BAT	Same as existing at 5BF
	69. BAT for minimising slag treatment emissions is to condense fume if odour reduction is required.	Cold slag granulation with condensing unit	Conforms to BAT	Improvement on 5BF and previous 6BF campaign
Energy	71. BAT is to maintain a smooth, continuous operation of the blast furnace at a steady state to minimise releases and to reduce the likelihood of burden slips.	Closed loop cooling water Use of stockrods for burden level detection and monitoring	Conforms to BAT	Same as existing at 5BF and previous 6BF campaign

EU BAT BREF	6BF Control	Conformance to BAT	Improvement status
 74. BAT is to preheat the hot blast stove fuel gases or combustion air using the waste gas of the hot blast stove and to optimise the hot blast stove combustion process. Description For optimisation of the energy efficiency of the hot stove, one or a combination of the following techniques can be applied: the use of a computer-aided hot stove operation preheating of the fuel or combustion air in conjunction with insulation of the cold blast line and waste gas flue use of more suitable burners to improve combustion rapid oxygen measurement and subsequent adaptation of combustion conditions. Applicability The applicability of fuel preheating depends on the efficiency of the stoves as this determines the waste gas temperature (e.g. at waste gas temperatures below 250 °C, heat recovery may not be a technically or economically viable option). The implementation of computer-aided control could require the construction of a fourth stove in the case of blast furnaces with three stoves (if possible) in order to maximise benefits. 	Hot stove operation is computer- aided Lagging used in cold blast main and waste gas flue is refractory lined. New burner design to improve combustion Waste gas oxygen measurement to be replaced	Conforms to BAT	Improvement on 5BF and previous 6BF campaign

11. Management and mitigation

Air quality management and mitigation measures to reduce emissions to air from the project and minimise any potential air quality impacts are provided in the Sections below. These controls will be in addition to the EPL fugitive dust emission controls detailed in Condition O3. The BlueScope "Fugitive Dust Management System" procedure (MA-ENV-02-02) will be applied throughout construction, commissioning and operation.

11.1 Construction

While general construction activities are not expected to exceed air quality goals at nearby receptors, the following mitigation measures are recommended:

- Prepare a dust management plan for use during construction activities.
- Regularly monitor existing ambient air quality stations during dust generating construction activities.
- During demolition of any contaminated areas, take extra precautions to prevent dust leaving the work area.
- Reduce or cease dust generating activities if clearly visible plumes of dust go off the site or monitoring shows excessive particulate levels.
- Blasting or heavy demolition which may lead to excessive dust will only be undertaken in conditions not likely to disperse dust towards sensitive receptors.
- Operations conducted in areas of low moisture content material will be suspended during high wind speed events and water sprays will be used.
- Aim to minimise the size of storage piles where possible. Development of any new stockpile areas must be in accordance with the BSL Risk Assessment Process.
- Limit cleared areas of land and stockpiles and clear only when necessary to reduce fugitive dust emissions.
 All material stockpiles will have appropriate stormwater and dust controls in place.
- Control on-site traffic by designating specific routes for haulage and access. Traffic on any unpaved construction areas should be limited to 25 kilometres per hour.
- All trucks carrying dry bulk material that is loaded on site must be loaded and operated so as to prevent spillage of any material from the load (which generates dust). Trucks must be covered prior to leaving the licenced site boundary.

These measures will assist in reducing impact on all areas off-site during construction activities.

11.2 Commissioning

The following mitigation measures are recommended during commissioning:

- Notify local residents about the proposed commissioning timetable of activities that could affect people off-site and provide advice on what they can expect regarding emissions including smoke.
- Where practicable, any commissioning activities that may lead to excessive emissions or visible smoke should be timed as much as possible to occur when winds are not blowing towards residential areas.

11.3 Operation

Operational air quality impacts are anticipated to be consistent with, or better than existing operations and no specific additional emission controls are recommended. It is recommended that BlueScope continue to reduce emissions of SO₂ with any future modifications as it continues to reduce its emission profile towards the updated 2021 NEPM standards. The following operational management and mitigation measures are recommended:

- Develop and implement an Air Quality Management Plan prior to commencement of operations including:
 - Identify all major sources of air emissions and associated proactive and reactive mitigation measures to
 ensure air pollution is prevented or minimised
 - Describe protocols for regular maintenance of plant and equipment
 - Outline procedures for monitoring and reporting air emissions
 - Describe measures to regularly review the effectiveness of air pollution control measures

Conduct post commissioning sampling of all new emissions sources in accordance with Approved Methods for the Sampling and Analysis of Air Pollutants in New South Wales (DEC, 2007). Point sources where sampling will be conducted includes:

- EPA003 No 6 Blast Furnace Stove Waste Gas Stack
- EPA004 No 6 Blast Furnace Cast House Dedusting Stack
- EPA005 No 6 Blast Furnace Stock House Dedusting Stack

Fugitive emission sampling to include where practicable:

- Slag pits
- 6BF Granulation Cooling tower
- Conduct ongoing emission sampling in accordance with conditions of Development Consent and the EPL.
- Investigate the use of online monitoring systems at the stoves stack, stock house dedusting stack, and cast house dedusting stack, such as opacity meters.

12. Conclusion

GHD has conducted an air quality impact assessment to assess the construction, commissioning and operation of the No. 6 Blast Furnace at the Port Kembla Steelworks. The assessment was undertaken in accordance with relevant legislation and government guidance.

A qualitative based approach was adopted to assess the construction and commissioning of the project. The construction assessment identified a low risk of potential air quality impacts as there will be a large separation distance between construction activities and sensitive receptors, and emissions to air during construction are expected to be relatively minor.

The commissioning assessment concluded that there was potential of elevated emissions to occur for a relatively short period of time during commissioning. As the commissioning procedure will align with the industry standard approach and adopt best practice methods where possible, emissions during commissioning are considered to be minimised as far as reasonably practicable. Due to relatively short duration of commissioning and implementation of industry standard and best practice methods, although the potential impact for any elevated emissions to air cannot be quantified, the commissioning process is considered to pose a low risk of potential adverse air quality impacts to surrounding receptors.

The quantitative operational air quality assessment consisted of three parts, an emission limit assessment, an air quality impact assessment and a best practice assessment.

The emission limit assessment identified that all No. 6 Blast Furnace air quality emission sources assessable to standard of concentration limits will comply with standard of concentration limits stipulated in the POEO Clean Air Regulation.

The air quality impact assessment used air quality dispersion modelling to predict incremental and cumulative pollutant concentrations from the existing and proposed future operating scenarios. The findings of the dispersion modelling are summarised below:

- Existing scenario (operation of 5BF and PKSW) findings:
 - A minor cumulative exceedance of the 24 hour PM₁₀ criteria was predicted for one 24 hour period in the modelled year at R05. This exceedance was primarily attributed to elevated background concentrations which accounted for 93% of the criteria while existing scenario incremental concentrations accounted for 7% of the criteria.
 - Compliance was predicted for 1 hour and annual NO₂ concentrations against both EPA and NEPM assessment criterions at sensitive receptor locations.
 - Compliance was predicted for 1 hour and 24 hour SO₂ concentrations against the EPA assessment criteria at sensitive receptor locations.
 - An incremental exceedance of the 1 hour SO₂ NEPM criteria was predicted at R06 and cumulative exceedances were predicted at R05 and R06. These exceedances of the NEPM criteria require interpretation in the context that the 1 hour SO₂ standard was reduced in a recent revision (May 2021) of the Air NEPM.
 - Exceedance of the 1 second H₂S criteria was predicted at R05 and R06. Compliance was predicted for the 1 hour H₂S criteria at all sensitive receptors.
- Future scenario (operation of 6BF and PKSW) findings:
 - Minor cumulative exceedance of the 24 hour PM₁₀ criteria were predicted at R03 and R05 for one day of the year only. These exceedances were primarily attributed to elevated background concentrations which accounted for 91% and 93% of the criteria while future scenario incremental concentrations accounted for 9% and 7% of the criteria for receptors R03 and R05 respectively. 6BF sources account for approximately 1% and 3% of the maximum cumulative 24 hour PM₁₀ contribution at R03 and R05 respectively.
 - Compliance was predicted for 1 hour and annual NO₂ concentrations against both EPA and NEPM assessment criteria at sensitive receptor locations.

- Compliance was predicted for 1 hour and 24 hour SO₂ concentrations against the EPA assessment criteria at sensitive receptor locations.
- An incremental and cumulative exceedance of the 1 hour SO₂ NEPM criteria was predicted at R06. This
 exceedance of the NEPM criteria requires interpretation in the context that the 1 hour SO₂ standard was
 reduced in a recent revision (May 2021) of the Air NEPM. These exceedances are attributed mostly to
 existing sources on the PKSW site and predicted concentrations comply with the existing NSW EPA
 criteria. 6BF sources account for approximately 21% of the maximum cumulative 1 hour SO₂ contribution
 at R06.
- An exceedance of the 1 second H₂S criteria was predicted at R06 only. Compliance was predicted for the 1 hour H₂S criteria at all sensitive receptors. The predicted incremental H₂S concentration, from 6BF only, shows that it contributes about one third of total H₂S emissions at the receptor locations. Given that modelled emissions from 6BF are likely to be conservative, the project is unlikely to lead to off-site odour impacts and is predicted to reduce odour impacts at the sensitive receptor locations. 6BF sources account for approximately 28% of the maximum 1 second H₂S contribution at R06.

Comparatively, the future scenario was predicted to result in a general reduction of all pollutant concentrations (NO_2 , SO_2 and H_2S), except for particulate matter, in relation to which a minor increase was predicted due to assumptions in the assessment. The project includes a number of measures anticipated to reduce particulates compared to the existing situation.

The best practice assessment benchmarked proposed No. 6 Blast Furnace emissions control measures against European Union Best Available Techniques (BAT). The best practice assessment concluded that the project conforms with the best available techniques and for each BAT requirement offers a beneficial or at least neutral impact compared with current No. 5 Blast Furnace operations.

From an air quality perspective, the project is considered an improvement (reduction in pollutant concentrations) compared with existing operations.

13. References

Australian Government, Department of Agriculture, Water and the Environment, National Pollutant Inventory Emission Estimation Technique Manual for Iron and Steel Production (1999)

Barclay J and Scire J (2011) Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the Approved Methods for the Modelling and Assessments of Air Pollutants in NSW, Australia. Atmospheric Studies Group TRC Environmental Corporation.

Bureau of Meteorology (2021) Climate Data Online. http://www.bom.gov.au/ accessed September 2021.

Environ (2012) BlueScope Steel, Port Kembla Site Air Emissions Modelling – PRP131

Environ (2011) BlueScope Steel, Port Kembla Sub-hourly Modelling of Hydrogen Sulphide

GHD (2019) East Coast Gas Project Modification Air Quality Assessment

 Institute of Air Quality Management (2016) Guidance on the assessment of dust from demolition and construction

National Environmental Protection Council (2021) National Environment Protection (Ambient Air Quality) Measure - Variation 2021.

New South Wales Environmental Protection Authority (NSW EPA) (2017) Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales. EPA 2016/0666. ISBN 978 1 76039 565 0.

Appendices

Appendix A Meteorological modelling methodology

A-1 Overview

Local meteorology, including long term wind speed and direction as well as atmospheric stability, can influence how pollutants are dispersed into the local environment.

This appendix outlines the methodology used to synthesise site-representative meteorology for the project. The meteorology is used in CALPUFF to drive the dispersion model.

A-2 Methodology

The meteorology modelling methodology is summarised below:

- Selection of a model period
- Development of coarsely gridded prognostic meteorological data set using the Weather Research and Forecast model (WRF) model
- Development of refined gridded meteorological data set which takes into account local terrain features using the CAMET diagnostic meteorological model
- Verification of model performance using data measured at BoM and BlueScope meteorological monitoring stations
- Extraction of predicted meteorological parameters from the CALMET model

A-2-1 Nearby BoM station review

A review of nearby BoM station is provided in Table A.1.

 Table A.1
 Nearby BoM station review

BoM station	Approximate distance from Site	Availability of meteorological data	BoM station setting
Port Kembla AWS (BoM ID: 68253)	0.5 km east of the Site	Began operation in 1990. All desired meteorological parameters except cloud data available.	Located on eastern most wharf in Port Kembla
Bellambi AWS (BoM ID: 68228)	12 km North of the site	Began operation in 1988. All desired meteorological parameters available.	Located on exposed headland
Albion Park (Wollongong airport) (BoM ID: 68241)	14 km southwest of the site	Began operation in 1999. All desired meteorological parameters available.	Located in cleared airport setting

Due to close proximity to the project, the Port Kembla AWS was selected for inclusion in the representative year analysis.

A-2-2 Representative year selection

A representative year was chosen for modelling purposes based on review of Southern Oscillation Index (SOI) for the past 10 years and an analysis BoM data recorded at Port Kembla AWS for the last year calendar years (01/01/2016 – 31/12/2020).

The SOI indicates the intensity of El Nino or La Nina events in the Pacific Ocean. A value of less than -7 often indicates El Nino episodes (typically accompanied by sustained warming of the central and eastern tropical Pacific Ocean, a decrease in the strength of the Pacific Trade Winds, and a reduction in winter and spring rainfall over much of eastern Australia and the Top End) while a value of greater than 7 often indicates La Nina episodes (typically associated with stronger Pacific trade winds and warmer sea temperatures to the north of Australia, waters in the central and eastern tropical Pacific Ocean become cooler during this time). Together, these give an increased probability that eastern and northern Australia will be wetter than normal⁶.

⁶ SOI data and description of El Nino and La Nina episodes sourced from Australian Government BoM, available online: http://www.bom.gov.au/climate/current/soi2.shtml

The SOI for the past 10 years is shown in Figure A.1.

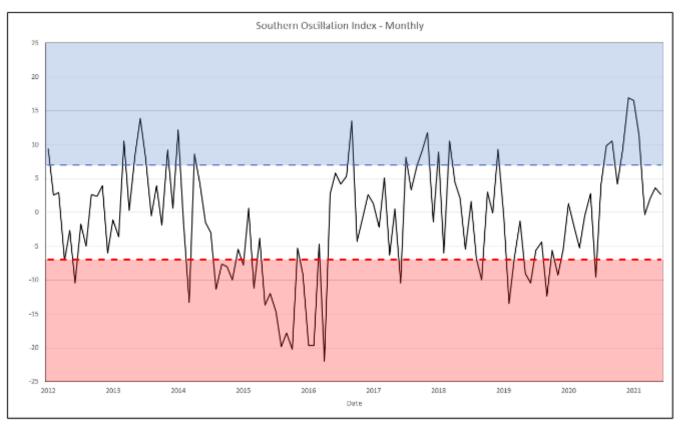
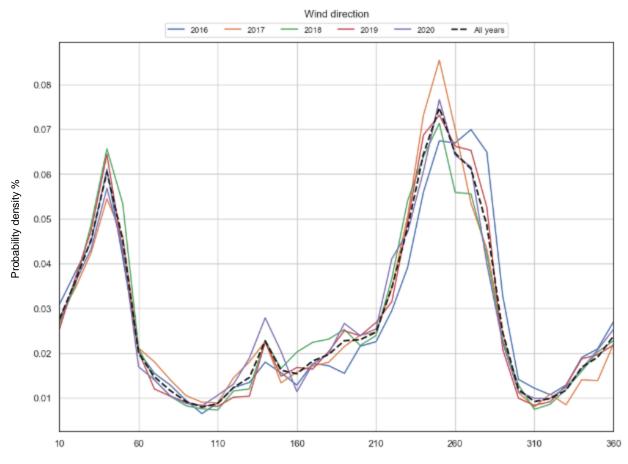



Figure A.1 Southern Oscillation Index for last 10 years (2012 – 2021)

Probability density function plots of Port Kembla AWS data (2016-2020) for wind speed, wind direction and temperature are provided in Figure A.2, Figure A.3 and Figure A.4 respectively.

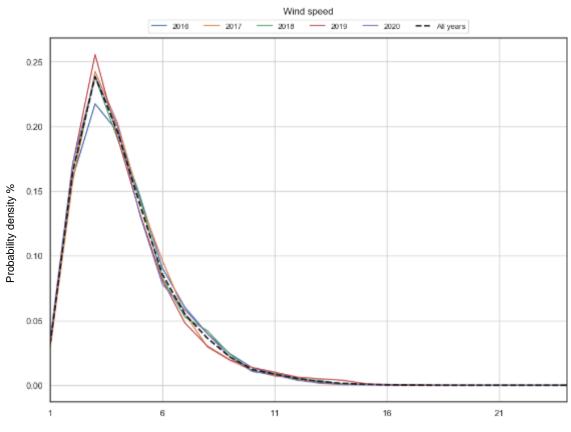


Figure A.3 Wind speed plot, m/s (Port Kembla AWS, 2016 – 2020)

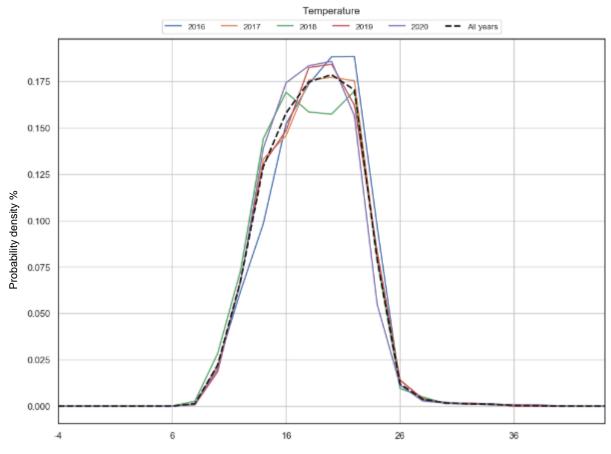


Figure A.4 Temperature plot, degrees celcius (Port Kembla AWS, 2016 – 2020)

Based on the review of SOI data and meteorological conditions recorded at Port Kembla AWS, the representative year selected for modelling purposes was 01 January 2017 through 01 January 2018.

A-2-3 Prognostic meteorology

The parameters for the prognostic WRF model are summarised in Table A.2.

Table A.2WRF model parameters

Parameter	Value
Modelled period	1 January 2017 to 31 December 2017
Domain centre	Latitude: 34.602506 S Longitude: 150.6581 E
Domain grid spacing	1 km
Domain size	100 x 100 km
Number of vertical levels	25

A-3 CALMET modelling

CALMET (Version 7) was used to resolve the wind field around the subject site to 250 metres spatial resolution. The application of CALMET for this purpose is an approved modelling approach in NSW as per the Approved Methods with model guidance documentation provided.

Upon completion of the broad scale WRF modelling runs, a CALMET simulation was set up to run for the model period using the three-dimensional gridded data output from the WRF model as an initial guess field. This approach is consistent with guidance documentation.

CALMET was run using the 'No-Obs' mode (i.e. surface observational data was not included in the model). Given the site is located within a complex land-sea interface, it was deemed that introduction of observational data into the model would lead to inconsistencies/irregularities in the predicted wind field, where blending of the observations and initial guess field is carried out. This is especially true at wind field levels above the surface level on the coastline, which are critical in this instance when assessing dispersion of pollutants from the ship loading vent sources.

A comparison of the predicted and observed wind field was carried out which showed good agreement with respect to frequency and pattern of various wind speeds. The level of agreement is deemed sufficient for dispersion modelling purposes, especially where peak 1-hour averaging periods are of concern and further the error associated with the model prediction is deemed preferable in comparison to the errors associated with the introduction of surface data (as described above).

All model settings were selected based on the recommendations provided in the Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the Approved Methods for the Modelling and Assessments of Air Pollutants in NSW, Australia (J Barclay and J Scire, Atmospheric Studies Group TRC Environmental Corporation, 2011) except for MDISP (parameter for dispersion coefficients) for which the default value was used.

The southwest corner of the CALMET domain, or the origin, was located at UTM Zone 56 coordinates 285 kilometres east and 6164 kilometres north. The CALMET domain extended 40 kilometres to the east and north.

The CALMET domain consisted of 160 grids in both the east and north directions, with a grid resolution of 0.25 kilometre.

The CALMET model parameters are summarised in Table A3. The TERRAD value was selected based on inspection of the terrain elevations in the immediate vicinity of the subject site. It should be noted that multiple TERRAD values were tested and the value producing the best results was selected.

Terrain and land use data used for the CALMET modelling are presented in Figure A5 and Figure A6.

Parameter	Value
Modelled period	1 January 2017 to 31 December 2017
Mode	No obs (NOOBS = 2)
UTM zone	56
Domain origin (south-west corner)	Easting: 285 km Northing: 6164 km
Domain size	160 x 160 at 0.25 km resolution (40.0 km x 40.0 km)
Number of vertical levels	11
Vertical levels (m)	0, 20, 40, 80, 160, 320, 640, 1200, 2000, 3000, 4000,
CALMET settings for hybrid mode Settings selected in accordance with (OEH, 2011)	TERRAD = 1.75 km
Initial guess field	WRF .m3d file used as an initial guess field for CALMET
Surface data	N/A
Upper air data	No site-specific upper air data is used. Upper air data is included within the WRF .m3d initial guess field.
Land use and terrain data	Land use data was manually developed through assessment of aerial imagery to accurately reflect the land use in the area. High-resolution terrain data was sourced from the STRM 1-second (~30 m) database.

Table A.3 Summary of CALMET model parameters

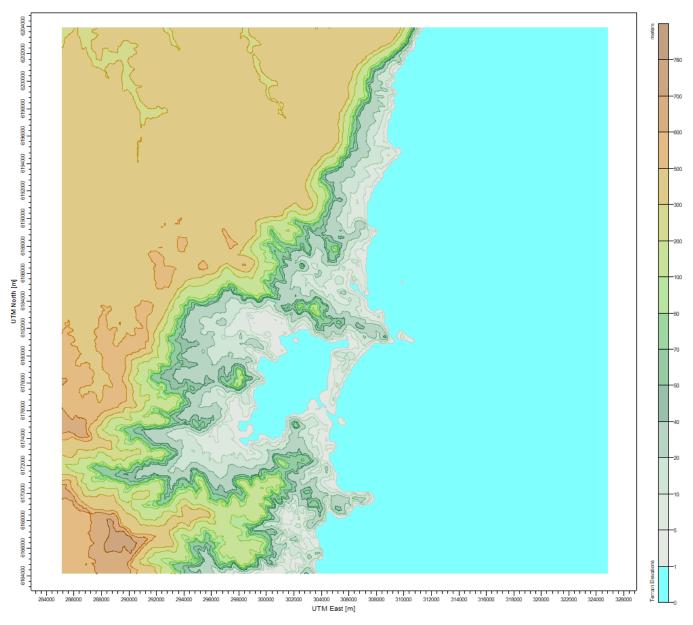
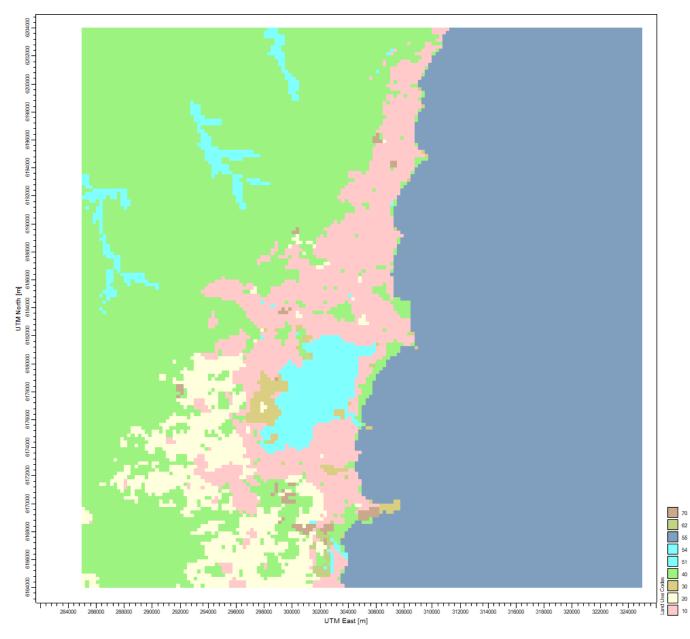



Figure A.5 Terrain data used for CALMET modelling

Land use data used for CALMET modelling Figure A.6

55

40

The local meteorology largely determines the pattern of off-site air quality impact on receptors (houses, businesses and industry). The effect of wind on dispersion patterns can be examined using the wind and stability class distributions at the site from the dataset that is produced by CALMET. The winds at the site are most readily displayed by means of wind rose plots, giving the distribution of winds and the wind speeds from these directions.

The features of particular interest in this assessment are (i) the dominant wind directions and (ii) the relative incidence of stable light wind conditions that yield minimal mixing (defines peak impacts from ground-based sources).

A-3-1 Annual wind patterns

The wind rose for the entire data period taken at the project site is shown in Figure A7 and shows the following features:

- The predominant annual average wind directions are from the west.
- Lower wind speeds (0.5 1 m/s) are rare but can occur from any direction.
- The average wind speed predicted was 5.2 metres per second.
- Calm conditions (wind speeds less than 0.5 m/s) occurred 0.3 per cent of the time.

Figure A.7 Wind rose at site from CALMET (2017)

A-3-2 Pattern of atmospheric stability

Atmospheric stability substantially affects the capacity of a pollutant such as gas, particulate matter or odour to disperse into the surrounding atmosphere upon discharge and is a measure of the amount of turbulent energy in the atmosphere.

There are six Pasquill-Gifford classes (A-F) used to describe atmospheric stability and these classes are grouped into three stability categories; stable (classes E-F), neutral (class D), and unstable (classes A-C). The climate parameters of wind speed, cloud cover and insolation (solar radiation) are used to define the stability category as shown in Table A4. As these parameters vary from day to night, there is a corresponding variation in the occurrence of each stability category.

Stability is most readily displayed by means of stability rose plots, giving the frequency of winds from different directions for various stability classes A to F.

Stability category	Wind speed range (m/s) ^a	Stability characteristics
A	0 – 2.8	Extremely unstable atmospheric conditions, occurring near the middle of day, with very light winds, no significant cloud.
В	2.9 – 4.8	Moderately unstable atmospheric conditions occurring during mid-morning/mid-afternoon with light winds or very light winds with significant cloud.
С	4.9 – 5.9	Slightly unstable atmospheric conditions occurring during early morning/late afternoon with moderate winds or lighter winds with significant cloud.
D	≥6	Neutral atmospheric conditions. These occur during the day or night with stronger winds, during periods of total cloud cover or during the twilight period.
E	3.4 – 5.4 b	Slightly stable atmospheric conditions occurring during the night-time with significant cloud and/or moderate winds.
F	0 – 3.3 ^b	Moderately stable atmospheric conditions occurring during the night-time with no significant cloud and light winds.

Table A.4 Stability category relationship to wind speed and stability characteristics

Note: a Data sourced from the Turner's Key to the P-G Stability Categories, assuming a Net Radiation Index of +4 for daytime conditions (between 10:00 am and 6:00 pm) and -2 for night-time conditions (between 6:00 pm and 10:00 am)

b Assumed to only occur at night, during Net Radiation Index categories of -2.

Figure A.8 shows the frequency of stability class for all hours of the model generated dataset. The following observations were made:

- Unstable atmospheres (classes A, B and C) occur 21 per cent of the time
- Neutral atmosphere conditions (class D) are the dominant stability state of the atmosphere occurring 49 per cent of the time
- Stable conditions (classes E and F) occur 30 per cent of the time

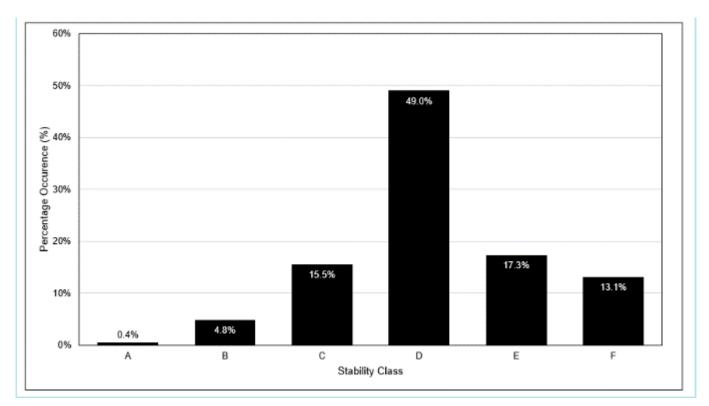


Figure A.8 Distribution of stability class for the model period

A-3-3 Mixing height

Mixing height signifies the height above the surface of the earth throughout which a pollutant can be dispersed. It is often associated with a sharp increase in temperature with height (inversion), and a sharp decrease in pollutant concentration.

A box plot of CALMET predicted mixing heights for the project is shown in Figure A.9. During the night and early morning hours, mixing heights are lower with an average of approximately 890 m (7:00 pm to 7:00 am), which then increase after sunrise to an average of approximately 1160 m during the day (7:00 am to 7:00 pm).

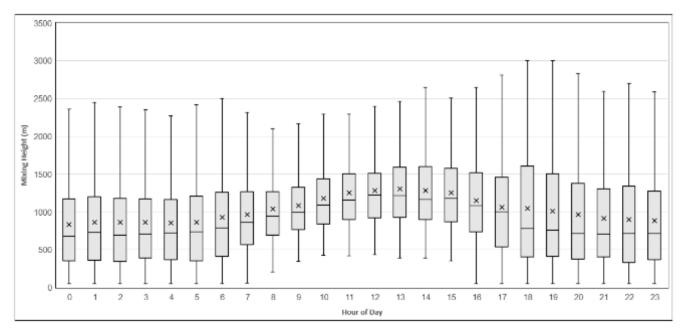


Figure A.9 Mixing heights predicted by CALMET at the project

A-4 Model verification

Verification of the meteorological model performance was carried out by comparison of model outputs to BOM observations at the Port Kembla AWS, Bellambi AWS and Albion Park (Wollongong airport) and BlueScope meteorological observations at Old Scout Hall and North Gate.

BoM and BlueScope observation data was sourced for the same time period as that of the CALMET model period (01/01/2017 through 01/01/2018) for verification.

It is noted that comparisons against BlueScope meteorological observations were provided for high level indicative purposes only as they are not fully compliant with the Australian Standard for wind speed and direction due to insufficient height above ground and nearby obstructions that could influence recorded meteorology.

Figures comparing the BOM observations and the CALMET output are presented in Table A.5 and described below:

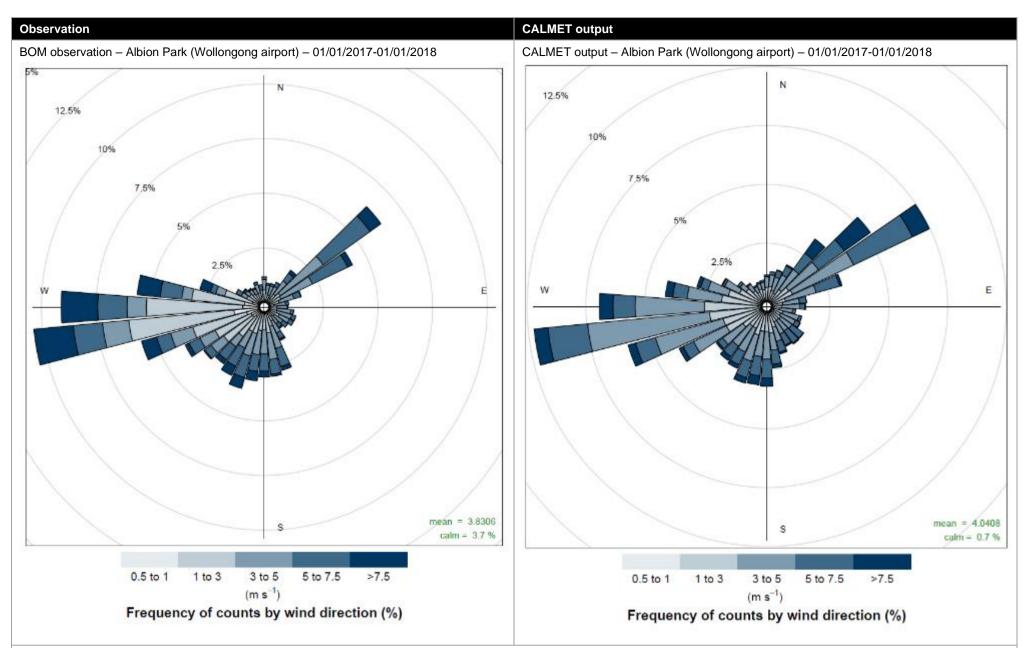
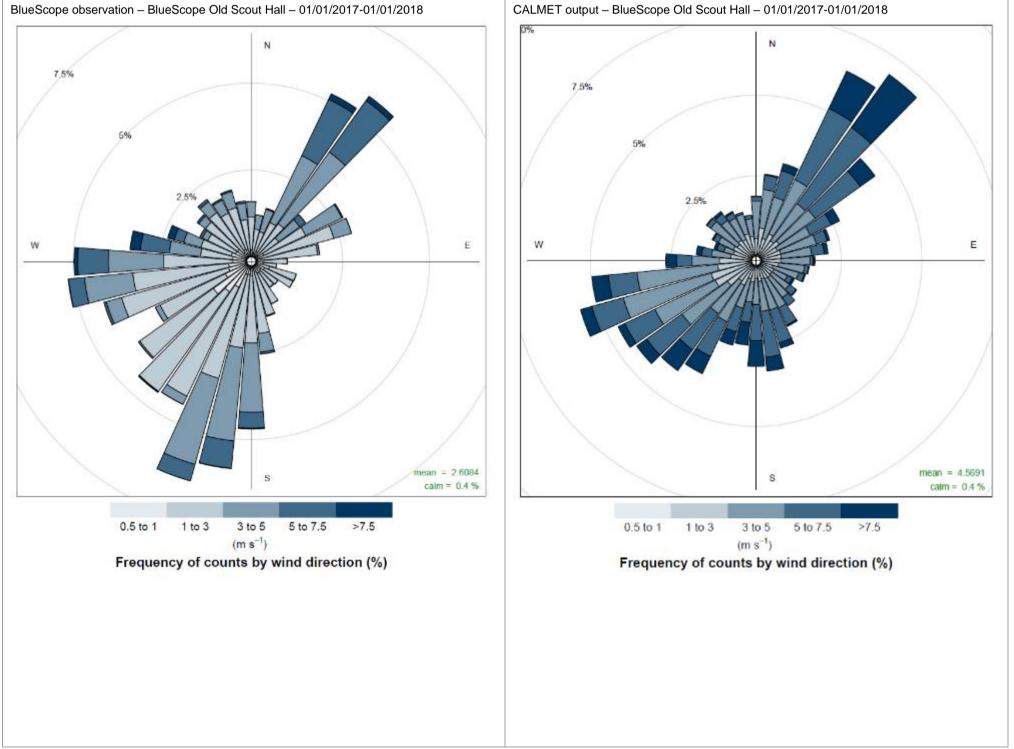
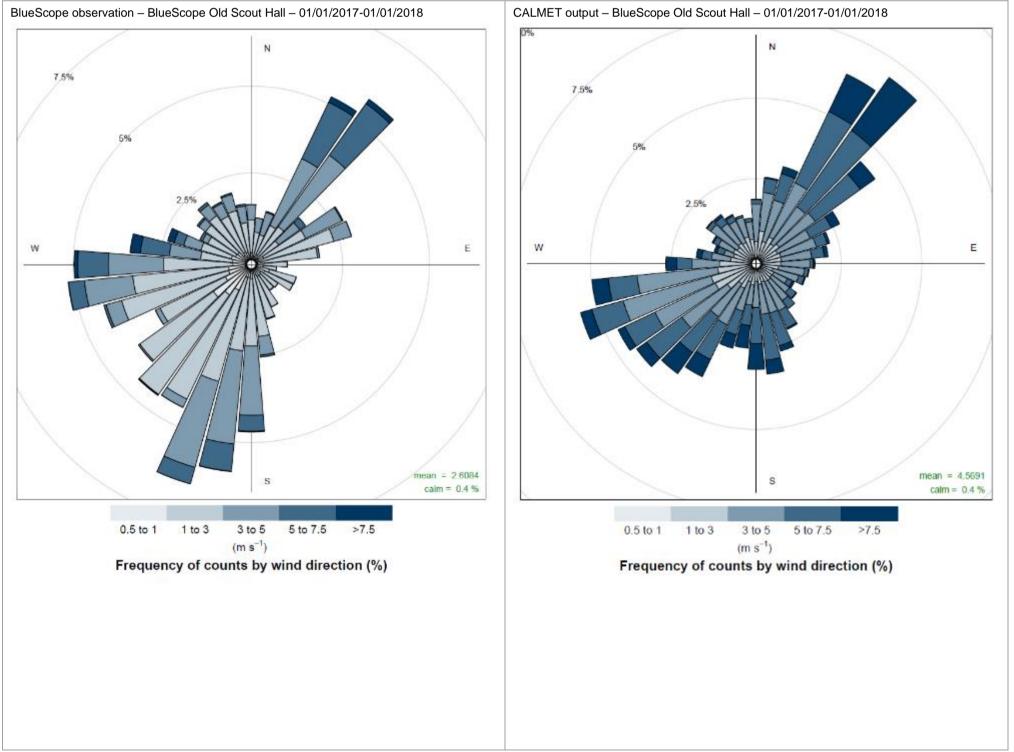
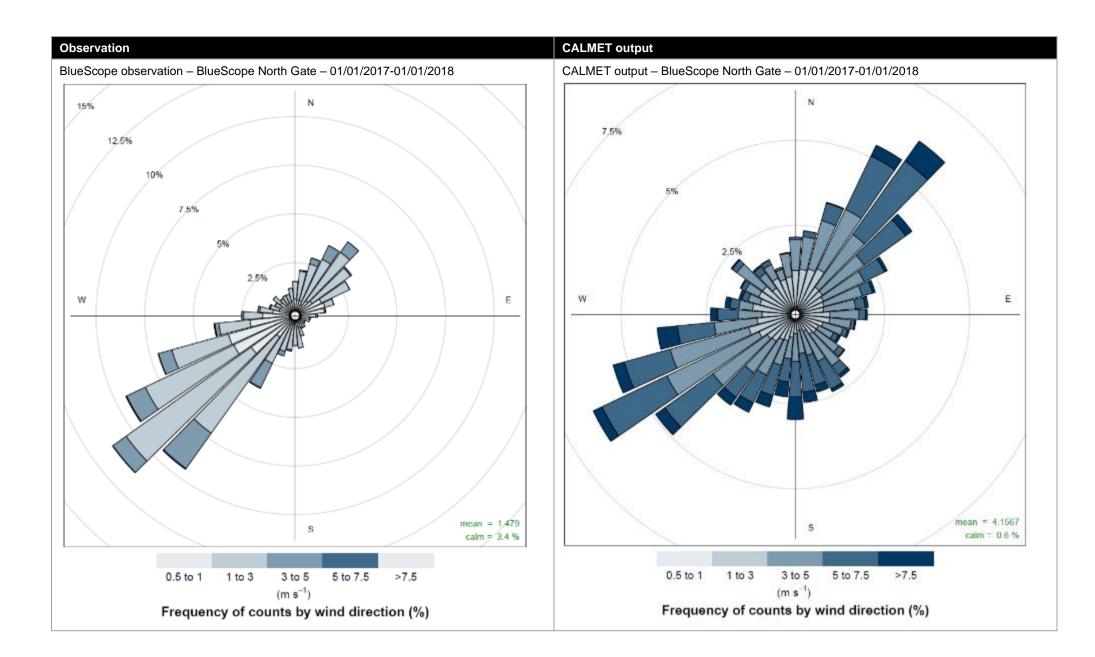

- Comparison to BoM stations shows relatively good agreement between the observed and modelled data set. The wind patterns including the primary wind directions (winds from the northeast and southwest at the Port Kembla AWS and Bellambi AWS and winds from the northeast and west at the Albion Park station) are replicated in the model outputs. The observed data contains a higher percentage of lower wind speeds than the CALMET output and consequently the CALMET output shows a higher mean wind speed. The frequency of calm winds (<0.5 m/s) predicted by the CALMET model aligns well with that observed at Port Kembla AWS and Bellambi AWS, while the model predicts slightly less occurrence of calms at Albion Park compared to BoM station observations.
- Comparison to BlueScope shows relatively good agreement of pattern direction patterns between the observed and modelled data set, however observed wind speeds are significantly lower than those predicted by the model. As noted above, BlueScope's meteorological observations are not fully compliant with the Australian Standard for wind speed and direction as the anemometer is lower than 10 metres as specified by the Australian Standard and the nearby wind field is obstructed by buildings etc., which increase turbulent resulting in less/slower winds. Consequently, it is expected that the BlueScope observations have a greater percentage of lower wind speed compared to the modelled data set.
- The analysis demonstrates that the performance of the CALMET model is acceptable.

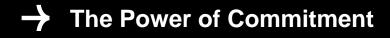
Table A.5 Model verification of CALMET model output compared to observation data






GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project

BlueScope observations



GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project

ghd.com

Appendix F Noise and vibration impact assessment

Blast Furnace No. 6 Reline Project

Noise and Vibration Impact Assessment

BlueScope Steel (AIS) Pty Ltd

7 March 2022

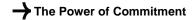
→ The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373| ABN 39 008 488 373

133 Castlereagh Street, Level 15

Sydney, New South Wales 2000, Australia

T +61 2 9239 7100 | F +61 2 9475 0725 | E sydmail@ghd.com | ghd.com


File name	https://bluescopeltd.sharepoint.com/sites/6BFEISApproval/Shared Documents/General/EIS Report/2. & Vibration Assessment/12541101-REP_BlueScope NVIA.docx
Author	Marco Velasco / Angus Bagby
Project manager	Simon Murphy
Client name	BlueScope Steel (AIS) Pty Ltd
Project name	BlueScope Blast Furnace No. 6 Reline
Document title	Blast Furnace No. 6 Reline Project Noise and Vibration Impact Assessment
Revision version	Rev 0
Project number	12541101

Document status

Status	Revision	Author	Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S4	0	A. Bagby	M. Velasco		K Rosen		28/10/2021
S4	1	A. Bagby	M. Velasco	laho	K Rosen	Kullow	07/03/2022
				vý ·····r			

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive summary

This report

This noise and vibration impact assessment (NVIA) report has been prepared on behalf of BlueScope Steel (AIS) Pty Ltd (BlueScope) to support the Environmental Impact Statement (EIS) for the No. 6 Blast Furnace (6BF) project (the project) and responds to the Secretary's Environmental Assessment Requirements (SEARs) for noise and vibration. This NVIA describes the existing noise environment, assesses the potential noise and vibration impacts associated with the construction and operational phases of the project, and assesses the potential increases in noise along the local transport network as a result of the proposal.

Existing environment

The study area identified for the purposes of this noise and vibration assessment is defined as a 3.5 kilometre radius from the central 6BF structure. Within this study area, 103 potential receivers have been selected, which are considered representative of the most-affected noise sensitive receivers to the project. Due to constraints surrounding the COVID-19 pandemic (as of June 2021), background noise monitoring was not undertaken for the specific purpose of this NVIA. Rating background noise levels (RBLs) have been established based on previous noise monitoring undertaken in the study area and have been used to establish the operational noise and construction noise criteria.

Noise impacts from the proposal during operation

An assessment of operational noise from the proposal (6BF and associated activities only, as opposed to a sitewide assessment) has been undertaken to predict noise levels at noise sensitive receivers. Operational noise criteria has been proposed for residential receivers based on a review of the existing Environment Protection License (EPL) 6092 for the Number 5 Blast Furnace (5BF), and guidance from the NSW EPA *Noise Policy for Industry* (NPfI) (NSW EPA, 2017). Operational noise criteria for non-residential receivers have been provided from NPfI.

A 3D noise model has been prepared to predict operational noise levels at noise sensitive receivers. Predictions show that compliance with the proposed operational noise criteria is achieved at all noise sensitive receivers based on the operation of equipment considered part of typical operations. A breakdown of the received noise levels at the most-affected residences indicate that noise emissions from operational noise sources at the Slag handling and Stockhouse areas comprise over half of the received acoustic energy from the modelled noise sources, with the blast furnace contributing to the rest.

The operational noise criteria used in this assessment is based on the NPfI discrete process criteria, which aims to ensure that noise emission from the proposal does not contribute to the existing total industrial noise level at the most affected receivers. As compliance is achieved, no cumulative noise impacts considering the existing industrial noise in the area are anticipated.

Sleep disturbance impacts have been assessed against the sleep disturbance screening criterion provided in the NPfI. Operational activities with the potential for short-duration $L_{A1(1min)}$ noise events have been identified, and predictions have been made to residential receivers. It is predicted that $L_{A1(1min)}$ noise levels will be below the screening criterion and as such, no sleep disturbance noise impacts are anticipated from the proposal.

Current noise emissions from Port Kembla Steelworks (PKSW) include the currently operating 5BF which will cease operations prior to ironmaking commencing at 6BF. A move of ironmaking operation from 5BF to 6BF will see little difference in the amount of noise generated from the PKSW.

Noise impacts from the proposal during construction

Construction noise levels have been predicted to the sensitive receivers within the study area with consideration to the acoustic requirements of the *Interim Construction Noise Guideline* (DECCW, 2011). Construction scenarios have been prepared to assess construction noise from laydown area operations, and the main construction activities within the 6BF site.

It is predicted that majority of the construction noise levels from laydown area operations and the main construction area activities will be below the Noise Management Levels (NMLs) for all sensitive receivers, for works both within and outside standard construction hours. Exceedances of the NMLs are predicted during highintensity 6BF construction activities outside of standard construction hours. These exceedances are triggered by the use of high noise generating activities such as pile driving and rock-breaking, and will occur for a short duration at the commencement of construction activities. It is recommended that they only take place within the recommended standard construction hours.

An out of hours works procedure will be developed as part of the Construction Environmental Management Plan (CEMP) for the proposal, as authorisation for 24 hour construction is being sought as part of the request for planning approval. Subject to the final construction timetable, construction will be carried out between 7.00 am and 6.00 pm, Monday to Saturday. Where practical, noise generating activities with potential to impact any nearby receivers will be scheduled during standard hours.

For any high impact works required outside of standard hours, an application will be made to the EPA seeking approval in writing to undertake the works per EPL 6092. A description of the works, justification and management measures will be included as part of the application.

Vibration impacts from the proposal during construction

An assessment of construction vibration has been undertaken against criteria from *Assessing Vibration: A Technical Guideline* (DEC, 2006) for structural damage, and *BS6472: Guide to Evaluation of Human Exposure to Vibration in Buildings* (1 Hz to 80 Hz) (British Standards, 2008) for human comfort impacts. It is anticipated that short term human comfort impacts may be experienced for residences close to site preparation works in the No.1 Works laydown area during the use of an 18T vibratory roller however, this can be prevented through use of smaller equipment at this location. These impacts will be limited to the duration of work using this equipment, which is anticipated to only occur for a short duration at the commencement of construction activities. The potential impacts are considered to be a highly conservative approximation, since at this stage is not certain whether the roller is required, or for what duration. Due to the offset distances from the works and the nearest buildings, potential for any vibration related structural damage to occur as a result of the project is negligible.

Monitoring occurred for four blasts in January 2009 as part of previous blast furnace reline works. It concluded no discernible blast events (ground vibration or airblast overpressure) were identified at monitoring undertaken 1.1 kilometres to the southwest. Similarly, blasting required for the 6BF will take place approximately 1.1 kilometres away from the nearest residential receivers in Cringila and will use a similar methodology to the blasting at 5BF. Due to the similar distance from the source, no ground vibration or airblast overpressure impacts from blasting are anticipated at any of the nearby residential receivers.

Traffic noise impacts from the proposal during construction

Construction traffic noise levels on public roads are predicted to comply with the road traffic noise assessment criteria in accordance with the *NSW Road Noise Policy* (RNP) (DECCW, 2011) at the nearest residential receiver to the road. As such, no construction traffic noise impacts are anticipated. Construction traffic along internal private roads near sensitive receivers are also predicted to comply with construction NMLs for the site.

Mitigation and management measures have been recommended in response to the findings of the impact assessment.

Contents

1.	Introd	duction	1
	1.1	Background and overview	1
	1.2	Purpose of this report	1
	1.3	Structure of this report	1
	1.4	Limitations	2
2.	Legis	slative and policy context	3
	2.1	Secretary's Environmental Assessment Requirements	3
	2.2	Guidelines and policies	3
3.	Methe	odology	4
	3.1	Key tasks	4
	3.2	Study area	5
	3.3	Noise monitoring	5
	3.4	Operational noise assessment	6
		3.4.1 Overview	6
		3.4.2 Environmental noise modelling methodology	7
		3.4.3 Local meteorological conditions	7
		3.4.4 Source noise levels	12
	3.5	Construction noise assessment	12
		3.5.1 Construction noise prediction method3.5.2 Construction scenarios	12 13
	3.6	Road traffic noise assessment	13
	5.0	3.6.1 Methodology overview	14
		3.6.2 Prediction method	14
4.	Proje	ct description	15
	4.1	Project summary	15
	4.2	Operation of the project	18
	4.3	Noise generating equipment/processes	18
		4.3.1 Typical operations	18
		4.3.2 Noise generating buildings	20
		4.3.3 Emergency and shutdown operations	20
	4.4	Construction of the project	21
		4.4.1 Overview	21
		4.4.2 Construction access4.4.3 Construction storage/laydown areas	21 21
		4.4.3 Construction storage/laydown areas4.4.4 Reline construction activities	21
		4.4.5 Reline indicative equipment list	24
		4.4.6 Blasting	25
		4.4.7 Construction hours	25
		4.4.8 Blasting hours	25
		4.4.9 Timing	26
		4.4.10 Construction traffic	26
5.	Existi	ing environment	29
	5.1	Project site location	29
	5.2	Noise sensitive land uses	29

	5.3	Rating	Background Levels (RBL)	32
6.	Asses	sment cr	riteria	33
	6.1	Operat	ional noise criteria	33
		6.1.1	Existing operational noise limits – EPL 6092	33
		6.1.2	NSW EPA Noise Policy for Industry (NPfI)	34
		6.1.3	Operational noise criteria	35
		6.1.4	Cumulative noise criteria for residential receivers	35
		6.1.5	Operational noise criteria for non-residential receivers	36
	6.2		uction noise	36
		6.2.1	ICNG/EPL construction hours	36
		6.2.2	Outside of recommended standard hours work	37
		6.2.3	Noise management levels	37
		6.2.4 6.2.5	Sleep disturbance	38 38
	C D		Project specific construction noise management levels	
	6.3	6.3.1	uction vibration Human comfort	39 39
		6.3.2	Structural damage to standard structures	40
		6.3.3	Structural damage to heritage structures	40
	6.4		noise (construction and operation)	41
	6.5		g noise and vibration	42
	0.5	6.5.1	Airblast overpressure	42
		6.5.2	Ground vibration	42
		6.5.3	Structural damage	42
7.	Impact	assess	-	43
1.	7.1			43
	7.1	7.1.1	ional noise Predicted noise levels	43
		7.1.2	Sleep disturbance impacts	46
		7.1.3	Cumulative noise impacts	47
	7.2		uction noise	48
		7.2.1	Predicted noise levels	48
		7.2.2	Construction noise impacts during standard construction hours	55
		7.2.3	Construction noise impacts outside standard construction hours	55
		7.2.4	Construction noise impacts for non-residential receivers	55
		7.2.5	Cumulative noise impacts	56
	7.3	Constru	uction vibration	56
		7.3.1	Vibration safe working distances	56
		7.3.2	Human comfort	57
		7.3.3	Structural damage	57
	7.4		uction traffic noise along public roads	57
		7.4.1	Construction traffic generation on public and local private roads	57
		7.4.2	Noise impacts along public roads	57
	7.5		uction traffic noise within project site	58
	7.6		g impacts	58
	7.7	Operat	ional traffic impacts	59
8.	Mitigat	ion mea	sures	60
	8.1	Justific	ation for proposed mitigation measures	60
	8.2	Constru	uction mitigation measures	60
		8.2.1	Reasonable and feasible mitigation measures	60
		8.2.2	Construction noise and vibration management plan (CNVMP)	61
		8.2.3	Construction noise monitoring	61

67	. References	10.
66	9.2 Impac	
65	9.1 Impac	
65	Evaluation and	9.
63	8.4 Opera	
63	8.3.1	
62	8.3 Mitigat	
61	8.2.4	

Table index

Table 2.1	Noise and vibration SEARs	3
Table 3.1	Representative background and ambient noise levels in the study area	6
Table 3.2	Noise modelling parameters	7
Table 3.3	Significant wind effects analysis – Port Kembla Harbour AWS	10
Table 3.4	Percentage occurrence of Pasquill stability categories	11
Table 3.5	Noise modelling parameters	12
Table 3.6	Indicative construction scenarios – laydown areas	13
Table 3.7	Indicative construction scenarios – 6BF construction activities	14
Table 3.8	Noise modelling parameters	14
Table 4.1	Project summary	15
Table 4.2	Significant noise sources to be considered	18
Table 4.3	Noise generating buildings associated with 6BF	20
Table 4.4	Noise sources during emergencies	20
Table 4.5	Ancillary facilities	21
Table 4.6	Indicative equipment list at Blast Furnace and surrounding facilities	24
Table 4.7	Indicative works schedule	26
Table 4.8	Traffic generation – two-way traffic	27
Table 4.9	Construction access routes to each construction site	28
Table 5.1	Key residential sensitive receivers	30
Table 5.2	Non-residential sensitive receivers	30
Table 5.3	Representative background and ambient noise levels in the study area	32
Table 6.1	Assessment criteria – 6BF	33
Table 6.2	Existing industrial noise level, and NPfI discrete assessment noise criteria	34
Table 6.3	Operational noise criteria	35
Table 6.4	Amenity noise level for urban residential receivers	35
Table 6.5	Non-residential receiver project amenity noise criteria	36
Table 6.6	Residential construction noise management levels, dBA (ICNG, 2009)	38
Table 6.7	Project specific construction noise management levels	38
Table 6.8	Acceptable PPV Values for Human Comfort (BS 6472-2008)	39
Table 6.9	Guidance on effect of vibration levels for human comfort (BS 5228.2 – 2009)	40
Table 6.10	Transient vibration guide values - minimal risk of cosmetic damage	40
Table 6.11	Guideline values for short term vibration on structures	41
Table 6.12	Road Categories from RNP	41
Table 6.13	Road traffic noise criteria, dBA	42
Table 6.14	Summary of blasting criteria	42
Table 7.1	Predicted LAeq(15min) noise levels at sensitive receivers, dBA	43

Predicted $L_{Aeq(15min)}$ contribution of noise sources at most-affected residences (RES29 in Cringila) dBA	44
Predicted LA1(1min) noise levels at sensitive receivers during the night, dBA	47
Construction noise levels for laydown areas – Residential receivers	49
Construction noise levels for laydown areas – Non-residential receivers	50
Construction noise levels from 6BF construction activities (main construction	
site)	51
Vibration safe working distances	56
Public and local private roads to be used during construction	57
Construction traffic generation	57
Existing traffic volumes on haulage routes	58
Emily Road construction traffic assessment	58
Reasonable and feasible mitigation measures during the construction phase	60
Noise validation location and predicted noise level	62
Draft operational noise management plan inclusions	64
	 (RES29 in Cringila) dBA Predicted L_{A1(1min)} noise levels at sensitive receivers during the night, dBA Construction noise levels for laydown areas – Residential receivers Construction noise levels for laydown areas – Non-residential receivers Construction noise levels from 6BF construction activities (main construction site) Vibration safe working distances Public and local private roads to be used during construction Construction traffic generation Existing traffic volumes on haulage routes Emily Road construction traffic assessment Reasonable and feasible mitigation measures during the construction phase Noise validation location and predicted noise level

Figure index

Figure 3.1	5 year wind rose (seasonal and relevant assessment periods) - 068253 AWS	9
Figure 4.1	Project key features	17
Figure 4.2	Indicative laydown areas locations	23
Figure 4.3	Construction Traffic Routes	27
Figure 5.1	Project site location, sensitive receivers and planning zones	31
Figure 6.1	Recommended standard and outside of recommended standard construction	
	hours	37
Figure 7.1	Operational noise contributions by acoustic intensity (RES29 in Cringila),	
	percentage of overall noise emission based on µPa	44
Figure 7.2	Operational noise emission - LAeq noise contours	45
Figure 7.3	Construction noise contours – laydown area operations	52
Figure 7.4	Construction noise contours - 6BF construction activities, general construction	า
	activities	53
Figure 7.5	Construction noise contours – 6BF construction activities, high intensity construction activities	54
Figure 8.1	Proposed noise validation measurement location – coordinates MGA94 Z56	63

Appendices

Appendix A	Acoustic concepts and terminology
------------	-----------------------------------

- Appendix B Operational noise sources general arrangement
- Appendix C Noise source levels and modelling assumptions
- Appendix D Full operational noise results

Abbreviations and acronyms

Term	Definition	
AGL	Above ground level	
AS	Australian Standards	
AWS	Automatic weather station	
BS	British Standards	
BlueScope	BlueScope Steel (AIS) Pty Ltd	
°C	Degrees Celsius	
CEMP	Construction Environmental Management Plan	
CNVG	Construction Noise and Vibration Guideline (TfNSW, 2016)	
CSSI	Critical State Significant Infrastructure	
dB	Decibel is the unit used for expressing the sound pressure level (SPL) or power level (SWL) in acoustics.	
dBA	Decibel expressed with the frequency weighting filter used to measure 'A-weighted' sound pressure levels, which conforms approximately to the human ear response, as our hearing is less sensitive at low and high frequencies.	
DCNG	Draft Construction Noise Guideline (EPA, 2021)	
DEC	Department of Environment and Conservation NSW	
DECC	Department of Environment and Climate Change NSW	
DECCW	Department of Environment and Climate Change and Water NSW	
DIN	German Institute for Standardisation (Deutsches Institut für Normung)	
DP	Deposited Plan	
DPIE	Department of Planning, Industry and Environment	
EIS	Environmental Impact Statement	
EPA	Environment Protection Authority NSW	
GHD	Gutteridge Haskins & Davey	
ICNG	Interim Construction Noise Guideline (DECC, 2009)	
ISO	International Organization for Standardisation (Organisation internationale de normalisation)	
km	Kilometre	
LA1(1min)	The noise level exceeded for 1 per cent of the time over a 1 minute period, used to denote maximum noise levels	
m	Metre	
m/s	Metres per second	
NCA	Noise Catchment Area	
NML	Noise Management Level	
NPfl	Noise Policy for Industry (EPA, 2017)	
NSW	New South Wales	
RBL	Rating Background Noise Level	
RNP	Road Noise Policy (DECCW, 2011)	
SEARs	Secretary's Environmental Assessment Requirements	

Term	Definition
SPL	Sound Pressure Level
SPLi	Internal Reverberant Sound Pressure Level
SSD	State Significant Development
SWL	Sound Power Level
TRT	Top gas recovery turbine
WGHR	Waste Gas Heat Recovery
5BF	Blast Furnace Number 5
6BF	Blast Furnace Number 6
μPa	Micropascals

Glossary of terms

Term	Definition
A weighting	The human ear responds more to frequencies between 500 Hz and 8 kHz and is less sensitive to very low-pitch or high-pitch noises. The frequency weightings used in sound level measurements are often related to the response of the human ear to ensure that the meter better responds to what you actually hear.
Noise-enhancing weather conditions	Weather effects that enhance noise (i.e. wind and temperature inversions) that occur at a site for a significant period of time (i.e. light winds, up to and including 3 m/s, occurring more than 30% of the time in any assessment period in any season and/or temperature inversions occurring more than 30% of the nights in winter).
Ambient noise	The all-encompassing noise associated within a given environment. It is the composite of sounds from many sources, both near and far. This is described using the Leq descriptor.
Background noise	The underlying level of noise present in the ambient noise, excluding the noise source under investigation, when extraneous noise is removed. This is described using the L90 descriptor.
Compliance	The process of checking that source noise levels meet with the noise limits in a statutory context.
Construction footprint	 Defined as the area that will be directly affected by construction of the proposal. It includes: The location of project infrastructure, 6BF, slag handling area and immediate surrounds The area that will be directly disturbed by the movement of construction plant and machinery, and the location of the temporary, construction compounds and laydown areas that will be used during construction
Feasible and reasonable measures	 Feasibility relates to engineering considerations and what is practical to build. Reasonableness relates to the application of judgement in arriving at a decision, considering the following factors: Noise mitigation benefits (amount of noise reduction provided, number of people protected) Cost of mitigation (cost of mitigation versus benefit provided) Community views (aesthetic impacts and community wishes) Noise levels for affected land uses (existing and future levels, and changes in noise levels)
Ground-borne vibration	Vibration transmitted from a source to a receptor via the ground.
Hertz	The measure of frequency of sound wave oscillations per second. 1 oscillation per second equals 1 hertz.
Maximum noise event	The loudest event or events within a given period of time. This is generally described using the L_{max} descriptor.
Meteorological conditions	Wind and temperature inversion conditions.
Most-affected location	Location(s) that experience (or will likely experience) the greatest noise impact from the construction works and operations under consideration. In determining these locations, existing background noise levels, noise source location(s), distance and any shielding between the construction works (or proposed works) and the residences and other sensitive land uses need to be considered.
Noise management level	The NML as defined by the ICNG. To be measured and assessed at the property boundary that is most exposed to construction noise, and at a height of 1.5 m above ground level. If the residential property boundary is more than 30 m from the residence, the location for measuring or predicting noise levels is at the most affected point within 30 m of the residence.
Noise sensitive land use	Land uses that are sensitive to noise, such as residential areas.

Term	Definition			
Non-compliance	Development is in non-compliance with its noise consent/ licence conditions if the monitored noise levels exceed its statutory noise limit (exceptions may be given if the noise level exceeds by less than 2 dB).			
Octave	A division of the frequency range into bands, the upper frequency limit.			
One third-octave	Single octave bands divided into three parts.			
Project noise trigger level	Target noise levels for a particular noise generating facility. They are based on the most stringent of the intrusive criteria or amenity criteria. Which of the two criteria is the most stringent is determined by measuring the level and nature of existing noise in the area surrounding the actual or propose noise generating facility.			
Proponent	BlueScope Steel (AIS) Pty Ltd			
Proposal site	The southern section of the No.2 Works, within the ironmaking facilities, which is loca within Lot 1 DP 606434.			
Rating Background Level	The RBL is defined by the Noise Policy for Industry (NPfI) as the overall, single-figure background level representing each assessment period (day/evening/night) over the whole monitoring period (as opposed to over each 24-hour period used for the assessment background level). This is the level used for assessment purposes.			
Resonance	Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a periodically applied force is equal or close to a natural frequency of the system on which it acts.			
Study area	Land in the vicinity of, and including, the proposal site. The 'study area' is the wider area surrounding the proposal site.			
Temperature inversion	An atmospheric condition in which temperature increases with height above the ground.			
Z-Weighting (or Linear- weighted)	Zero-weighting or Linear-weighting indicates no weighting filter has been applied and refers to a flat frequency response for sound level meters.			

1. Introduction

1.1 Background and overview

BlueScope Steel (AIS) Pty Ltd (BlueScope) is one of Australia's leading manufacturers and is a global leader in finished and semi-finished steel products. BlueScope's Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron production from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

The project has been declared critical state significant infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP). An environmental impact statement (EIS) has been prepared to support the application for approval.

This noise and vibration impact assessment report has been prepared by GHD Pty Ltd (GHD) as part of the EIS for the project. The EIS has been prepared to support the application for determination of the project and address the environmental assessment requirements of the Secretary's Environmental Assessment Requirements (SEARs) pertaining to noise and vibration.

1.2 Purpose of this report

The purpose of this report is to assess the potential noise and vibration impacts from constructing and operating the project. The report:

- Addresses the SEARs (DPIE, 2021) as listed in Table 2.1.
- Describes the existing environment with respect to noise and vibration.
- Assesses the potential impacts of constructing and operating the project on sensitive receivers.
- Recommends measures to mitigate and manage the impacts identified.

1.3 Structure of this report

The structure of the report is outlined below.

- Section 1 provides an introduction to the report
- Section 2 provides a description of the project during the operational and construction phases
- Section 3 describes the methodology used to assess potential impacts to sensitive receivers
- Section 4 describes the existing noise environment and the sensitive receivers in the study area
- Section 5 details the assessment criteria used to assess the potential noise and vibration impacts
- Section 6 summarises the outcomes of the assessment and a discussion of the potential impacts
- Section 7 provides the mitigation measures recommended to reduce the potential impacts
- Section 8 summarises the key outcomes of the noise and vibration impact assessment
- Section 9 lists the references used in this report

1.4 Limitations

This report has been prepared by GHD for BlueScope (AIS) Steel Pty Ltd and may only be used and relied on by BlueScope (AIS) Steel Pty Ltd for the purpose agreed between GHD and BlueScope (AIS) Steel Pty Ltd as set out in section 1.2 of this report. GHD otherwise disclaims responsibility to any person other than BlueScope (AIS) Steel Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by BlueScope (AIS) Steel Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions may change after the date of this report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

2. Legislative and policy context

2.1 Secretary's Environmental Assessment Requirements

The SEARs relevant to noise and vibration, together with a reference to where they are addressed in this report are summarised in Table 2.1.

Table 2.1 Noise and vibration SEARs

Requirement	Where addressed in this report
Noise and vibration	
A quantitative assessment of potential construction, operational and transport noise and vibration impacts of the project prepared in accordance with the relevant Environment Protection Authority guidelines Identification of sensitive receivers and consideration of cumulative noise from approved and/or proposed development on site and in the vicinity of	Section 7.1 (Operation – EPL 6092 and NPfI) Section 7.2 and 7.3 (Construction – ICNG) Section 7.4 and 7.7 (Traffic noise – RNP) Section 5.2 (Sensitive receivers)
the site	Section 6.1.4 (Cumulative noise impacts)
Details and justification of proposed noise mitigation and monitoring measures	Section 8.2 (Construction mitigation) Section 8.3 (Operational)
	Section 8.4 (Draft Operational Noise Management Plan)

2.2 Guidelines and policies

The assessment was undertaken in accordance with the SEARs and with reference to the requirements of relevant legislation, policies and/or assessment guidelines, including:

- Interim Construction Noise Guideline (ICNG) (DECC, 2009)
 - Used for the assessment of construction noise and vibration impacts
- NSW Road Noise Policy (RNP) (DECCW, 2011)
 - Used for the assessment of traffic generation from the project; both in construction and operation phases
- Noise Policy for Industry (NPfI) (EPA, 2017)
 - Used for the assessment of operational noise impacts
- Assessing Vibration: A Technical Guideline (DEC, 2006)
 - Used for the assessment of construction vibration impacts
- BS 7385-2:1993 Evaluation and measurement for vibration in buildings Part 2 Guide to damage (British Standards, 1993)
 - Used for the determination of suitable vibration intensity thresholds for structures
- Technical Basis for Guidelines to Minimise Annoyance due to blasting overpressure and ground vibration (ANZEC, 1990)
 - Used for the assessment of overpressure impacts resulting from blasting activities

3. Methodology

3.1 Key tasks

Project definition

- Review of operational noise sources from the project, and assignment of suitable source noise levels.
- Review of proposed construction staging and construction areas and indicative construction equipment lists.

Existing environment

- Identify the study area relevant to the noise and vibration assessment.
- Identify and classify sensitive receivers within the study area.
- Characterise the existing noise environment based on previous noise monitoring undertaken at representative locations in the study area.
- Determine the rating background levels (RBL) for residential receivers in the study area to establish the construction noise and operational noise criteria.

Operational noise assessment

- Identify the significant noise sources associated with the blast furnace during operation and indicative sound power levels based on measured or assumed noise data of similar equipment at 5BF supplemented with noise measurements undertaken by GHD.
- Determine worst-case operating scenarios during all periods of the day based on assumptions detailed in Appendix C.
- Predict noise levels at sensitive receivers using SoundPLAN Version 8.2 (SoundPLAN) noise modelling software with consideration to the local meteorological conditions.
- Where required, in-principle noise mitigation measures have been recommended to reduce noise to within
 acceptable and compliant levels. Operational noise criteria considers requirements both from the NSW EPA *Noise Policy for Industry* (NPfI) and the existing environment protection license EPL 6092 for 5BF. These
 noise mitigation measures are to be incorporated into the detailed design noise model.

Construction noise and vibration assessment

- The RBLs were used to establish the noise management levels (NMLs) in accordance with the ICNG.
- A list of likely construction activities and machinery was developed based on the constructability requirements for the project. The construction activities were used to develop construction scenarios for construction noise modelling. Representative sound power levels for the selected equipment were obtained from the *Construction Noise and Vibration Guideline (CNVG)* (TfNSW, 2016), AS2436:2010 *Guide to noise and vibration control on construction, demolition and maintenance sites* (Australian Standards, 2010).
- Noise modelling was undertaken for the identified construction scenarios and likely equipment that will be operating.
- Safe working distances for human comfort and cosmetic damage to buildings were sourced from the CNVG for various vibratory intensive equipment. Any sensitive receivers located within these safe working distances were identified.
- Where noise or vibration levels were predicted to exceed the construction noise management levels or vibration criteria, feasible and reasonable construction noise or vibration mitigation measures are recommended to reduce potential impacts.

Road traffic noise assessment during construction

A screening assessment has been undertaken for the construction traffic assessment. The screening assessment is based on the Road Noise Policy (DECCW, 2011) (RNP) which states "*any increase in the total noise level should be limited to 2 dB above that of the corresponding 'without construction' scenario*". Modelling has been undertaken using SoundPlan using the algorithm defined in the *Calculation of Road Traffic Noise* (Department of Transport, Welsh Office, 1988). Potential impacts have been identified using the following methodology:

- Identify the construction traffic routes and their road classifications.
- Determine the existing and future total traffic volumes along the route.
- Calculate the increase in road traffic noise traffic between the pre-construction and during-construction scenarios.
- Where the increase in traffic noise levels is above +2 dBA, assess the total noise levels against the RNP road traffic noise criteria to identify whether mitigation should be considered.

Road traffic noise assessment during operation

Traffic generation on public roads during operation is anticipated to be consistent with the existing conditions. As such, a quantitative assessment of potential road traffic noise increase on public roads as a result of the project is not considered necessary as the acoustic requirements of the NSW Road Noise Policy are anticipated to be met.

Blasting assessment

A high-level blasting assessment has been undertaken to identify potential airblast overpressure and ground vibration impacts from blasting at the blast furnace to nearby sensitive receivers and assessed against the ANZEC blasting guideline.

3.2 Study area

The study area has been defined as approximately 3.5 kilometres from the proposal site as noise impacts during construction or operation are not anticipated beyond this distance.

3.3 Noise monitoring

It was not possible to undertake noise monitoring to establish the background noise environment at the nearest residential receivers for the following reasons:

- There were concerns over the validity of long-term noise monitoring during a lockdown period due to NSW COVID-19 restrictions in an area where road traffic noise and commercial/industrial activity are the dominant noise sources in the study area (as of June 2021).
- Visits to residences necessary to request permission for noise monitoring to be carried out were not permitted under State Government restrictions put in place as a result of the COVID-19 Delta variant outbreak (as of June 2021).

In view of the above, background noise monitoring data has been utilised from a publicly available noise and vibration impact assessment in Port Kembla, the '*Port Kembla Gas Terminal – Noise and Vibration Impact Assessment*' (Australian Industrial Energy, 2018) to establish the RBL at residences within the study area.

Background noise monitoring conducted in 2018, using the NPfI long term method, was undertaken at two residential locations representative of the reasonably most affected locations to quantify the existing background and ambient noise levels in the surrounding environment. The measured background noise levels were used to establish the RBLs for each of the relevant periods of the day in accordance with Fact Sheet A and Fact Sheet B of the NPfI. The RBLs were used to establish the NMLs in accordance with the ICNG and the intrusiveness noise levels in accordance with the NPfI.

The relevant noise catchment areas (NCAs) where these RBLs have been used to establish the construction noise management levels are discussed in Section 5.2.

Table 3.1 Representative background and ambient noise levels in the study area

Monitoring I.D	Location	Rating Background Level (RBL), Location L90 - dBA		Ambient level, Leq - dBA			
1.0		Day	Evening	Night	Day	Evening	Night
L1	117 Gladstone Avenue, Coniston	39	40 (39)	39	52	50	50
L2	16 Merrett Avenue, Cringilla	43	42	45 (42)	51	49	50

Notes:

- 1) Where the evening RBL is higher than the day RBL, the day RBL has been used to establish the criteria.
- 2) Where the night RBL is higher than the evening RBL, the evening RBL has been used to establish the criteria.

3.4 Operational noise assessment

3.4.1 Overview

Noise modelling of the 6BF has been based on near-field noise measurements of equipment undertaken as presented in *Environmental noise and vibration monitoring results for No. 5 Blast Furnace Reline Project* (BlueScope Steel / Hatch, 2009) to determine the sound power level of individual items of equipment or the internal sound pressure level of operations within buildings. Where noise levels were not provided for noise equipment/processes associated with the 5BF, sound power levels have been measured by GHD at the 5BF site or estimated based on a literature review of similar equipment. During the detailed design phase, source noise levels should be confirmed.

The location of noisy equipment/processes have been based on drawings and information provided by BlueScope and include the 3D dimensional co-ordinates of these items for inclusion in the noise model. Appendix B includes a general arrangement drawing showing the location of the noise sources in the model.

The duration and frequency/timing of each item (i.e. continuous, intermittent, emergency use only) has been taken into account in the noise model and time corrections have been applied where appropriate to represent a worst-case (15 minute) scenario of typical operations.

The following factors have been considered in the operational noise modelling:

- The sound power level (SWL) of external noise sources has been modelled as either a point source, area source (2D or 3D) or a line source. For line or area sources, the SWL can be represented either as a SWL (total area or line) or SWL" (per m²) for an area of SWL" (per metre) for a line.
- Internal noise levels (SPLi) at the façade of buildings have been estimated based on measured data to predict break-out noise from noise generating buildings.

To predict the noise levels at sensitive receivers surrounding the site, the following factors have been taken into account in the operational noise modelling:

- External noise line sources (e.g. conveyors)
- External point sources (e.g. pumps, ventilation fans, valves, vibro-feeders, screens etc.)
- The envelope of each building (3-dimensional) to predict break-out noise levels from each building component including the noise reduction properties and surface area of each of the external building components
- Terrain topography
- Absorption from the ground coverage
- Atmospheric absorption
- Relevant shielding objects (e.g. buildings/noise barriers)
- The operating times/duration/frequency of the relevant noise sources
- The potential for noise enhancing meteorological conditions

3.4.2 Environmental noise modelling methodology

Acoustic modelling was undertaken using SoundPLAN noise modelling software to predict indicative environmental noise levels at the sensitive receivers surrounding the project site during the operation of the facility. SoundPLAN is a computer program for the calculation, assessment and prognosis of noise propagation. It calculates environmental noise propagation using industry standard models such as the ISO 9613-2 (ISO, 1996) prediction method.

General parameters used in the model are listed in Table 3.2.

 Table 3.2
 Noise modelling parameters

Variable	Parameter used
Calculation method	ISO 9613-2: 1996 Acoustics — Attenuation of sound during propagation outdoors — Part 2: General method of calculation
Topography	Sourced from ELVIS GIS Australia - 5 m elevation intervals
Receiver heights	1.5 m above building ground level
Ground absorption	0.5 for all areas(0 is non-porous ground and 1 is porous ground such as that found in a rural setting comprising of mainly grass and vegetation)
Temperature	10°C (conservative)
Humidity	90% (conservative)
Number of reflections	A maximum number of 2 reflections from surrounding structures
Building footprints and heights (outside the project site)	PSMA Geoscape data
Building footprints and heights (within the project site)	Based on drawings provided by BlueScope and a Navisworks model to estimate the height of buildings/structures
Source noise levels	Detailed assumptions for the source noise level inputs are presented in Appendix C for equipment shown in Table 4.2

3.4.3 Local meteorological conditions

Wind has the potential to increase noise levels at a receiver when it is light and stable and blows from the direction of the source of the noise. As the strength of the wind increases, the noise produced by the wind will mask noise from most industrial and transport sources.

Temperature inversions (i.e. where atmospheric temperature increases with altitude) typically occur during stable atmospheric conditions such as the night-time period in the winter months. Temperature inversion can also increase site noise levels at surrounding assessment locations.

Wind effects and temperature inversions need to be considered when predicting the long-term noise levels during the operation of the project.

3.4.3.1 Noise Policy for Industry requirements

The NPfI requires assessment of noise under standard and noise enhancing weather conditions. The NPfI defines these as follows:

- Standard meteorological conditions: defined by stability categories A through to D with wind speeds up to 0.5 m/s at 10 m above ground level (AGL) for day, evening and night periods.
- Noise-enhancing meteorological condition: defined by stability categories A through to D with light winds (up to 3 m/s at 10 m AGL) for the day and evening periods; and stability categories A through to D with light winds (up to 3 m/s at 10 m AGL) and/or stability category F with winds up to 2 m/s at 10 m AGL.

The NPfI specifies the following two options to consider meteorological effects:

- Adopt the noise-enhancing meteorological conditions for all assessment periods for noise impact assessment purposes without an assessment of how often these conditions occur – a conservative approach that considers source-to-receiver wind vectors for all receivers and F class temperature inversions with wind speeds up to 2 m/s at night.
- 2. Determine the significance of noise-enhancing conditions. This involves assessing the significance of temperature inversions (F and G class stability categories) for the night-time period and the significance of light winds up to and including 3 m/s for all assessment periods during stability categories other than E, F or G. Significance is based on a threshold of occurrence of 30% determined in accordance with the provisions in this policy. Where noise-enhancing meteorological conditions occur for less than 30% of the time, standard meteorological conditions may be adopted for the assessment.

3.4.3.2 Wind effects

The NPfI recommends consideration of wind effects if they are "significant". The NPfI defines "significant" as the presence of source-to-receiver wind speed (measured at 10 m above ground level) of 3 m/s or less, occurring for 30% of the time in any assessment period and season.

This is further clarified by defining source-to-receiver wind direction as being the directional component of wind. The NPfI states that where wind is identified to be a significant feature of the area then assessment of noise impacts should consider the highest wind speed below 3 m/s, which is considered to prevail for at least 30% of the time.

A review of the vector components of hourly wind data from 2016 to 2020 was undertaken for data from the Bureau of Meteorology's Port Kembla Harbour automatic weather station (AWS) (ID: 068253). The observations are approximately 2 km from the site and are considered representative for the site and surrounds.

Figure 3.1 shows the wind roses (2016 to 2020) for each NPfI assessment period and for each season. Table 3.3 provides a summary of the prevailing wind conditions that are relevant to the assessment. The analysis indicates that noise-enhancing wind conditions are identified to be a significant feature of the area in the following wind directions: South-Southwest, Southwest, West-southwest, West and West-northwest. These wind directions all blow from the site to the sea and not in the direction of any sensitive receiver locations. As such, noise-enhancing conditions due to wind effects have not been considered in this assessment.

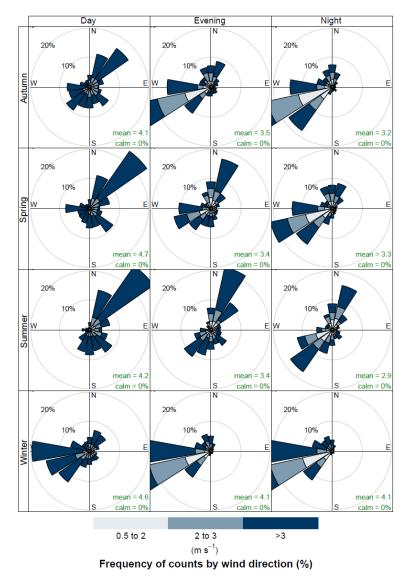


Figure 3.1 5 year wind rose (seasonal and relevant assessment periods) – 068253 AWS

Wind		Summer			Autumn			Winter			Spring		
direction ¹	Day	Evening	Night										
Ν	10%	19%	23%	10%	17%	14%	9%	9%	6%	9%	21%	18%	
NNE	13%	20%	23%	12%	15%	12%	10%	7%	4%	12%	21%	17%	
NE	16%	19%	19%	14%	11%	9%	10%	4%	2%	14%	18%	12%	
ENE	19%	16%	15%	14%	7%	4%	9%	2%	1%	15%	13%	8%	
Е	17%	11%	9%	15%	4%	2%	9%	1%	0%	15%	9%	5%	
ESE	15%	10%	7%	14%	3%	1%	9%	1%	0%	13%	8%	4%	
SE	13%	12%	9%	14%	3%	2%	9%	1%	0%	11%	9%	5%	
SSE	12%	13%	12%	14%	4%	3%	10%	1%	1%	10%	10%	7%	
S	9%	15%	19%	13%	8%	12%	11%	7%	7%	9%	13%	14%	
SSW	7%	17%	26%	12%	26%	34%	14%	28%	29%	6%	19%	28%	
SW	5%	15%	28%	10%	30%	39%	14%	33%	34%	4%	20%	32%	
WSW	3%	12%	26%	7%	30%	40%	13%	34%	35%	3%	18%	32%	
W	1%	10%	23%	6%	32%	41%	12%	36%	36%	2%	18%	31%	
WNW	1%	8%	20%	5%	32%	35%	10%	33%	32%	1%	18%	28%	
NW	2%	10%	16%	5%	18%	18%	7%	14%	12%	2%	16%	17%	
NNW	5%	15%	21%	7%	17%	15%	8%	10%	8%	5%	19%	17%	

Table 3.3 Significant wind effects analysis – Port Kembla Harbour AWS

Notes:

1) The percentages shown are the frequency of counts by wind direction for light winds up to 3 m/s and include the arithmetic sum of the direction being reported and the four closest directions. Where 30% occurrence is exceeded, the cell is shaded blue

3.4.3.3 Temperature inversions

Temperature inversions typically occur during the night-time period in the winter months and have the potential to increase noise levels from the operations at the blast furnace to the surrounding sensitive land uses. Per the NPfl, temperature inversions are to be assessed when they are found to occur for 30% of the time (about two nights per week) or greater during the winter months. As the project is proposed to operate 24 hours a day, the effect of temperature inversions on noise levels at night should be considered.

Noise enhancement due to temperature inversions occurs when the atmosphere is relatively stable which corresponds with Pasquill-Gifford stability category F and G. The Bureau of Meteorology (BoM) Port Kembla Harbour AWS data did not contain cloud cover measurements. As such, cloud data has been sourced from the nearest available BoM AWS, being Bellambi AWS (ID: 068228) approximately 11 kilometres to the north of the site, which is considered representative of the site for the purposes of determining the occurrence of temperature inversions.

An analysis of the Bellambi AWS meteorological data (three winter months from 2016 to 2020) has been undertaken using the Turner method which considers the following observations parameters:

- Hourly wind speed and direction at 10 metres
- Hourly cloud cover measurements
- Hourly cloud ceiling-height measurements
- Daily records of time of sunrise and sunset

The percentage occurrence of the stability categories are presented in Table 3.4.

Pasquill– Gifford stability category	Percentage occurrence (winter nights)	F and G combined (night period)	Are temperature inversions a feature of the area?
А	0		
В	0		
С	0		
D	33	38%	Yes
E	28		
F	28		
G	11		

 Table 3.4
 Percentage occurrence of Pasquill stability categories

The results indicate that 'F' and 'G' class temperature inversions are a feature of the area as they occur for more than 30% of the time during the winter and therefore are relevant to the assessment.

The ISO 9613-2 algorithm considers a moderate source-to-receiver wind or a temperature inversion in the algorithm. As such, the environmental noise propagation prediction method is considered appropriate and representative of the worst-case meteorological conditions for the site. Option 1 as described in Section 3.4.3.1 in accordance with the NPfI has hence been selected.

3.4.3.4 Atmospheric conditions

Temperature and humidity affects how sound is absorbed by the atmosphere. With a fixed temperature at 10°C, a decrease in relative humidity from 90% to 30% can decrease the sound level for a listener standing 800 m from the noise source by 3 dB (at 1000 Hz). Fixing the relative humidity at 90%, and increasing the temperature from 10 °C to 25 °C can decrease the sound level 800 m from the noise source by 3 dB (at 1000 Hz).

Adopting an average temperature of 10°C and average humidity of 90% is generally representative of the worstcase atmospheric conditions for environmental noise propagation and is considered conservative for the purposes of this assessment.

3.4.4 Source noise levels

6BF is not currently in operation and as such, source noise levels have been estimated based on the noise monitoring report at 5BF for similar equipment titled *"Environmental noise and vibration monitoring results for No. 5 Blast Furnace Reline Project* (Hatch, 2009)".

A site visit was also conducted by GHD in September 2021 to confirm source noise levels of certain items of equipment, and to conduct noise measurements of equipment where noise data was not available.

Source noise heights and building heights have been based on drawings provided by BlueScope. Detailed assumptions for each noise source are presented in Appendix C, along with noise data and screenshots of the 3D SoundPLAN noise model.

All source sound power levels are presented in Appendix C. Column *Noise level source* stipulates where each equipment sound power level is sourced from, corresponding as follows:

- "GHD measurements 2021" noise measurements undertaken by GHD during a site visit to BlueScope facility, conducted in September 2021.
- "SWL_Hatch (Table 6.2)" Table 6.2 from *Environmental noise and vibration monitoring results for No.5 Blast Furnace Reline Project* (Hatch, 4 December 2009). Sound levels calculated from measurements by Hatch.
- "SWL_BlueScope (Table 6.3)" Table 6.3 from *Environmental noise and vibration monitoring results for No.5* Blast Furnace Reline Project (Hatch, 4 December 2009). Sound power levels using measured data from BlueScope measurements.

3.5 Construction noise assessment

3.5.1 Construction noise prediction method

Acoustic modelling was undertaken using SoundPLAN noise modelling software to predict the effects of construction noise generated by the proposed works. General parameters used in the model are listed in Table 3.5.

Variable	Parameter used
Calculation method	ISO 9613-2:1996 Acoustics — Attenuation of sound during propagation outdoors — Part 2: General method of calculation (recommended in the DCNG for construction noise)
Meteorology	Well-developed moderate ground based temperature inversion, such as commonly occurs on clear, calm nights or 'downwind' conditions which are favourable to sound propagation
Topography	Sourced from ELVIS GIS Australia - 5 m elevation intervals
Receiver heights	1.5 metres above building ground level
Ground absorption	0.5 for all areas
	(0 is non-porous ground and 1 is porous ground such as that found in a rural setting comprising of mainly grass and vegetation)

Table 3.5 Noise modelling paramete	Table 3.5	Noise modelling parameters
------------------------------------	-----------	----------------------------

The exact details of the construction methodology, plant or equipment for the project, such as the intensity of works, sound power levels or operating duration are not yet known therefore this assessment is based on a variety of conservative assumptions. This information will be refined during detailed design and construction planning. The magnitude of the noise levels associated with construction activities will be dependent upon a number of factors:

- The intensity and location of construction activities
- The type of equipment used
- Existing local noise sources
- Intervening terrain
- The prevailing weather conditions

3.5.2 Construction scenarios

The sound power noise levels for all construction equipment have been sourced from the following documents:

- AS2436 Guide to Noise Control on Construction, Maintenance and Demolition Site (Australian Standards, 2010)
- Construction Noise and Vibration Guideline (RMS, 2016).

To represent the worst-case construction activities, the construction noise modelling scenarios set out in Table 3.6 for laydown areas and Table 3.7 for 6BF construction activities have been prepared for construction noise modelling. The modelling scenarios are intended to be a high-level representation of overall construction noise emission from the project, and are based on identified high noise-generating equipment as provided in Table 4.6.

For works in the *No 2 Works* areas (No2W), some rock breaking will be required during the site preparation phase of construction activities. A geotechnical survey of the proposed areas will be conducted at the commencement of construction activities. These scenarios are denoted in Table 3.6 as "Rock breaking".

	A	nticipated construction	n equipment	Activity sound
Construction scenario	20T Forklift	Excavator	Rock breaker	power level (SWL), dBA
Equipment SWL, dBA	105	105	120	-
No1W 1	✓	\checkmark		105
No1W 4	✓	\checkmark		105
No1W 5	\checkmark	\checkmark		105
No2B 1	\checkmark	\checkmark		105
No2W 1	✓	\checkmark		105
No2W 1 – Rock breaking			\checkmark	120
No2W 2	\checkmark	\checkmark		105
No2W 2 – Rock breaking			\checkmark	120
No2W 3	\checkmark	\checkmark		105
No2W 3 – Rock breaking			\checkmark	120
No2W 4	\checkmark	\checkmark		105
No2W 4 – Rock breaking			✓	120
No2W 5	✓	\checkmark		105
No2W 5 – Rock breaking			✓	120
No2W 6	✓	\checkmark		105
No2W 6 – Rock breaking			✓	120
RA 4	✓	\checkmark		105
RA 5	✓	\checkmark		105
SpringHill Electrical	✓	\checkmark		105

 Table 3.6
 Indicative construction scenarios – laydown areas

 Table 3.7
 Indicative construction scenarios – 6BF construction activities

		Anticipated construction equipment						
Construction scenario	Large excavator	Franna crane	Front end loaders	Vibratory roller	Rock breaker	Pile driver	sound power level (SWL), dBA	
Equipment SWL, dBA	115	98	112	109	120	130		
General construction activities	\checkmark	\checkmark	\checkmark	\checkmark			116	
High intensity construction activities					\checkmark	\checkmark	130	

3.6 Road traffic noise assessment

3.6.1 Methodology overview

Noise modelling has been undertaken to predict road traffic noise levels at residences along the transport routes for the following scenarios:

- The existing road traffic conditions (pre-construction)
- Road traffic conditions during construction (existing traffic + traffic generation during construction and operation phases)

Road traffic noise levels during construction and operation are assessed against the RNP road traffic noise criteria (see Section 6.4) to identify any potential noise impacts at residences and whether any receivers qualify for consideration of noise mitigation.

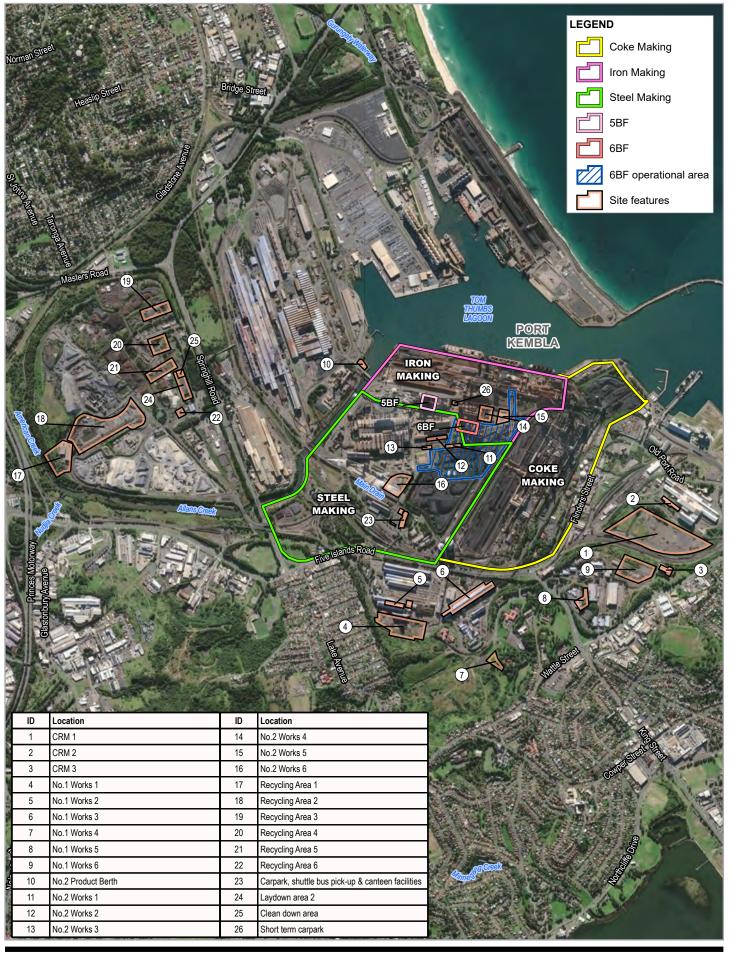
3.6.2 Prediction method

Noise modelling was undertaken using RMS' construction noise estimator tool using the parameters presented in Table 3.8.

Variable	Parameter used		
Calculation method	RMS Construction noise estimator tool using the Department of Transport, Welsh Office Calculation of Road Traffic Noise (CoRTN) (UK) prediction method adjusted for NSW conditions		
Shielding	No topography or shielding from buildings included (conservative)		
Traffic speeds	Sign posted speeds		
Façade correction	+2.5 dBA		
Receiver heights	1.5 metres above building ground level		
CoRTN conversion	-3 dBA for conversion between LA10(1hr) and LAeq(1hr) noise levels		
Ground absorption	0.5 for all areas within the site		

Table 3.8	Noise modelling parameters
10010 3.0	noise modeling parameters

4. Project description


This section provides a description of the project with a focus on elements that relate to the assessment of potential noise and vibration impacts.

4.1 **Project summary**

Table 4.1 provides a summary of the key elements of the project. Key features of the project are shown on Figure 4.1.

Project element	Summary				
6BF operational area and construction footprint location	Lot 1 DP 606434				
Construction	Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks, and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.				
Access	The majority of the construction traffic will access the site via the major roads that service the Port Kembla industrial area, including the Princes Motorway and Princes Highway, Shellharbour Road, Springhill Road, Five Islands Road and Masters Road. No changes to existing access arrangements are proposed.				
Ancillary construction facilities	Various locations within the PKSW site within Lot 1 DP 606434, Lot 1 DP 606432, Lot 1 DP 595307 and Lot 1 DP 606430.				
Ironmaking components and systems	 Raw materials handling Sinter plant Blast furnace Charging system Blast furnace vessel Cooling system Casthouse Hot blast system Off gas system Slag handling 				
Operations	 Operation of 6BF will be generally the same as existing operations utilised at 5BF (24-hour operation), including: Processing and transport of raw materials (iron ore, coal, coke, fluxes). Production of sinter (agglomeration of iron ore, coke and limestone dust) for use within the blast furnace. Production of approximately 2.7 Mtpa of iron from 6BF. Processing of approximately 0.88 Mtpa of blast furnace slag for reuse as construction products. 				
Construction work hours	 Where practical, and subject to the final construction program, construction will be carried out during the following construction hours: Monday to Friday: 7.00 am to 6.00 pm Saturday: 7.00 am to 6.00 pm Sundays and public holidays: no work A number of construction activities will be scheduled to be undertaken as night works. Final construction phase will require 24 hour construction (estimated to be a period of 5 months). 24 hour construction may also be required for an extended period if 6BF is required online earlier than 2026. 				

Project element	Summary		
Construction duration	Approximately 3 years		
Operational duration	Approximately 20 years		

Paper Size ISO A4 0.2 0.4 0.6 0.8 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment Project No. **12541101** Revision No. **0** Date **28/10/2021**

Key project features

\ghdnetlghd\AU\Newcastle\Projects\22\12541101\GIS\Maps\12541101_NVIA_0.aprx\12541101_NVIA001_KeyFeatures_0 Print date: 28 Oct 2021 - 10:49

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar Created by: tmorton

FIGURE 4-1

4.2 Operation of the project

The main noise generating systems associated with the operation of 6BF are:

- 6BF, including:
 - Hot blast system and hot blast stoves
 - Blast furnace proper and furnace top (including bleeder valves)
 - Casthouses
 - Gas cleaning system, including dust handling and effluent treatment
 - Cooling system
 - Top gas recovery turbine (TRT)
 - Casthouse and Stockhouse Bag houses
 - Slag handling area, including:
 - Slag granulator
 - Slag handling yard and pits
- Charging system, including:
 - Stockhouse
 - Conveyors

4.3 Noise generating equipment/processes

4.3.1 Typical operations

The major external noise generating equipment associated within each operational component of the project are listed in Table 4.2 along with the operating assumptions used for noise modelling purposes. The operation of the blast furnace is 24 hours a day, 7 days a week, however not all equipment will operate at maximum capacity for an entire 15 minute period. As such, the assumed operating conditions is considered representative of a worst-case scenario for a 15-minute assessment period.

The locations of noise generating equipment are shown in a drawing provided by BlueScope which is included in Appendix B.

System / Area	Noise sources	No. of items	Operating assumptions
Number 6 Blast F	urnace		
	Combustion Air Fans	2	Operating continuously; noise data sourced from 5BF measurements
	Stove Purge Fans	3	Not contributing to overall noise emission from the site
	COG Booster Fans	2	Intermittent operations; noise data obtained from GHD 2021 measurements
Hot Blast	Stove pressurisation valve	3	Intermittent operations; noise data obtained from GHD 2021 measurements
	Stove depressurisation valve	3	Intermittent operations; noise data obtained from GHD 2021 measurements
	Snort Control Valve Silencer	1	Considered as emergency and shutdown operations only
Furnace Top Material Bin Pressure Relief Silencers		1	Intermittent operations; noise data obtained from GHD 2021 measurements

System / Area	Noise sources	No. of items	Operating assumptions	
	Material Bin Pressure Relief Valve Silencer ¹	1	Intermittent operations; noise data obtained from GHD 2021 measurements	
	Gear Box Planetary Drive	1	Not contributing to overall noise emission from the site	
	Gear Box Tilt Drive	1	Not contributing to overall noise emission from the site	
	Stock Rod Drives	1	Operating continuously; noise data sourced from 5BF measurements	
	Furnace Top Bleeders	1	Considered as emergency operations only	
	Scrubber Feed Pumps	3	Operating continuously; noise data obtained from Hatch 5BF measurements	
	Scrubber Recirculation Pumps	3	Operating continuously; noise data obtained from Hatch 5BF measurements	
Gas Cleaning	Aeration Blowers	1	Not contributing to overall noise emission from the site	
	Cooling Tower Fans	2	Not contributing to overall noise emission from the site	
	RS Elements	1	Not contributing to overall noise emission from the site	
	Dust Handling System	1	Not contributing to overall noise emission from the site	
	RWS Cooling Pump	5	Not contributing to overall noise emission from the site	
Cooling system	PW Gearbox Cooling Pump	2	Not contributing to overall noise emission from the site	
	SBC Pumps	4	Operating continuously; noise data obtained from Hatch 5BF measurements	
TDT	TRT	1	Not contributing to overall noise emission from the site	
TRT	TRT Alternator	1	Not contributing to overall noise emission from the site	
	Stockhouse Baghouse Fan	1	Operating continuously; noise data obtained from Hatch 5BF measurements	
Bag Houses	Casthouse Baghouse Fans	2	Operating continuously; noise data obtained from Hatch 5BF measurements	
	Baghouse Blowers	3	Operating continuously; noise data obtained from GHD 2021 measurements	
Slag Handling Are	ea			
	Slag Granulation Cooling Tower Fans	2	Operating continuously; noise data obtained from Hatch 5BF measurements	
	Granulation Pump	2	Intermittent operations; noise data obtained from Hatch 5BF measurements	
Slag Granulator	Condensation Pump	2	Intermittent operations; noise data obtained from Hatch 5BF measurements	
	Cooling Circuit Pump	2	Intermittent operations; noise data obtained from Hatch 5BF measurements	
Slag handling yard and pits	Spray pumps	2	Operating continuously; noise data obtained from Hatch 5BF measurements	
	Truck wash	1	Not contributing to overall noise emission from the site	
	Knocking block / slag pot carrier	1	Operating continuously; noise data obtained from GHD noise database	
Charging system				
Stockhouse	Conveyor Drives	27	Operating continuously; noise data obtained from Hatch 5BF measurements	

System / Area	Noise sources	No. of items	Operating assumptions	
	Small vibro-feeders and screens 31		Intermittent operations; noise data obtained from GHD 2021 measurements, adjusted for size	
	Medium vibro-feeders and screens	11	Intermittent operations; noise data obtained from GHD 2021 measurements, adjusted for size	
	Large vibro-feeders and screens	4	Intermittent operations; noise data obtained from GHD 2021 measurements	
Conveyors	Conveyors	17	Operating continuously; noise data obtained from GHD noise database. These are generally enclosed and do no result in significant noise emissions.	

Note 1: Noise emission takes into consideration noise reduction performance of silencer. Noise emission is modelled at silencer outlet location.

4.3.2 Noise generating buildings

The noise generating buildings associated with the 6BF are shown in Table 4.3. Noise generating equipment and operations within these buildings generate average internal noise levels up to $L_{Aeq(15min)}$ 85 dBA at ground level. These buildings are enclosed and the façade will provide a sound transmission reduction of approximately 20 dBA. As such, it is assumed that these buildings do not contribute to the overall noise emission from the blast furnace site and have not been included in the noise model, with the exception of the cast house hydraulic room (included due to its large size).

Table 4.3	Noise generating buildings associated with 6BF
10010 4.0	Noise generating sunangs associated man obr

Building	Operating assumptions	Building construction / openings
Furnace Top Hydraulic Room		Steel metal sheet / windows
Gas Cleaning Hydraulic Room	Not contributing to overall noise	Steel metal sheet / windows
TRT Hydraulic Room	emission from the site.	Steel metal sheet / windows
Conveyor Drive Houses		Steel metal sheet / windows
Cast House Hydraulic Room	Included in noise model based on measured noise levels.	Steel metal sheet / windows

4.3.3 Emergency and shutdown operations

During emergencies (i.e. not anticipated during typical operation), the noise sources listed in Table 4.4 may operate. As the pressure release safety valve has the potential to occur during any time of the day, a sleep disturbance screening assessment has been undertaken in Section 7.1.2.

 Table 4.4
 Noise sources during emergencies

Emergency equipment	Frequency of operation (events per year)	Typical duration of event (s)	Included in L _{Aeq} assessment?	Included in L _{A1(1min)} assessment? ¹
Furnace Top Bleeder Valve	Average 2 times per year	10 seconds	No	No
Snort Control Valve Silencer	2.8 times per year Approximately every 18 weeks	10 seconds	No	Yes

4.4 Construction of the project

4.4.1 Overview

The reline and transition to operation of 6BF will be completed in approximately three years which, assuming a construction start during 2023, will see completion of construction in 2026. The actual construction start and completion dates will depend on the operational performance of the 5BF facility, and the timing of when furnace condition requires that it be decommissioned.

Construction will commence once all necessary approvals are obtained. Detailed construction planning, including timing, staging and work sequencing, will be confirmed once construction contractors have been engaged.

The construction information described in this chapter is preliminary and is based on the current stage of the design. It provides an indicative construction method that retains flexibility for the successful contractors to refine and optimise aspects of the approach. The construction methodology will be refined as the design progresses, and once the construction contractors are engaged. A final construction methodology and program will be jointly developed by the project team and construction contractors based on the conditions of approval and the mitigation and management measures provided in this document.

4.4.2 Construction access

Deliveries of construction plant and materials will be via sub-arterial or arterial roads to access the BlueScope site where vehicles will utilise internal access roads to access the 6BF. PKSW has established rail connections and shipping berths however no construction deliveries are currently expected from rail or ships. Deliveries will be unloaded to designated areas within the construction laydown areas or taken direct to their set location. The majority of construction staff vehicle movements will take place at the beginning and end of each day. Heavy vehicle movements will occur throughout the day.

4.4.3 Construction storage/laydown areas

The project will require approximately 31,000 m² of indoor storage and 57,000 m² of outdoor storage. The delivery of materials and equipment to the work sites will be staged as required with minimal storage available in the area immediately adjacent to 6BF. Indicative laydown areas are shown on Figure 4.2.

Construction support facilities, car parks and laydown areas identified are on areas of the site which have been historically used for similar activities including during previous reline events. A summary of proposed laydown areas is provided in Table 4.5.

ID	Location	Activity	Size (m ²)	Indoor/Outdoor	Comments
No1W 1	No.1 Works 1	Storage	28,500	Outdoor	Currently used as coke storage (rarely used)
No1W 2	No.1 Works 2	Storage	5,000	Indoor	No change to the use of the space as it is used today – not considered as part of noise assessment
No1W 3	No.1 Works 3	Storage	36,500	20,000 indoor 16,500 outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
No1W 4	No.1 Works 4	Storage	6,400	Outdoor	-
No1W 5	No.1 Works 5	Storage	4,000	500m ² indoor 3,500m ² outdoor	-

Table 4.5 Ancillary facilities

ID	Location	Activity	Size (m ²)	Indoor/Outdoor	Comments
No1W 6	No.1 Works 6	Storage	17,000	Outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
1	CRM 1	Storage	80,000	Outdoor	-
2	CRM2	Storage	3,000	Indoor	Operations indoor – not considered as part of noise assessment as operations assumed to not contribute
3	CRM3	Storage	2,800	Indoor	Operations indoor – not considered as part of noise assessment as operations assumed to not contribute
No2W 1	No.2 Works 1	Construction	1,000	Outdoor	-
No2W 2	No.2 Works 2	Construction	3,000	Outdoor	-
No2W 3	No.2 Works 3	Construction	1,500	Outdoor	-
No2W 4	No.2 Works 4	Storage	3,000	Outdoor	-
No2W 5	No.2 Works 5	Storage	7,000	Outdoor	-
No2W 6	No.2 Works 6	Storage	7,000	Outdoor	-
No2B 1	No.2 Products Berth	Storage	2,500	Outdoor	-
Ra 1	Recycling Area 1	Storage / cleaning	14,000	3,000 indoor 11,000 outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
Ra 2	Recycling Area 2	Processing	88,000	Outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
Ra 3	Recycling Area 3	Processing	25,000	Outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
Ra 4	Recycling Area 4	Storage / Processing	11,000	Outdoor	-
Ra 5	Recycling Area 5	Storage / Processing	20,000	Outdoor	-
Ra 6	Recycling Area 6	Storage	4,500	Outdoor	No change to the use of the space as it is used today – not considered as part of noise assessment
SPE	Springhill Electrical	Storage	3,000	Indoor	Operations indoor – not considered as part of noise assessment as operations assumed to not contribute

Figure 4.2 Indicative laydown areas locations

4.4.4 Reline construction activities

Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks, and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out. The location of the reline construction activities are provided in Figure 4.2 as red highlighted areas.

Construction activities will indicatively involve the following tasks:

- Removal of the remaining burden materials.
- Removal of the iron skull.
- Removal of worn carbon block refractories in the hearth.
- Removal of worn refractories in the remainder of the vessel.
- Demolition of other equipment including:
 - Cooling staves which protect the blast furnace shell.
 - Hot blast main refractory lining where required, including the expansion joints.
 - Clarifier tank and associated equipment where required.
- Repairs to the blast furnace shell where required.
- Installation of a new clarifier tank and associated equipment.
- Installation of the new hearth, sidewall refractories and staves.
- Repair/replacement of tuyeres, tapholes and instrumentation.
- Repair, maintenance and/or upgrade of ancillary equipment including:
 - Furnace cooling systems.
 - Hot blast system including the stoves, with the addition of a Stove Waste Gas Heat Recovery (WGHR) system.
 - Gas system, with addition of a Top Gas Recovery Turbine (TRT).
 - Furnace top, including the charging equipment, bleeder valves and outrigger crane.
 - Casthouse floors and associated equipment.
 - Stockhouse (raw materials feed system).
 - Automation and power systems.
 - Services.
- Construction of a new primary ferrous feed system in the Raw Materials Handling area.
- Civil works for the new slag handling area.
- Installation of a new slag granulation system.
- Commissioning and ramp up of 6BF operations.

4.4.5 Reline indicative equipment list

A list of indicative equipment required for the reline construction activities is presented in Table 4.6 and categorised into general construction equipment and high-impact construction equipment for modelling purposes.

Indicative construction equipment				
General construction equipment				
Excavators ranging from 5t to 40t	Bobcats (skid steer loaders)	Water blasters	Rail tamper	
Cranes of various capacity ranging from 15t to 800t	Plate compactors	Grit blasters	Various brick saws and mixers	

Table 4.6 Indicative equipment list at Blast Furnace and surrounding facilities

Indicative construction equipment						
Dump trucks	Explosives equipment (drilling rig)	Semi trailers	Material hoists and winches			
Front end loaders	Air compressors	Abbey hoists	Refractory gunning machine			
Telescopic boom excavator	Diesel welders	Forklifts	Temporary stove burners, fuel pipe and fans.			
Liquids tankers	Welding Machines	Sykes pumps	Alimak passenger and goods lifts			
Tear-Out machine	Temporary conveyors	Nitrogen welding and cutting gases	Scaffolding			
Boom and scissor lifts	Vacuum loading (suck) trucks	Concrete mixers	Concrete pumps			
Fuel trucks	Flat Bed Trucks	Vibratory roller	-			
High-intensity construction equipment						
Piling Rigs	Rock-breaker	Concrete saw	-			

4.4.6 Blasting

Explosive blasting may be required within the 6BF steel furnace shell structure to break up the iron skull. Should blasting be required, a summary of the proposed blasting works is as follows (subject to change):

- Approximately 500 tonnes of residual iron skull to be removed
- Approximately 200 holes to be drilled
- Approximately 150 kg of explosives to be deployed
- Approximately 10 blasts over 10 days in mid to late 2024

4.4.7 Construction hours

Authorisation for 24 hour construction is being sought as part of the request for planning approval.

Where practical, and subject to the final construction timetable, construction will be carried out during the following construction hours:

- Monday to Friday: 7.00 am to 6.00 pm
- Saturday: 7.00 am to 6.00 pm
- Sundays and public holidays: no work

However, there will be a number of construction activities that need to be undertaken outside of standard hours for safety purposes to minimise interaction between the project and the remainder of the PKSW operations. Where practical, noise generating activities with potential to impact any nearby receivers will be scheduled during standard hours.

4.4.8 Blasting hours

The recommended standard hours for blasting as prescribed in the ICNG are:

- Monday to Friday: 7:00 am to 6:00 pm
- Saturdays: 9:00 am to 1:00 pm
- No work on Sundays or public holidays
- The proposed hours for blasting activities required for the skull excavation inside the 6BF are:
- Monday to Sunday: 6:00 am to 8:00 pm

The justification for blasting works outside of the recommended standard hours is as follows:

- 1. An overriding necessity to maintain the highest levels in personnel safety and risk mitigation. The blasts will be conducted when there is a minimum of personnel on site, that is, the most appropriate scheduling is at shift change times when the site is much less populated.
- The level of explosive used will be optimised to minimise potential collateral damage to the critical existing equipment inside of the Blast Furnace which must be retained for future use, as well as reducing community impact.
- 3. The blasts will be contained within the 6BF steel furnace shell structure, which will contribute significantly to the attenuation of noise impacts at these more sensitive times of day.
- 4. Ground vibration levels and airblast overpressure levels are anticipated to be well below the criteria at the most-affected residences (see Section 7.3 and 7.5).

The proposed approach to blasting is consistent with industry standards and also with previous reline activities undertaken at the PKSW.

4.4.9 Timing

The overall construction program is anticipated to be around 3 years. An indicative construction timeline showing durations of key activities is provided below in Table 4.7.

Project stage	Activities	Approximate duration
1	 Progress with refurbishment activities that do not require long-lead items. Early works commences for enabling activities. Includes cranes, lifts, casthouse roof replacement, drainage, construction facilities. 	24 to 30 months
2	 Construction activities including demolition, civils, stockhouse, slag handling, hot blast system, gas system, cooling system, wreck out of furnace, furnace top. Control system and automation upgrade. 	24 months
3	 Initiated with twelve months advance notice of end of 5BF operations. Construction activities including relining of furnace. Pre-commissioning and commissioning of 6BF. 	12 months
4	 Managed transition of operations from 5BF to 6BF with ramp-down of 5BF followed by ramp-up production of 6BF. 5BF decommissioned and made safe on ceasing operation. 	1 month

 Table 4.7
 Indicative works schedule

4.4.10 Construction traffic

The construction of the project is expected to generate:

- Approximately 300 light vehicles per day, comprising of contractors and construction personnel vehicles, which will result in 600 light vehicle movements per day (300 arrivals and 300 departures). These vehicles are expected to arrive between 5:00 am to 6:00 am and depart between 4:00 pm to 6:00 pm.
 - It is estimated that around ninety to ninety-five percent of the expected light vehicle movements will be directed to park in the central car park via Cringila Car Park Access Road. Some contractors and visitors may also use this access to the car park, where they will then be transported via mini bus through the gate at Loop Road.
 - The remaining five percent of light vehicle movements is assumed to enter and exit via the North Gate.
- Up to 50 buses per day resulting in 100 bus movements per day via Cringila Car Park Road. These buses will be used to transport workers within PKSW premises e.g. from central car park to construction site and vice versa.
- Between 50 and 100 trucks per day (depending upon the phase of construction works), resulting in between 100 and 200 truck movements per day.

 Based on conservative estimates, the expected peak traffic generation for the construction activities is summarised in Table 4.8.

	Daily traffic generation (vehicles)	Peak Hour traffic generation (vehicles)
Light vehicles	600	300
Heavy vehicles	300	30
Total	900	330

 Table 4.8
 Traffic generation – two-way traffic

Three typical construction traffic access routes have been considered for the purpose of this assessment. These include the following routes and are shown in Figure 4.3.

- Route 1: access to laydown area via Cringila Car Park Road. Vehicles to depart at Emily Road/Five Islands Road intersection.
- Route 2: access to laydown area via Flagstaff Road and Five Islands Road intersection.
- Route 3: access to laydown area and construction site via Flinders Street, Stockpile Road and Old Port Road.

A summary of these routes is provided in Figure 4.3.

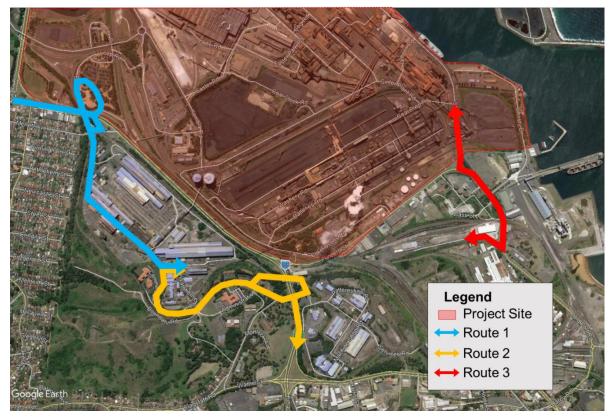


 Figure 4.3
 Construction Traffic Routes

 Source: Google maps (2021), modified by GHD

Table 4.9	Construction access routes to each construction site

Route ID	From	То	Route	Assumptions
1A	Wollongong	PKSW project site	Princes Motorway (SB)	- Trips on Princes Motorway
			Five Islands Road (EB)	assumed to be split 50/5070% of HV trips generated
			Cringila Car Park Road (NB)	 70% of 95% of LV trips
			Loop Road (SB)	generated
		Emily Road (SB)		
1B	PKSW project	Wollongong	Emily Road (NB)	- Trips on Princes Motorway
	site	Emily Road (NB)	 assumed to be split 50/50 70% of HV trips generated 	
			Five Islands Road (WB)	- 70% of 95% of LV trips
			Princes Motorway (NB)	generated
2A	Port Kembla	PKSW project site	Five Islands Road (NB)	- 30% of HV trips generated
			Flagstaff Road (WB)	 30% of 95% of LV trips generated
			General Office Road (WB)	
			Emily Road (NB)	
2B	PKSW project	Port Kembla	Emily Road (SB)	 30% of HV trips generated
	site		General Office Road (EB)	 30% of 95% of LV trips generated
			Underpass Road (EB)	 Flagstaff Road (EB)
			Five Islands Road (SB)	- Five Islands Road (NB)
3	PKSW project site	Other PKSW locations	Old Port Road	- Along Old Port Road
4	PKSW project site	Other PKSW locations	Internal PKSW roads only	- Internal only

5. Existing environment

5.1 **Project site location**

The project is located in Port Kembla in the Wollongong LGA and Illawarra region of NSW. Sydney is approximately 80 km to the north of Port Kembla, while the Wollongong Central Business District (CBD) is approximately 2.5 km to the north and Lake Illawarra is approximately 3 km to the south. Port Kembla is the main industrial centre of the Illawarra region.

The PKSW site is zoned IN3 – Heavy Industrial under *State Environmental Planning Policy (Three Ports) 2013* (Three Ports SEPP). The PKSW site is a multiuse industrial area which includes storage, manufacturing, port berths, private internal roads and offices. Access to PKSW is provided by Springhill Road, Five Islands Road, Flinders Street, and Christy Drive and then private internal roads in PKSW.

The closest urban developments to PKSW are the suburbs of Cringila, Berkeley, Lake Heights, Warrawong and Port Kembla to the south, Unanderra, Cobblers Hill, Mount St Thomas, Coniston and Figtree to the north and west.

5.2 Noise sensitive land uses

Noise sensitive land uses are defined based on the type of occupancy and the activities performed in the land use. Noise sensitive land uses include:

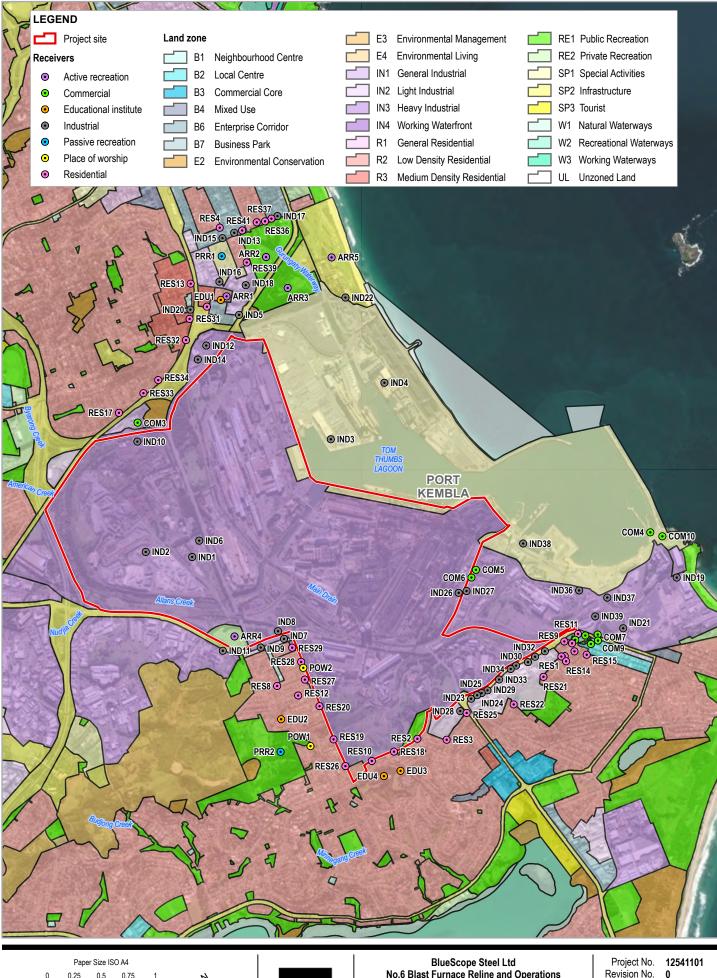
- Residential dwellings.
- Classrooms at schools and other educational institutes.
- Hospital wards and operating theatres.
- Places of worship.
- Passive and active recreational areas such as parks, sporting fields, golf courses. Note that these recreational
 areas are only considered sensitive when they are in use or occupied.
- Community centres.
- Hotels, motels, caretaker's quarters, holiday accommodation and permanent resident caravan parks.

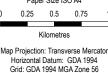
Offices, retail outlets and other business such as theatres and childcare centres could be considered noise sensitive. However, typically industrial and commercial premises are not considered particularly noise sensitive and have a relatively high noise criteria.

The study area has been defined as approximately 3.5 kilometres from the 6BF structure as noise impacts are not anticipated beyond this distance under normal operating conditions. Within this distance, 103 potential receivers have been selected to represent all sensitive receivers within the study area. The sensitive receivers and planning zones are shown in Figure 5.1.

Residential areas have been categorised into four discrete noise catchment areas (NCAs), being:

- NCA01 The most-affected residences in Wollongong
- NCA02 The most-affected residences in Coniston/Mount Saint Thomas
- NCA03 The most-affected residences in Cringila
- NCA04 The most-affected residences in Warrawong and Port Kembla


For the purposes of this noise assessment, key residential receivers have been selected for each NCA. If compliance is achieved at these residential receivers, then compliance will be ensured for all other residential receivers for each NCA. These key residential receivers are provided below in Table 5.1. Non-residential noise sensitive receivers considered in this noise assessment are provided in Table 5.2.


Table 5.1 Key residential sensitive receivers

ID	-	20 Z56 linates	Туре	NCA	Distance from 6BF structure	Direction	Description
	x	У			(m ²)		
RES39	306246	6187289	Residential	NCA01	2,950	N	Most-affected residences in Wollongong
RES33	304813	6186719	Residential	NCA02	2,650	NNW	Most-affected residences in Coniston
RES29	304828	6183990	Residential	NCA03	1,250	ESE	Most-affected residences in Cringila
RES01	306945	6182674	Residential	NCA04	1,900	SSE	Most-affected residences in Port Kembla
RES23	305641	6182840	Residential	NCA04	1,550	SSE	Most-affected residences in Warrawong

Table 5.2 Non-residential sensitive receivers

ID	MGA20 Z56 coordinates		MGA20 Z56 coordinates	Distance from 6BF structure	Direction	Description	
	x	x	— (m²)				
ARR1	305928	6187111	Active recreation	2,750	N	Coniston Primary School playground	
ARR2	306427	6187243	Active recreation	2,900	N	JJ Kelly Park	
ARR3	306457	6186895	Active recreation	2,600	N	Australia's Industry World Lookout	
ARR4	304418	6184347	Active recreation	1,600	W	BlueScope Centenary Park	
ARR5	306950	6186936	Active recreation	2,750	NNE	Wollongong Golf Club	
EDU01		Educational institute	2,750	N	Coniston Primary School		
EDU02	304408	6183468	Educational institute	1,850	ESE	Cringila Public School	
EDU03	305126	6182501	Educational institute	2,050	SSE	Warrawong High School	
EDU04	304969	6182536	Educational institute	2,100	SSE	Warrawong Public School	
POW01	304519	6183117	Place of worship	1,950	SE	Imam Rida As Mosque Cringila	
POW02	304823	6183777	Place of worship	1,350	ESE	Bilal Mosque	
PRR01	306075	6187455	Passive recreation	3,100	N	Wollongong Cemetery	
PRR02	304253	6183209	Passive recreation	2,100	ESE	Park in Cringila	

No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment Project site locations, sensitive receivers, planning zones and noise monitoring locations

Revision No. 0 Date 28/10/2021

Data source: LPI: DTDB/DCDB, 2017. DPE: Land zones, 2019. World Imagery: Maxar Created by: tmorton

5.3 Rating Background Levels (RBL)

As discussed in Section 3.3, RBLs have been established based on previous noise monitoring undertaken in the study area and are considered representative of the noise environment for the most-affected residences within each NCA. These RBLs have been used to establish the construction noise management levels in this assessment. The most-affected residences (all NCAs) can be characterised as urban residential as the acoustic environment:

dBA

Night

50

- Is dominated by 'urban hum' or industrial source noises
- Has through-traffic with characteristically heavy and continuous traffic lows during peak periods
- Is near commercial and industrial districts

NCA03 and NCA04

L2

Monitoring I.D	Noise Catchment Area (NCA)	Rating Background Level (RBL), L90 - dBA		Ambient level, Leq –			
		Day	Evening	Night	Day	Evening	
L1	NCA01 and NCA02	39	39	39	52	50	!

42

42

51

49

Table 5.3 Representative background and ambient noise levels in the study area

43

6. Assessment criteria

6.1 Operational noise criteria

6.1.1 Existing operational noise limits – EPL 6092

The operations associated with the 6BF form one area within the larger PKSW site. EPL 6092 contains operational noise limits for individual activities within the Port Kembla Steelworks site, including the 5BF. The operational noise limits for the 5BF are presented below in Table 6.1 along with additional notes.

"L6.6 For the purpose of the noise measurements referred to in condition L6.5, 5dB(A) must be added to the measured level if the noise is substantially tonal and impulsive in character.

Noise monitoring must use the "FAST" response on the sound level meter.

Note: Noise impacts that may be enhanced by temperature inversions shall be addressed by:

a) documenting noise complaints received to identify any higher level of impacts or patterns of temperature inversions; and

b) where levels of noise complaints indicate a higher level of impact then actions to quantify and ameliorate any enhanced impacts under temperature inversions conditions should be developed and implemented"

In lieu of site-wide noise monitoring and noise modelling of the entire PKSW site, it is proposed that noise emission from the 6BF is assessed against the existing operational noise limit for the 5BF, being $L_{Aeq(15min)}$ 35 dBA at the most-potentially affected residence. It should be noted that there are currently no operational noise limits for the slag handling area or the stockhouse associated with 5BF as previous environmental noise assessments for 5BF did not include noise emissions from these areas.

There is no $L_{A1(1min)}$ operational noise limit for the 5BF to assess maximum noise events during the night period such as noise from pressure release valves or the noise from activities within the stockhouse. A such, sleep disturbance impacts have been assessed against a $L_{A1(1min)}$ noise level of 55 dBA and is consistent with the $L_{A1(1min)}$ operational noise limits for scrap cutting and the steam assets upgrade project (assessed at the most potentially affected residences).

Activity	Noise Limit L _{Aeq(15min),} dBA	Noise Limit L _{A1(1min),} dBA	Compliance Location
Number 5 Blast Furnace	35	55	Most potentially affected residence

Table 6.1Assessment criteria – 6BF

6.1.2 NSW EPA Noise Policy for Industry (NPfI)

The following guidance is provided in the NPfI pertaining to certain criteria which may apply to existing industrial operations with a proposed discrete modification to their operations:

"Where a development proposal involves a discrete process and premises-wide mitigation, has or is to be considered outside of the development proposal, a project noise trigger level for noise from new/modified components (not the whole site) of the operation may be set at 10 dB(A) or more below existing site noise levels or requirements. This approach means that the increase in noise from the whole site is minimised and provides scope for existing components to achieve noise reductions over time."

Previous industrial compliance noise monitoring for the BlueScope site was conducted by SLR as part of *BlueScope Steel – Port Kembla N&V Compliance Monitoring August 2018* (SLR, December 2018). Monitoring locations have been selected which are considered representative of the NCAs used in this noise assessment. This noise monitoring data is also generally supported by the ambient noise descriptors as provided in GHD's background noise monitoring data in Table 3.1 (refer to night period measurements). As such, this compliance noise monitoring data is considered suitable to establish criteria for a NPfI discrete process assessment. This assessment criteria for a discrete process is provided below in Table 6.2.

Representative monitoring location (SLR)	NCA representation	Measured industrial noise level (night period), dBA	NPfl discrete process criteria (night period) L _{Aeq(15min)} , dBA
M2 (BlueScope Air Monitoring Station – Flagstaff Road, Lake Heights)	NCA04 – Warrawong	48 (General site noise)	38
M5 (Site-office – Merret Avenue, Cringila)	NCA03 – Cringila	51 (General site noise)	41
M6 (Cnr Hill Street and Ocean	NCA02 – Mt St Thomas	41 (General low frequency	31
Street, Mt St Thomas)	NCA01 – Wollongong	rumble)	

Table 6.2 Existing industrial noise level, and NPfl discrete assessment noise criteria

Due to the complexity and scale of the PKSW site, premises-wide mitigation is not proposed. The following matters must be considered in the context of future noise emissions relevant to the project:

- 5BF will not be operational during the operation of 6BF and as such, noise emissions from the existing 5BF will be cease.
- The stockhouse and slag handling areas associated with 5BF were not originally included in the previous environmental noise assessments for 5BF. As such, the existing EPL does not contain operational noise limits for the operations associated with the 5BF slag handling and stockhouse areas. This noise assessment considers noise emission from the 6BF including the slag handling areas and the stockhouse areas and recommends opportunities to reduce noise levels from these activities. If required, mitigation strategies are recommended in Section 8.3 to reduce operational noise levels to compliant levels.
- Compliance for noise emission from 5BF could not be determined at the most-affected residences as the contribution could not be determined at a far-field location (Cringila and Warrawong). This is due to the fact that the EPL operational noise limit for 5BF is 35 dBA and the existing industrial noise levels from the overall PKSW site is approximately 51 dBA at the most-affected Cringila receivers and 48 dBA at the most-affected Lake Heights/Warrawong Receivers. As such, it is proposed that an intermediate compliance location (between the source and the most-affected residences) be used to verify noise levels once 6BF is operational to identify any potential noise issues. Details of this is provided in Section 8.3.

6.1.3 Operational noise criteria

With consideration to the operational noise criteria provided above in Sections 6.1.1 and 1.1.1, the following approach is proposed for the assessment of operational noise from 6BF:

- The operational noise emission from industrial processes directly associated with the 6BF will be assessed towards the NPfI discrete process criteria to ensure existing industrial noise levels do not increase as a result of the project when assessed at the most-affected residences.
- The operational noise emission from the 6BF components (not including the slag handling or stockhouse), will be assessed towards the existing EPL 6092 noise limit, as the limit was intended for the specific 5BF process.

The operational noise criteria for this assessment is provided below in Table 6.3. Assessment against the NPfI discrete process criteria should ensure that noise contribution from the 6BF (including slag handling and stockhouse) does not contribute to the overall noise emission levels from the overall PKSW site at the most-affected residences.

Assessment	Receiver type	Operational noise criteria, L _{Aeq(15min)}	Operational components considered in assessment		
		dBA	Operational component	Modelled source groups	
NPfI discrete	Residential – NCA01	31	6BF	Hot Blast	
assessment	Residential – NCA02		Slag Handling Area	Slag Granulator Conveyor belts	
	Residential – NCA03	41	Stockhouse	Bag Houses Furnace Top Gas Cleaning Cooling Stockhouse Slag handling yard and pits	
	Residential – NCA04	38	-		
EPL 6092 noise limit	Residential (All)	35	6BF	Hot Blast Slag Granulator Bag Houses Furnace Top Gas Cleaning Cooling	

Table 6.3Operational noise criteria

6.1.4 Cumulative noise criteria for residential receivers

Cumulative noise impacts affecting receivers from all industrial noise sources are assessed according to the amenity criteria of the NPfI. The combined impact of all industrial noise sources at a receiver point should be considered, where industrial facilities are either operating or have been approved for development. The cumulative noise criteria that apply for the residential receivers within the project area shown in Table 6.4.

Table 6.4 Amenity noise level for urban residential receivers

Receiver type	Time of day	Recommended amenity noise level LAeq, dBA
Urban residential receivers	Day	60
	Evening	50
	Night	45

Based on the previous noise monitoring data and compliance noise monitoring, the recommended amenity noise level for urban residential receivers is currently being exceeded during the night period at the most-affected residential receivers in Cringila and Warrawong; refer to Table 6.2. Adoption of the assessment criteria in Section 6.1.3 should ensure noise emissions from the PKSW site do not increase as a result of the project and would negate any potential any cumulative noise impacts from existing and planning industrial noise sources.

6.1.5 Operational noise criteria for non-residential receivers

Operational noise criteria for non-residential receivers have been established based on the project amenity noise levels provided in Section 2.4 of the NPfI. These noise limits are based on the recommended amenity noise level minus 5 dB. The operational noise criteria for non-residential receivers are provided below in Table 6.5.

Receiver type	Time of day	Recommended amenity noise level LAeq, dBA	Project amenity noise criteria L _{Aeq(15min)} ² , dBA
Educational institute	When in use	45 ¹	43
Place of worship	When in use	50	48
Active recreation	When in use	55	53
Passive recreation	When in use	50	48

Table 6.5 Non-residential receiver project amenity noise criteria

Note 1: The recommended amenity noise level is provided as an internal noise level. A + 10 dB correction has been applied to convert to an external noise level, based on a 10 dB reduction for a partially open window

Note 2: A + 3 dB correction has been applied to convert the L_{Aeq} noise descriptor to a $L_{Aeq(15min)}$ noise descriptor, as per guidance from the NPfI

6.2 Construction noise

The EPA has released the Draft Construction Noise Guideline (DCNG) in 2020 for public consultation purposes only and once public consultation is complete, the feedback will be used to provide a final guideline to replace the ICNG. The ICNG will remain applicable for projects as it is referred to in the SEARs.

However, the DCNG still provides useful guidance and includes the following changes:

- Emphasis on the need to engage with the community, to ensure that the community's views are considered when planning how to manage construction noise impacts.
- Improved guidance for managing noise from construction activities taking place outside the recommended standard hours of work.
- Alignment of the level of assessment required with risk of noise impact.
- A simplified assessment path for routine activities undertaken by public authorities on public infrastructure through industry management procedures.
- Increased emphasis on the need for proponents to justify the selection of noise mitigation measures to improve transparency.

The intent of these changes has been considered in this assessment however construction noise associated with the project has been assessed against the requirements of the ICNG.

6.2.1 ICNG/EPL construction hours

The ICNG provides guidance for assessment and management of construction noise. The guideline recommends standard hours for construction activities as follows:

- Monday to Friday: 7:00 am to 6:00 pm
- Saturday: 8:00am to 1:00 pm
- No work on Sundays or Public Holidays

Figure 6.1 shows the ICNG recommended standard construction hours (consistent with the EPL construction hours) and the out-of-hours work periods for the day, evening and night.

Hour	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11
commencing	am	am	am	am	am	am	am	am	am	am	am	am	pm	pm	pm	pm	pm	pm	pm	pm	pm	pm	pm	pm
Monday																	Outside							
Tuesday																Outside of			of					
Wednesday			Outside	e of recom	mended		Recommer				comment	nded			recommended				recommended					
Thursday			standard hours -					standard							standard hours -			stan	dard					
Friday			r	night perio	d							cons	truction h	ours					Evening period				hou	irs -
Saturday															nig	ght								
Sunday									Outside of recommended standard hours - Day period										per	iod				
Public Holidays																								

Figure 6.1 Recommended standard and outside of recommended standard construction hours

Per condition L6.3 of EPL 6092, the hours of construction may be varied by written consent of the EPA.

Authorisation for 24 hour construction is being sought as part of the request for planning approval.

Where practical, and subject to the final construction timetable, construction will be carried out during the following construction hours:

- Monday to Friday: 7.00 am to 6.00 pm
- Saturday: 7.00 am to 6.00 pm
- Sundays and public holidays: no work

6.2.2 Outside of recommended standard hours work

There will be a number of construction activities scheduled to be undertaken as night works to manage interaction with the remainder of the PKSW operations and the higher day shift workforce.

Where practical noise generating activities with potential to impact any nearby receivers will be scheduled during standard hours.

Final installation of components inside the blast furnace and other residual construction activities will require 24 hour construction (estimated to be a period of 5 months). Further, 24 hour construction may be required for an extended period to speed up the completion of construction if 6BF is required online earlier than 2026.

For any high impact activities required outside of the construction hours (7.00 am to 6.00 pm, Monday – Saturday), an application will be made to the EPA seeking approval in writing to undertake the works per EPL 6092. A description of the works, justification and management measures will be included as part of the application.

Operation of 6BF will be 24 hours per day seven day a week in line with 5BF current operations. There will be no concurrent ironmaking operation of both 5BF and 6BF.

6.2.3 Noise management levels

The construction noise management levels represent a noise level that, if exceeded, will require management measures including:

- Reasonable and feasible work practices
- Contact with the residences to inform them of the nature or works to be carried out, the expected noise levels, and durations and contact details

The management measures are aimed at reducing noise impacts at the residential receivers. However, it may not be reasonable and feasible to reduce noise levels to below the noise affected management level at all times. The noise affected construction noise management levels are not intended as a noise limit but rather a level at which noise management is required and as such should not be considered as a noise limit in the environmental protection licence or approval conditions.

Table 2 in the ICNG provides recommended NML for residences, which are detailed in Table 6.6.

 Table 6.6
 Residential construction noise management levels, dBA (ICNG, 2009)

Time of day	Noise management level, L _{Aeq(15 min)}	Application notes
Recommended standard hours	Noise affected: RBL + 10 dBA	The noise affected level represents the point above which there may be some community reaction to noise.
		Where the predicted or measured $L_{Aeq(15 min)}$ is greater than the noise affected level, the proponent should apply all feasible and reasonable work practices to meet the noise affected level.
		The proponent should also inform all potentially impacted residents of the nature of works to be carried out, the expected noise levels and duration, as well as contact details.
	Highly noise affected: 75 dBA	The highly noise affected level represents the point above which there may be strong community reaction to noise.
		Where noise is above this level, the relevant authority (consent, determining or regulatory) may require respite periods by restricting the hours that the very noisy activities can occur, taking into account:
		 Times identified by the community when they are less sensitive to noise (such as before and after school, or mid-morning or mid-afternoon for works near residences).
		 If the community is prepared to accept a longer period of construction in exchange for restrictions on construction times.
Outside recommended standard hours	Noise affected: RBL + 5 dBA	A strong justification will typically be required for works outside the recommended standard hours. The proponent should apply all feasible and reasonable work practices to meet the noise affected level.
		Where all feasible and reasonable measures have been applied and noise is more than 5 dBA above the noise affected level, the proponent should negotiate with the community.

6.2.4 Sleep disturbance

Whilst some out of hours works may be required, generally these will be afternoon, evening or weekend works and not during times where sleep disturbance may be caused. No significant construction works are proposed during the night period (10:00 pm to 7:00 am Monday to Saturday and 10:00 pm on Saturday to 8:00 am on Sunday). If activities are required to be undertaken during these times it will be limited to activities which are not audible at the nearest sensitive receiver, or discreet events which need to be undertaken outside standard hours for safety reasons. It should also be noted that operational activities at PKSW occur 24 hours a day so this is typical of the local noise environment.

As such, no sleep disturbance impacts are anticipated during the construction phase of the project.

6.2.5 Project specific construction noise management levels

The noise management levels at sensitive receivers in the study area are summarised in Table 6.7 and have been based on Table 6.6. As the measured RBLs are lower than the minimum background levels specified in the NPfI, the minimum background noise levels have been used.

	Сог	01				
Sensitive receiver	Standard cons	struction hours	Outside s	standard construc	ction hours	Sleep disturbance
type	Noise affected	Highly noise affected	Day	Evening	Night	(Night)
Residential NCA01 (Wollongong) and NCA02 (Coniston/Mt. St. Thomas)	49	75	44	44	44	54 LA1(1min)

Table 6.7 Project specific construction noise management levels

	C							
Sensitive receiver type	Standard cor	nstruction hours	Outside	standard constru	 Sleep disturbance 			
	Noise affected	Highly noise affected	Day	Evening	Night	(Night)		
Residential NCA03 (Cringila) and NCA04 (Warrawong / Port Kembla)	53	75	48	47	47	57 La1(1min)		
Educational institutions	55 (external)					-		
Places of worship	55 (external)					-		
Active recreation areas	65	65						
Passive recreation areas	60					-		

6.3 Construction vibration

6.3.1 Human comfort

Vibration is assessed based on the criteria in *Assessing Vibration: A Technical Guideline* (DEC, 2006). *BS6472: Guide to Evaluation of Human Exposure to Vibration in Buildings* (1 Hz to 80 Hz) (British Standards, 2008) is recognised as the preferred standard for assessing the 'human comfort criteria'. Intermittent vibration, such as construction work, is assessed using the vibration dose value.

Whilst the assessment of response to vibration in BS 6472-1:2008 is based on vibration dose value and weighted acceleration, for construction related vibration it is considered more appropriate to provide guidance in terms of a peak particle velocity (PPV), since this parameter is likely to be more routinely measured based on the more usual concern over potential building damage. Table 6.9 provides guidance on the effect of vibration levels for human comfort in peak particle velocity as reference against the vibration guide values shown in Table 6.8.

Receiver	Period	Continuous and impulsive vibration guide goals				
		Preferred value	Maximum value			
Residential	Day	0.28 (8.6)	0.56 (17.0)			
Offices, schools, educational institutes and places of worship	When in use	0.56 (18.0)	1.1 (36.0)			
Workshops	When in use	1.1 (18.0)	2.2 (36.0)			

 Table 6.8
 Acceptable PPV Values for Human Comfort (BS 6472-2008)

Notes:

1) Impulsive goals are shown in brackets – These are most relevant to activities that create up to 3 distinct vibration events in an assessment period, e.g. occasional dropping of heavy equipment, occasional loading and unloading.

Humans are capable of detecting vibration at levels which are well below those causing risk of damage to a building. The degrees of perception for humans are suggested by the vibration level categories given in *BS5228.2* – 2009, Code of Practice Part 2 Vibration for noise and vibration on construction and open sites – Part 2: Vibration (British Standards, 2009), as shown below in Table 6.9.

Table 6.9

Guidance on effect of vibration levels for human comfort (BS 5228.2 - 2009)

Vibration level	Effect
0.14 mm/s	Vibration might be just perceptible in the most sensitive situations for most vibration frequencies associated with construction.
0.3 mm/s	Vibration might be just perceptible in residential environments.
1.0 mm/s	It is likely that vibration at this level in residential environments will cause complaints, but can be tolerated if prior warning and explanation has been given to residents.
10 mm/s	Vibration is likely to be intolerable for any more than a very brief exposure.

6.3.2 Structural damage to standard structures

The minimum working distances for structural (cosmetic) damage used for this assessment have been based on *BS 7385-2:1993 Evaluation and measurement for vibration in buildings Part 2 – Guide to damage* (British Standards, 1993) levels from ground borne vibration which enables the likelihood of building damage from ground vibration to be assessed. The use of BS7385 is the preferred standard in NSW to assess potential vibration impacts to standard structures and is consistent with the Transport for NSW noise and vibration guidelines.

The vibration levels in this standard are adopted as building damage criteria and are presented in Table 6.10.

Table 6.10 Transient vibration guide values - minimal risk of cosmetic damage

Type of building	Peak component particle velocity in frequency range of predominant pulse ¹			
	4 Hz to 15 Hz	15 Hz and above		
Reinforced or framed structures industrial and heavy commercial building	50 mm/s at 4 Hz and above			
Unreinforced or light framed structures residential or light commercial type buildings ²	15 mm/s at 4 Hz increasing to 20 mm/s at 15 Hz	20 mm/s at 15 Hz increasing to 50 mm/s at 40 Hz and above		

Notes:

- 1) Values referred to are at the base of the building.
- 2) At frequencies below 4 Hz, a maximum displacement of 0.6 mm (zero to peak) should not be exceeded.

6.3.3 Structural damage to heritage structures

The German Standard DIN 4150-3: 1999 Structural Vibration – Part 3: Effects of vibration on structures provides guideline values for the maximum absolute value of the velocity 'at the foundation of various types of building. Experience has shown that if these values are complied with, damage that reduces the serviceability of the building will not occur. If damage nevertheless occurs, it is to be assumed that other causes are responsible.' These values are provided in Table 6.11.

Measured values exceeding those listed in Table 6.11 do not necessarily lead to damage; should they be significantly exceeded however, further investigations are necessary. No heritage structures have been identified within 250 metres of the construction footprint and as such, no vibration impacts to heritage impacts are anticipated.

Table 6.11 Guideline values for short term vibration on structures

Line	Type of building	Guideline values for velocity, (mm/s)					
		1 Hz to 10 Hz	10 Hz to 50 Hz	50 Hz to 100 Hz			
3	Structures that, because of their particular sensitivity to vibration, cannot be classified under lines 1 and 2 and are of great intrinsic value (e.g. listed buildings under preservation order)	3	3 to 8	8 to 10			

Notes:

- 1) Values referred to are at the base of the building.
- 2) At frequencies below 4 Hz, a maximum displacement of 0.6 mm (zero to peak) should not be exceeded.

6.4 Traffic noise (construction and operation)

The RNP provides traffic noise target levels for residential receivers in the vicinity of existing roads and are applied to road upgrades. For this assessment these levels are also applied to construction works to identify potential construction traffic impacts and the potential for reasonable and feasible mitigation measures. The RNP road types are based on the functional roles shown in Table 6.12.

The additional traffic during construction and operation is anticipated to have a negligible effect on the existing traffic volumes (and traffic noise) on the local road network. As such, no further assessment of potential road traffic noise increases on the local road network is deemed necessary.

Road category	Functional role	Public roads used by project
Freeways or motorways/arterial roads	Support major regional and inter-regional traffic movement. Freeways and motorways usual feature strict access controls via grade separated interchanges.	 Princes Motorway
Sub-arterial road or collector road	 Provide connection between arterial roads and local roads. May support arterial roads during peak period. May have been designed as local streets but can serve major traffic generating developments or support non-local traffic. 	Springhill RoadMasters RoadFive Islands Road
Local roads	Provide vehicular access to abutting property and surrounding streets. Provide a network of the movement of pedestrians and cyclists, and enable social interaction in a neighbourhood. Should connect, where practicable, only to sub-arterial roads.	 Flagstaff Road

Table 6.12 Road Categories from RNP

The application notes for the RNP state that "for existing residences and other sensitive land uses affected by additional traffic on existing roads generated by land use developments, any increase in the total traffic noise level as a result of the development should be limited to 2 dB above that of the noise level without the development. This limit applies wherever the noise level without the development is within 2 dB of, or exceeds, the relevant day or night noise assessment criterion."

If the road traffic noise increase from the construction work is within 2 dBA of current levels then the objectives of the RNP are met and no specific mitigation measures are required. Mitigation should be applied when road traffic noise levels increase by 2 dB *and* the controlling noise criterion in Table 6.13 are exceeded at the façade of the residence.

Development type	Applicability to assessment	Day 7:00 am to 10:00 pm	Night 10:00 pm to 7:00 am
Existing residence affected by additional traffic on arterial / sub-arterial / collector roads generated by land use developments	Springhill RoadFive Islands Road	60 Leq(15hr)	55 Leq(9hr)
Existing residence affected by additional traffic on local roads generated by land use developments	 Flagstaff Road 	55 L _{eq(1hr)}	50 L _{eq(1hr)}

6.5 Blasting noise and vibration

The following documents were used to establish the blasting criteria for this assessment:

- Technical Basis for guidelines to minimise annoyance due to blasting overpressure and ground vibration (ANZECC, 1990)
- Australian Standard AS2187.2 (2006) Explosives Storage and use Part 2: Use of explosives

6.5.1 Airblast overpressure

The recommended human comfort level for airblast overpressure is 115 dB(L) peak. This level may be exceeded on up to five per cent of the total number of blasts over a period of 12 months, however should not exceed 120 dB(L) peak.

6.5.2 Ground vibration

The recommended human comfort level for vibration should not exceed a peak particle velocity of 5 mm/s. This level may be exceeded on up to five per cent of the total number of blasts over a period of 12 months, however should not exceed 10 mm/s.

6.5.3 Structural damage

AS2187.2 (2006) recommends the following in relation to structural damage:

- A limit of 133 dBL airblast overpressure on structures as research showed no damage (even cosmetic) occurs at airblast levels below this level.
- BS7385.2 values can be adopted for the prevention of minor or cosmetic damage occurring in structures from ground vibration which are 15 mm/s at 4 Hz PPV for standard residential buildings.

The human comfort level is significantly below the structural damage criteria which will be used to manage impacts, therefore structural damage is considered highly unlikely at surrounding sensitive receivers.

Туре	Impact	Screening criteria	Source
Ground vibration	Human comfort	5 mm/s	ANZECC (1990)
	Structural damage to residences	15 mm/s	AS2187.2 (2006)
Airblast overpressure	Human comfort	115 dBL _{peak}	ANZECC (1990)
	Structural damage to residences	133 dBL _{peak}	AS2187.2 (2006)

Table 6.14 Summary of blasting criteria

7. Impact assessment

7.1 Operational noise

7.1.1 Predicted noise levels

The predicted L_{Aeq(15min)} noise levels at each key sensitive receiver are presented in Table 7.1 and only include the noise sources identified in Table 4.2 (i.e. 6BF, Slag Handling and Charging System) against the NPfI discrete process criteria for residential receivers, and amenity criteria for non-residential receivers.

The noise modelling indicates compliance is predicted at all sensitive receiver locations with RES29 in Cringila predicted to receive the highest noise levels. Table 7.2 shows the contribution of the modelled noise sources at RES29 in Cringila, considered to be the most affected residence. L_{Aeq} noise contours at 1.5 metres above ground are presented in Figure 7.2. Full operational noise results to noise sensitive receivers are provided in Appendix D.

Figure 7.1 is a pie chart displaying the noise level contributions from each of the noise source groups associated with the operation of 6BF when assessed at RES29. The noise levels from each component are converted from a decibel (dBA, reference pressure of 20 μ Pa) to a pressure intensity (μ Pa) to show the percentage contribution in a non-logarithmic manner. It is illustrated noise levels from the main 6BF components at RES29 contribute to approximately half of the noise emissions, whilst the slag handling area and the stockhouse area contribute to a quarter of the noise emissions each.

		L _{Aeq(1}		
RID	Receiver Type	Criteria	Predicted noise level	Complies?
ARR1	Active recreation	53	22	Yes
ARR2	Active recreation	53	20	Yes
ARR3	Active recreation	53	25	Yes
ARR4	Active recreation	53	32	Yes
ARR5	Active recreation	53	23	Yes
EDU1	Educational institute	43	18	Yes
EDU2	Educational institute	43	36	Yes
EDU3	Educational institute	43	28	Yes
EDU4	Educational institute	43	27	Yes
POW1	Place of worship	48	27	Yes
POW2	Place of worship	48	33	Yes
PRR1	Passive recreation	48	20	Yes
PRR2	Passive recreation	48	28	Yes
RES1	Residential - NCA04	38 ¹	33	Yes
RES23	Residential - NCA04	38 ¹	35	Yes
RES29	Residential - NCA03	41 ¹	39	Yes
RES33	Residential - NCA02	31 ¹	28	Yes
RES39	Residential - NCA01	31 ¹	23	Yes
Note 1: In accord	lance with the NPfI discrete pro	cess assessment c	riteria provided in Table 6.3	

 Table 7.1
 Predicted L_{Aeq(15min)} noise levels at sensitive receivers, dBA

Table 7.2 Predicted L_{Aeq(15min)} contribution of noise sources at most-affected residences (RES29 in Cringila) dBA

Source group	Operational component	EPL 6092 criteria	Contributed noise level L _{Aeq(15min)} , dBA		
Hot Blast			27		
Conveyor belts	-		24		
Bag Houses		35 (based on 5BF)	23		
Furnace Top	6BF		22	— 31 (Total from 6BF)	
Gas Cleaning	-		21		
Cooling	-		18		
Stockhouse	Charging system	N/A	36		
Slag Handling	<u>.</u>	N/A	35		
Slag Granulator	Slag handling		25		
Total			39		

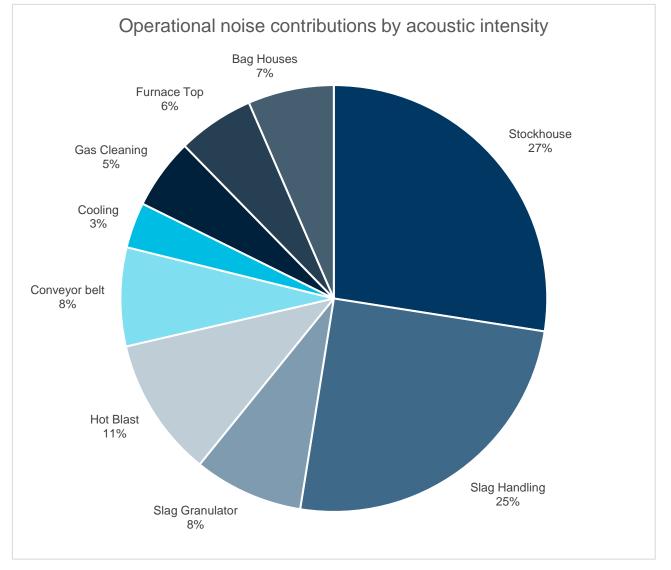
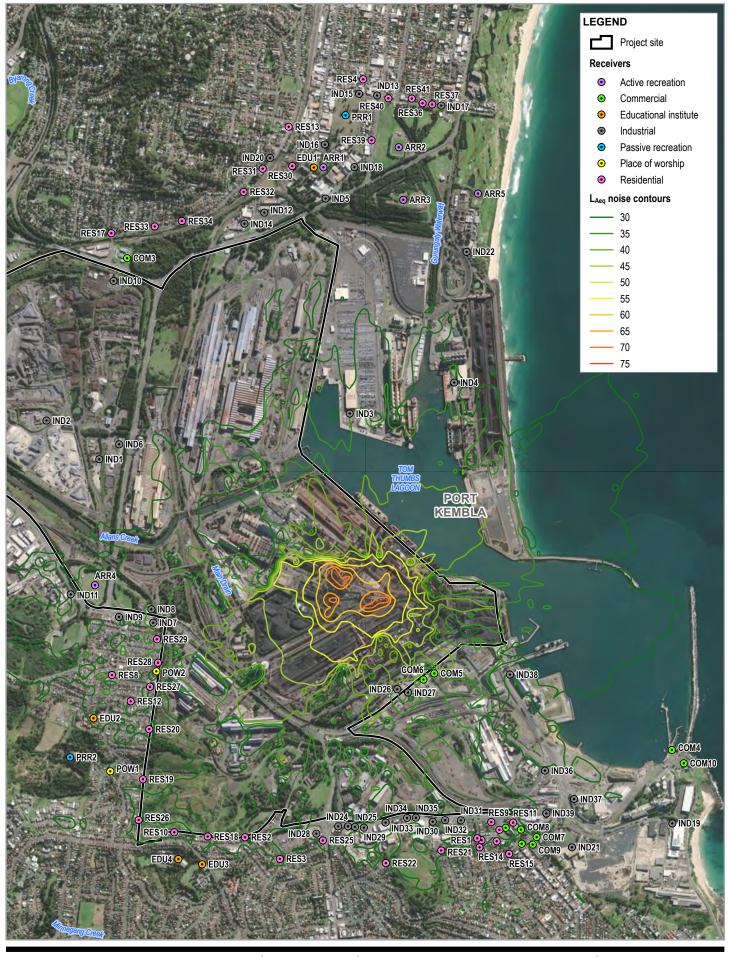



Figure 7.1 Operational noise contributions by acoustic intensity (RES29 in Cringila), percentage of overall noise emission based on µPa

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment

Operational noise emission L_{Aeq} noise contours Project No. **12541101** Revision No. **0** Date **28/10/2021**

FIGURE 7-2

\ghdneflghd\AU\Newcastle\Projects\22\12541101\GIS\Maps\12541101_NVIA_0.aprx\12541101_NVIA003_OperationalNoise_0 Print date: 28 Oct 2021 - 10:49 Data source: LPI: DTDB/DCDB, 2017. DPE: Land zones, 2019. World Imagery: Maxar Created by: tmortor

7.1.2 Sleep disturbance impacts

The potential for sleep disturbance is considered from short-duration, high level noise events. In this case, significant maximum noise levels events have been modelled from the following set of operational equipment. The modelled L_{A1(1min)} noise levels considered in the assessment are as provided in Appendix C:

- Furnace top:
 - Bin pressure relief silencer
 - Bin pressure relief valve
- Hot blast:
 - Furnace top bleeder
 – not considered as part of normal operations, as noise emissions only occur during
 emergency operation
 - Snort control valve silencer
 - Stove pressurisation/depressurisation valves
- Stockhouse:
 - Vibrofeeders
 - Screens
 - Slag handling:
 - Knocking block

Regarding the furnace top bleeder and snort control valve silencer, sound levels of these events were measured during cold commissioning of 5BF during its reline in 2009. Both were audible at residential receiver locations with the following observations:

- Noise from the Snort control valve silencer was barely audible
- Noise from the Furnace top bleeder valves were easily audible and measured

These sources however occur infrequently, with the furnace top bleeder only operating in a noise-producing state in emergency situations and on initial commissioning; it is not part of normal operations and therefore it is not considered as part of the sleep disturbance assessment. The Snort valve operates at shutdown and start-up (approximately every 18 weeks) and in emergency situations. Whilst it is not considered part of typical operations, it has been included in the sleep disturbance assessment, as discussed above in Table 4.4. The predicted $L_{A1(1min)}$ noise levels are presented in Table 7.3.

Table 7.3 Predicted L_{A1(1min)} noise levels at sensitive receivers during the night, dBA

			Highest LA1(1min) noise level, dBA								
			Furnace t	ор	Hot blast		Stockhouse		Slag handling		
RID	Receiver Type	L _{A1(1min)} EPL sleep disturbance criterion	Bin Pressure Relief Silencer	Bin Pressure Relief Valve	Snort Control Valve Silencer	Stove Depressurisation Valve	Screen	Vibrofeeder	Knocking Block		
RES01	Residential - NCA04	55	30	27	42	10	31	30	36		
RES23	Residential - NCA04	55	35	35	30	14	32	34	40		
RES29	Residential - NCA03	55	38	38	40	18	36	35	45		
RES33	Residential - NCA02	55	27	27	39	8	25	23	31		
RES36	Residential - NCA01	55	22	23	37	3	23	22	14		

 $L_{A1(1min)}$ noise predictions indicate that the sleep disturbance screening criterion is not exceeded at the key residential receivers from worst case maximum noise events. It is noted that the furnace top bleeder is not considered in this $L_{A1(1min)}$ sleep disturbance assessment, as it will only occur as an emergency operation, or during commission testing. In the rare event of its occurrence, $L_{A1(1min)}$ noise levels at residential receivers are expected to be significantly above the $L_{A1(1min)}$ noise criterion, however it is not considered representative of typical maximum noise events as part of normal operation.

As part of the commissioning stage of this project, testing of the furnace top bleeder will need to be undertaken. $L_{A1(1min)}$ noise levels from its testing are predicted to reach up to 85 dBA at the nearest residential receivers. This noise event is expected to last up to approximately 10 seconds, and will be highly intrusive to residential receivers. Appropriate mitigation measures to manage this noise event are provided in Section 8.3.1.

7.1.3 Cumulative noise impacts

As stated in Section 2.1 of the NPfI, "The project amenity noise level seeks to protect against cumulative noise impacts from industry and maintain amenity for particular land uses." The operational noise criteria used in this assessment is more stringent than the NPfI project amenity noise level. It is based on the NPfI discrete process criteria, which aims to ensure the noise emission from the proposal does not contribute to the existing total industrial noise level at the most affected receivers. Compliance with the assessment criteria should ensure there are no cumulative noise impacts as a result of the proposal.

A list of the major projects in the vicinity of the proposal is presenting in Section 9.10.1 of the EIS for reference.

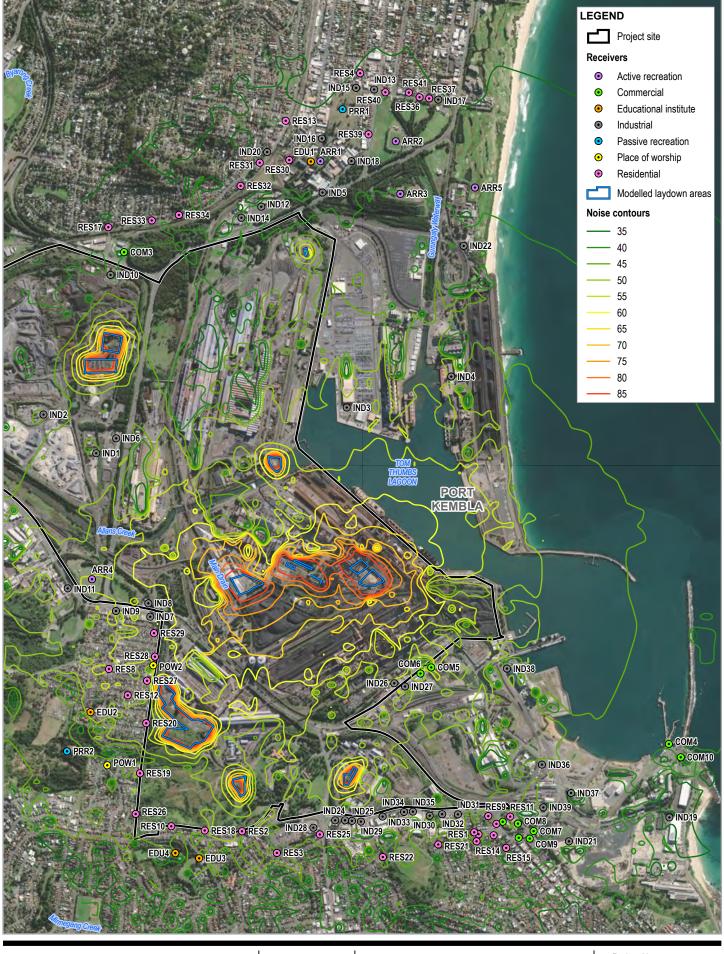
7.2 Construction noise

7.2.1 Predicted noise levels

Construction noise levels have been predicted at the sensitive receivers within the study area with consideration to the acoustic requirements of the ICNG. The predicted maximum noise level along with the NML from laydown area operations for each receiver is provided in Table 7.4 for residential receivers, and Table 7.5 for non-residential receivers. The predicted maximum noise level along with the NML from 6BF construction activities is provided in Table 7.6. The noise modelling assumes that the loudest equipment in the scenario is operating at maximum capacity simultaneously at the closest distance between the construction work area and the receiver. Construction noise contours are provided in Figure 7.3 for laydown area operations, and Figure 7.4 and Figure 7.5 for 6BF construction activities.

Exceedances of the NML during standard construction hours are printed in red. Exceedances of the NML during outside standard construction hours are printed in blue.

Table 7.4 Construction noise levels for laydown areas – Residential receivers


Laydown area and construction activity	Standard hours: 53 OOHW Day: 48	OOHW Evening: 47			Noise Management Levels Standard hours: 49 OOHW Day: 44 OOHW Evening: 44 OOHW Night: 44		
	RES01 (NCA04)	RES23 (NCA04)	RES29 (NCA03)	RES33 (NCA02)	RES39 (NCA01)		
No1W 1 – excavator / forklift	5	38	20	16	8		
No1W 4 – excavator / forklift	3	40	9	10	4		
No1W 5 – excavator / forklift	11	34	17	10	6		
No2B 1– excavator / forklift	13	17	25	22	16		
No2W 1 – excavator / forklift	15	23	25	14	0		
No2W 1 – Rock breaking	30	38	40	29	15		
No2W 2 – excavator / forklift	18	24	29	6	0		
No2W 2 – Rock breaking	33	39	44	21	10		
No2W 3 – excavator / forklift	19	23	27	17	10		
No2W 3 – Rock breaking	33	39	42	32	25		
No2W 4 – excavator / forklift	19	22	22	14	11		
No2W 4 – Rock breaking	34	37	37	29	26		
No2W 5 – excavator / forklift	19	20	21	15	12		
No2W 5 – Rock breaking	34	35	36	30	27		
No2W 6 – excavator / forklift	18	26	34	16	7		
No2W 6 – Rock breaking	33	41	49	31	22		
RA 4 – excavator / forklift	7	11	21	31	15		
RA 5 – excavator / forklift	8	13	22	30	14		
SpringHill Electrical – excavator / forklift	0	1	6	15	19		

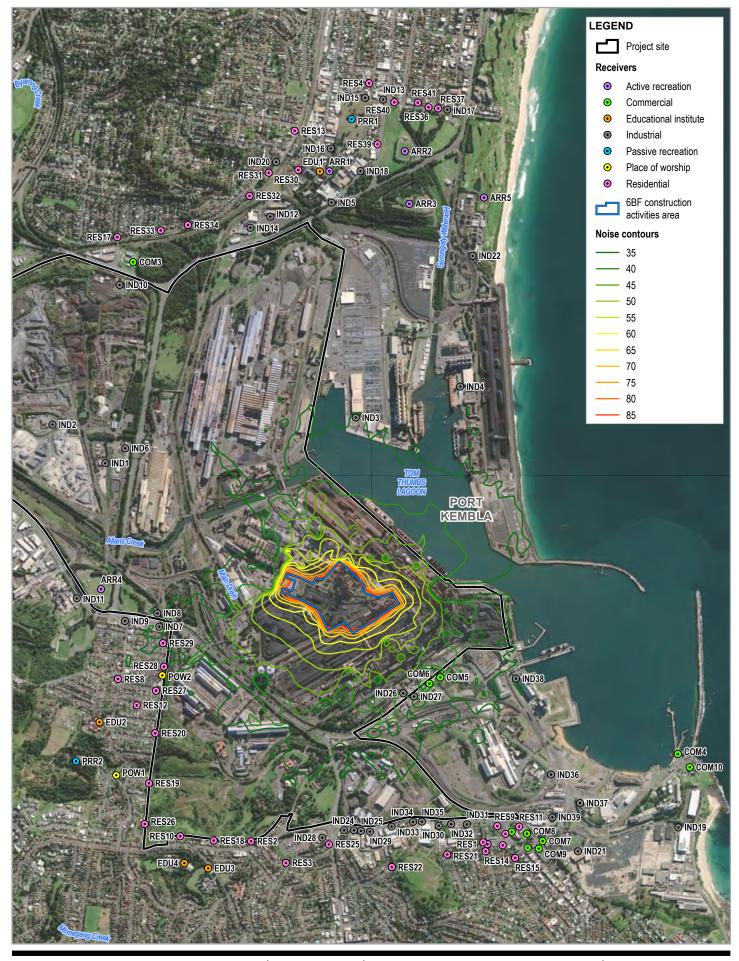
Laydown area and construction activity		NML (Act	ive Recreat	ion) 65 dB/	4	NML (Educational) 55 dBA		NML (Pla worship		NML (Passive Recreation) 60 dBA			
	ARR1	ARR2	ARR3	ARR4	ARR5	EDU1	EDU2	EDU3	EDU4	POW1	POW2	PRR1	PRR2
No1W 1 – excavator / forklift	9	8	10	28	9	9	41	30	28	38	47	7	32
No1W 4 – excavator / forklift	6	5	7	20	6	7	31	23	21	29	27	5	29
No1W 5 – excavator / forklift	7	6	8	17	8	2	23	24	21	20	22	6	19
No2B 1– excavator / forklift	18	16	18	23	16	9	21	10	9	12	12	15	13
No2W 1 – excavator / forklift	1	2	12	20	7	0	22	11	17	17	19	2	13
No2W 1 – Rock breaking	16	17	27	35	22	11	37	26	32	32	34	17	28
No2W 2 – excavator / forklift	0	0	5	23	2	0	25	18	18	20	23	0	18
No2W 2 – Rock breaking	11	10	20	38	17	10	40	33	33	35	38	11	33
No2W 3 – excavator / forklift	10	10	14	22	12	0	25	7	4	9	22	10	12
No2W 3 – Rock breaking	25	25	28	38	26	13	40	21	19	22	37	25	25
No2W 4 – excavator / forklift	8	11	14	17	12	0	20	17	16	15	6	4	7
No2W 4 – Rock breaking	23	26	29	32	27	13	35	32	31	30	21	20	22
No2W 5 – excavator / forklift	14	13	15	17	14	13	21	16	15	8	20	11	14
No2W 5 – Rock breaking	29	28	30	32	29	28	36	31	30	23	35	26	29
No2W 6 – excavator / forklift	9	9	11	31	10	0	29	21	21	22	30	9	22
No2W 6 – Rock breaking	24	24	26	46	25	13	44	36	36	37	45	24	37
RA 4 – excavator / forklift	11	15	17	21	13	20	16	11	10	13	16	16	13
RA 5 – excavator / forklift	10	15	16	26	13	21	18	12	10	14	18	15	14
SpringHill Electrical – excavator / forklift	25	18	21	4	15	7	2	0	0	0	1	17	0

Table 7.5 Construction noise levels for laydown areas – Non-residential receivers

De estiver ID		Prediction construction noise level, LAeq(15min) dBA			
Receiver ID	Noise Management Level, LAeq(15min) dBA	General construction activities ¹	High impact construction works ²		
ARR1		26	35		
ARR2		25	34		
ARR3	65 (Active recreation)	28	37		
ARR4		35	44		
ARR5		26	35		
EDU1		24	33		
EDU2	55 (Educational institute)	38	47		
EDU3	55 (Educational institute)	32	41		
EDU4		30	39		
POW1	55 (Place of worship)	32	41		
POW2	55 (Flace of worship)	38	47		
PRR1	60 (Passive recreation)	24	33		
PRR2	ou (Passive recreation)	30	39		
RES1 (NCA04)	NMLs for Residences in Cringila, Warrawong and Port Kembla:	34	43		
RES23 (NCA04)	Standard hours: 53 OOHW Day: 48	37	46		
RES29 (NCA03)	OOHW Evening: 47 OOHW Night: 47	42	51		
RES33 (NCA02)	NMLs for Residences in Wollongong, Coniston and Mt. St Thomas:	29	38		
RES39 (NCA01)	Standard hours: 49 OOHW Day: 44 OOHW Evening: 44 OOHW Night: 44	26	35		
	lection of the highest noise generating equipment from this scenario's lection of the highest noise generating equipment from this scenario's		-		

Table 7.6 Construction noise levels from 6BF construction activities (main construction site)

Paper Size ISO A4 0.2 0.4 0.6 0.8 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

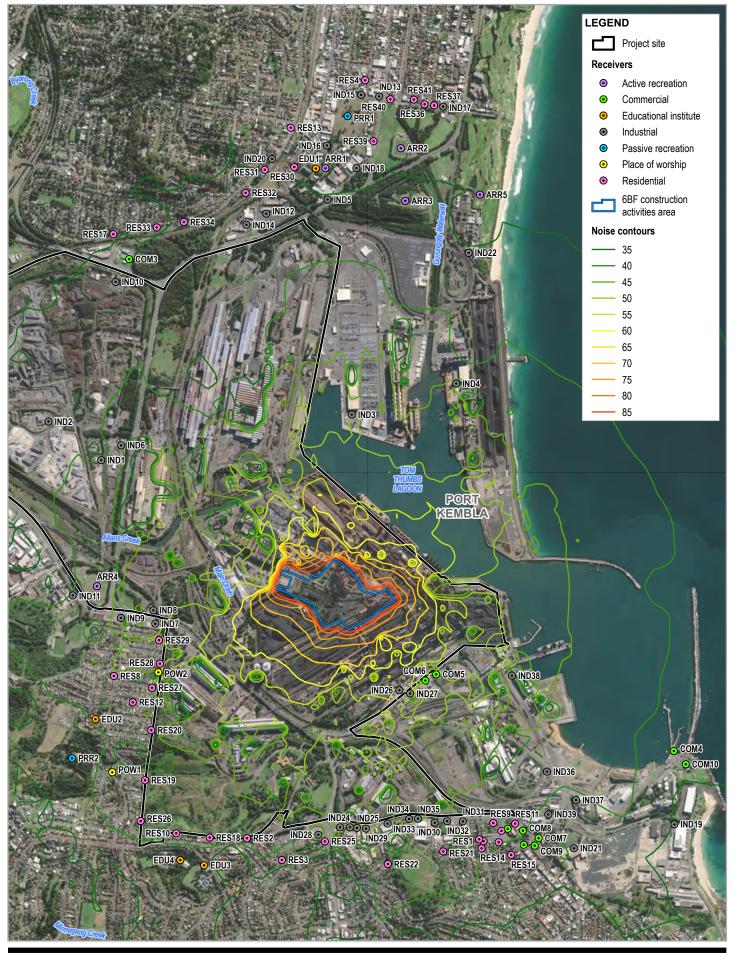

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment

Construction noise contours laydown area operations

Project No. **12541101** Revision No. **0** Date **28/10/2021**

ns FIGURE 7-3 Data source: LPI: DTDB/DCDB, 2017. DPE: Land zones, 2019. World Imagery: Maxar. Created by: tmortom

\ghdnetighdiAUNewcastlelProjects\22\12541101\GISIMaps\12541101_NVIA_0.aprx\12541101_NVIA004_ConstructionNoise_Laydown_0
Print date: 28 Oct 2021 - 10:49



Paper Size ISO A4 0.2 0.4 0.6 0.8 Kilometras Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment Construction noise contours 6BF construction activities, general construction activities Project No. **12541101** Revision No. **0** Date **28/10/2021**

\ghdnetlghd\LUNewcastle\Projects\22112541101\GISIMaps\12541101_NVIA_0.aprx\12541101_NVIA005_ConstructionNoise_6BF_0 Print date: 28 Oct 2021 - 10:49 Data source: LPI: DTDB/DCDB, 2017. DPE: Land zones, 2019. World Imagery: Maxar Created by: tmortor

Paper Size ISO A4 0.2 0.4 0.6 0.8 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Noise and Vibration Impact Assessment Construction noise contours 6BF construction activities, high intensity construction activities Project No. **12541101** Revision No. **0** Date **28/10/2021**

FIGURE 7-5

\ghdnef\ghd\AU\Newcastle\Projects\22\12541101\GiS\Maps\12541101_NVIA_0 aprx\12541101_NVIA006_ConstructionNoise_6BF_H_0
Print date: 28 Oct 2021 - 10:49

Data source: LPI: DTDB/DCDB, 2017. DPE: Land zones, 2019. World Imagery: Maxar Created by: tmortor

7.2.2 Construction noise impacts during standard construction hours

Laydown area operations

It is predicted that construction noise levels from all laydown area operations are below the NML during standard construction hours. As such, long term construction noise impacts from these activities are not anticipated.

6BF construction activities – general construction activities

It is predicted that construction noise levels from 6BF construction activities involving general construction are below the NML for all residential receivers. It is anticipated that these construction activities will make up the majority of construction noise for the life of the construction project.

6BF construction activities - high intensity construction activities

It is predicted that construction noise levels from 6BF construction activities involving high intensity activities are below the NML for almost all residential receivers during standard construction hours.

7.2.3 Construction noise impacts outside standard construction hours

Laydown area operations

It is predicted that rock breaking activities may lead to exceedances of the NML at one residential receiver outside of standard construction hours. For all other receivers, it is predicted that noise generation is below the NML for out of hours works.

It is anticipated that these activities may be required at the project commencement phase for site and laydown area establishment. It is not confirmed these activities will be required however they have been assessed to confirm worst case impacts. It is therefore recommended that these activities be scheduled to only occur during standard construction hours to ensure that construction noise levels do not exceed the NML at the nearest residential receivers during out of hours construction works.

6BF construction activities – general construction activities

It is predicted that construction noise levels from 6BF construction activities involving general construction are below the NML for all residential receivers outside standard construction hours.

6BF construction activities – high intensity construction activities

It is predicted that construction noise levels from 6BF construction activities involving high intensity activities are above the NML at residential receiver RES29 outside standard construction hours. These exceedances will occur during the following activities:

- Rock breaking
- Impact piling

It is recommended that these activities be scheduled to only occur during standard construction hours to ensure that construction noise levels do not exceed the NML at the nearest residential receivers during out of hours construction works.

7.2.4 Construction noise impacts for non-residential receivers

It is predicted that all noise generation from laydown areas and construction activities is below the NML at the nearest noise sensitive non-residential receivers.

7.2.5 Cumulative noise impacts

Section 9.10.1 of the EIS provides a list of proposed major projects in the vicinity of the proposal site. There is the potential for construction of these projects to occur concurrently which may lead to cumulative construction noise impacts. Based on predicted construction noise levels, potential cumulative construction noise impacts would only be anticipated during high intensity 6BF construction activities, however this is only considered minor. Noise emission from all other construction activities is predicted to be significantly below the NMLs at the nearest residential receivers, which makes up the majority of construction activities for the proposal.

When the Construction Noise and Vibration Management Plan for the proposal is prepared, it can be determined whether construction activities are to occur concurrently alongside noise emission from proposed major projects in the vicinity.

7.3 Construction vibration

7.3.1 Vibration safe working distances

The method for the construction vibration assessment included:

- Identifying safe working distances to comply with the human comfort and the cosmetic damage criteria. These
 buffer distances have been adopted from Construction Noise and Vibration Strategy.
- Safe working distances for vibration intensive equipment are shown in Table 7.7. The vibratory equipment associated with the project include vibratory rollers and excavators.
- Buildings within the safe working distances have been identified for consideration of management measures.
- The safe working distance for heritage structures has been estimated as twice the distance as the safe working distance for standard structures.

Safe working distances for vibratory intensive equipment are shown in Table 7.7.

Equipment	Human comfort (OH&E Vibration guideline)	Cosmetic damage to standard structures	Cosmetic damage to heritage structures
Piling rig – Bored <800 mm	N/A	2 m (nominal)	4 m
Piling rig-Hammer (12 t down force)	50 m	15 m	30 m
Piling rig – Vibratory (sheet piles)	20 m	2 m to 20 m	40 m
Vibratory roller (>18 tonnes)	100 m	25 m	50 m
Vibratory roller (13-18 tonnes)	100 m	20 m	40 m
Vibratory roller (7-13 tonnes)	100 m	15 m	30 m
Vibratory roller (4-6 tonnes)	40 m	12 m	24 m
Vibratory roller (2-4 tonnes)	20 m	6 m	12 m
Vibratory roller (1-2 tonnes)	15 m	5 m	10 m
Small hydraulic hammer 300 kg (5-12t excavator)	7 m	2 m	4 m
Medium hydraulic hammer 900 kg (12-18t excavator)	23 m	7 m	14 m
Large hydraulic hammer 1600 kg (18-34t excavator)	73 m	22 m	44 m
Jackhammer (handheld)	Avoid contact with structure	1 m (nominal)	2 m

Table 7.7Vibration safe working distances

7.3.2 Human comfort

It is anticipated that as part of the site preparation phase for works associated with laydown area No.1 Works area 1, a vibratory roller may be used for earthworks. For a conservative assessment, an 18T vibratory roller is considered. The closest distance between the proposed laydown area and the nearest residence is approximately 85 metres, and falls within the buffer distance of 100 metres for an 18T vibratory roller. Whilst this may indicate construction vibration impacts for human comfort, it will only be limited to the duration of this phase of work. Further, this is based on a highly conservative approximation of the potential works; at this stage is not certain whether use of the roller is required, or for what duration. As such, long term residual human comfort vibration impacts are not anticipated.

7.3.3 Structural damage

Rolling activities have the potential to exceed the structural damage vibration criteria should these works occur within 20 metres of residences or 40 metres of heritage structures. No residences or heritage structures have been identified within 40 metres of any construction works and as such, no adverse structural damage vibration impacts are anticipated as a result of the project.

7.4 Construction traffic noise along public roads

7.4.1 Construction traffic generation on public and local private roads

During construction, the project is expected to generate up to 600 light vehicle (300 arrivals and 300 departures) and 300 heavy vehicle (150 arrivals and 150 departures) movements per day and will likely utilise the roads listed in Table 7.8. Public roads adjacent to residences have been assessed against the Road Noise Policy and local private roads adjacent to residences have been assessed against the ICNG NMLs. Roads away from residences have not been included in the assessment as noise impacts are not anticipated.

Public roads adjacent to residences	Public roads not near any residences	Local private roads within PKSW site not near any residences	Local private roads within PKSW site adjacent to residences
 Springhill Road Five Islands Road 	 Flagstaff Road (small section between intersections of Five Islands Road and General Office Road) 	 Cringila Car Park Road Loop Road BlueScope Access Road 	 Emily Road (assessed in Section 7.5)

7.4.2 Noise impacts along public roads

Based on the anticipated construction traffic numbers and timing as outlined in the projects Traffic Impact Assessment (GHD, 2021), the traffic generation for the assessed roads are provided below in Table 7.9.

 Table 7.9
 Construction traffic generation

Road name	Assessment type	Time frame	Light vehicles	Heavy vehicles
Springhill Road	Arterial / sub-arterial – collector roads	Daily	4	44
Five Islands Road		Daily	200	110

Traffic volumes on Springhill Road and Five Islands Road will have to increase by more than 58% to result in an increase of 2 dBA. Mid-block traffic counts for Springhill Road, Five Islands Road and Flinders Street were provided by Transport for NSW (Australian Industrial Energy, 2018) in 2015 as presented in Table 7.10. The traffic generation as a result of the construction works on public roads is considered to be negligible when compared to the existing traffic volumes and as such, the acoustic requirements of the Road Noise Policy (RNP) are anticipated to be met.

Road	Section	24 hour volume (bi-directional), 2015
Five Islands Rd	Between Springhill Rd and Flinders St	40,564
Five Islands Rd-	Between Princes Hwy and Glastonbury Ave	21,686
Five Islands Rd	Between Glastonbury Ave and Springhill Rd	23,890
Five Islands Rd	Between King St and Darcy Rd	8,572
Spring Hill Road-	North of Keira St	17,384
Spring Hill Road-	Between Masters Road and Keira St	42,389
Spring Hill Road-	Between Five Islands Road and Masters Rd	50,185

 Table 7.10
 Existing traffic volumes on haulage routes

7.5 Construction traffic noise within project site

One of the anticipated construction traffic routes involves use of Emily Road, which at certain points is situated approximately 70 metres from residential receivers. These residential receivers are represented by key receiver RES29. Based on the anticipated construction traffic generation (GHD, 2021), approximately 200 light vehicles and 11 heavy vehicles may use this access road between 5:00 am and 6:00 am, and have the potential to lead to construction related noise impacts. Noise modelling has been conducted along Emily Road to assess noise impacts from construction traffic towards residential receivers; because it falls within the project site boundary and not along a public road, it is assessed against the ICNG NMLs rather than the RNP criteria.

The assumptions and results of the assessment are provided below in Table 7.11. It is predicted that noise from construction traffic along Emily Road is below the NML for residential receivers within NCA02. As such, construction noise impacts from traffic along Emily Road is not anticipated.

Assessed Road	Road speed	Road surface	Construction traffic		Dessiver ID	Predicted noise level	NML – night,
			Light vehicles	Heavy vehicles	Receiver ID	L _{Aeq(15min)} , dBA	LAeq(15min), dBA
Emily Road	40 km/hr	DGA	200	11	RES29 – NCA02	48	48

 Table 7.11
 Emily Road construction traffic assessment

7.6 Blasting impacts

Monitoring the slag pit skull blasting for airblast overpressure noise and ground vibration occurred at two locations in January 2009 at the base of the 5BF and at the Merrett Avenue office car-park, the nearest BlueScope residential boundary approximately 1.1 kilometres to the southwest. Monitoring occurred for four blasts in January 2009 and no discernible blast events (ground vibration or airblast overpressure) were identified at the Merrett Avenue office car park (representative of the most-affected residences in Cringila). Blasting required for the 6BF will take place approximately 1.1 kilometres away from the nearest residential receivers in Cringila and will use a similar methodology to the blasting at 5BF. Due to the similar distance from the source, no ground vibration or airblast overpressure impacts from blasting are anticipated at any of the nearby residential receivers.

Blast levels measured in the blast furnace basement area during the slag pit skull blasting (near the source) were up to about 3.5 mm/s ground vibration and airblast overpressures of about 130 to 134 dBL. It is difficult to estimate the airblast overpressure levels at the most-affected residences due to the acoustic shielding provided shell of the blast furnace, however it is anticipated airblast overpressure levels will be well below the criteria of 115 dBL given no blast events could be measured at the Merrett Avenue office carpark during the 5BF blasting activities. Similarly, given ground vibration levels were measured to be 3.5 mm/s near the source of the blasting, ground vibration levels are predicted to be well below 5 mm/s when assessed at the nearest residences over 1 km away.

7.7 Operational traffic impacts

The existing traffic along the haulage route would need to increase by approximately 58 % in order for noise levels to increase by 2 dBA. No operational road traffic noise impacts are expected as existing traffic volumes are not anticipated to increase by over 58 % on any public roads as traffic generation is anticipated to be consistent with the existing conditions during operation.

8. Mitigation measures

8.1 Justification for proposed mitigation measures

Mitigation measures for both construction and operational phases of the proposal are primarily focused around mitigation at the source. This is considered the most feasible and reasonable to implement, as any noise reduction at the source would benefit the greatest number of sensitive receivers. Due to the size of the proposal site, mitigation in transmission between the source and the receiver is not considered as feasible (Note should be made that local shielding/barriers close to noise sources is considered reasonable and feasible). Mitigation at the receiver is not required as noise mitigation at the source is considered appropriate to minimise any potential noise impacts during construction or operation.

8.2 Construction mitigation measures

8.2.1 Reasonable and feasible mitigation measures

The ICNG identifies that, due to the nature of construction, it is inevitable that impacts arise where construction occurs near sensitive receivers. During construction there will be noise impacts on some receivers during certain times and during certain construction activities.

Where noise is above the construction noise management levels, all feasible and reasonable work practices to minimise noise will be implemented, and all potentially affected receivers will be informed.

Control type	Mitigation measure	
At source mitigation measures		
Construction hours and scheduling	Where feasible and reasonable, construction will be carried out during the standard daytime working hours. Work generating high noise and/or vibration levels will be scheduled during less sensitive time periods.	
Equipment selection	Quieter and less vibration emitting construction methods will be used where feasible and reasonable.	
Plant noise levels	The noise levels of plant and equipment will have an operating sound power lower or similar to the levels presented in Table 3.6 and Table 3.7.	
Selection of low-noise attachments for rock breaking equipment	 Where rock breaking and impact piling works are required within No2. Works areas 1,2,3 and 6, mitigations measures should be considered, such as: Low noise attachments for rock breakers Resilient pad (dolly) between pile and hammerhead for impact piling 	
Location of plant	As much distance as possible will be placed between the plant or equipment and residences and other sensitive land uses, where possible.	
Direction of equipment	Equipment with directional noise characteristics will be oriented away from noise sensitive receivers.	
Plan worksites and activities to minimise noise and vibration.	Where additional activities or plant may only result in a marginal noise increase and speed up works, the duration of impact will be limited by concentrating noisy activities at one location and moving to another as quickly as possible.	
Reduced equipment power	Only the necessary size and power of equipment will be used.	
Minimise disturbance arising from delivery of goods to construction sites.	 Loading and unloading of materials/deliveries will occur as far as practically possible from sensitive receivers. 	
Engine compression brakes	The use of engine compression brakes will be limited in proximity to residences.	
Maintain equipment	Equipment will not be operated until it is maintained or repaired, where maintenance or repair would address the annoying character of noise identified.	

 Table 8.1
 Reasonable and feasible mitigation measures during the construction phase

Control type	Mitigation measure	
Reduce size of vibratory roller or compactor	Limit the size of the vibratory compactor to 18 tonnes to maintain the safe work buffer distances.	
Construction traffic within project site	Construction traffic travelling along Emily Road to remain below the speed limit of 40 km/hr.	
Scheduling of high-intensity construction activities	The following works should only be undertaken within recommended standard construction hours Impact piling 	
In transmission path mitigation	- Rock breaking measures	
Utilise acoustic shielding between the source and receiver from buildings / barriers	 Temporary site buildings and materials stockpiles will be used as noise barriers. Natural landform as noise barrier – fixed equipment will be place in cuttings, or behind earth berms. 	

8.2.2 Construction noise and vibration management plan (CNVMP)

A construction noise and vibration management plan (CNVMP) will be developed once a detailed construction methodology has been prepared. The construction noise and vibration management plan will include a review of the construction noise predictions during the environmental impact assessment phase based. The plan will be based on the construction method and include a detailed examination of feasible and reasonable work practices and noise mitigation measures to manage sensitive receivers that are predicted to be 'noise affected'. The construction noise and vibration management plan will also include:

- Details of the construction methodology
- Feasible and reasonable mitigation measures to be implemented
- Updated noise predictions at sensitive receivers
- A noise monitoring procedure and program for the duration of works
- A community consultation plan to liaise with the noise affected receivers, including:
 - Notification to residences a minimum of seven calendar days prior to the start of works and should include information such as total building time, what works are expected to be noisy, their duration, what is being done to minimise noise and when respite periods will occur.
 - A procedure for complaints, including maintaining a compliant register on site.

8.2.3 Construction noise monitoring

A noise monitoring procedure and program will be carried out for the duration of construction works in accordance with the construction noise and vibration management plan and any approval or licence conditions. Monitoring reports will be prepared in accordance with the requirements of the noise monitoring procedures.

Details around specific noise monitoring requirements, locations and procedures would be determined once detailed information around construction activities and scheduling is available. Monitoring would look to assess noise from both 'typical' and 'high intensity' construction activities.

8.2.4 Construction management measures

Management measures to reduce potential noise impacts at sensitive receivers will be incorporated into the CNVMP and will include the following as a minimum:

- All employees, contractors and subcontractors are to receive an environmental induction. The site induction
 must at least include:
 - All project specific and relevant standard noise and vibration mitigation measures.
 - Relevant licence and approval conditions.
 - Permissible hours of work.

- Any limitations on high noise generating activities.
- Location of nearest sensitive receivers.
- Construction employee parking areas.
- Designated loading/unloading areas and procedures.
- Site opening/closing times (including deliveries).
- Environmental incident procedures.
- All rock-breaking and pile driving activities should be confined between the hours: daytime hours of 7:00 am to 6:00 pm from Monday to Friday and 8:00 am to 1:00 pm on Saturday, with the exception of the following activities:
 - The delivery of oversized plant or structures.
 - Emergency work to avoid the loss of life or damage to property, or to prevent environmental harm.
- Works required to be undertaken outside of standard construction hours (ICNG) should be justified in the project CEMP and assessed against the noise requirements of the ICNG.

8.3 Mitigation measures for operation

All conclusions from the operational noise assessment are based on a combination of similar noise sources from 5BF, alongside additional noise measurements where required conducted by GHD in 2021. To check that noise model predictions are representative of 6BF operational noise emission at sensitive receivers, noise validation measurements should be undertaken at an intermediate location in the path between source equipment and Cringila receivers. The location should be selected so that a signal to noise ratio of minimum 10 dB is achieved, with:

- Signal being noise levels from the 6BF operations (6BF, Stockhouse, Slag handling)
- Noise being extraneous noise source not associated with 6BF operations

A proposed noise validation location is provided below in Table 8.2, along with the predicted noise level. This is also graphically provided in Figure 8.1.

Noise validation location coordinates (MGA Z56)		Validation location predicted noise level LAeq(15min), dBA
x	у	
305837	6184054	56

Table 8.2	Noise validation location and predicted noise level

Figure 8.1 Proposed noise validation measurement location – coordinates MGA94 Z56

If the results of the noise validation measurements indicated that operational noise levels are above the noise predictions, then mitigation measures for the Stockhouse and Slag handling areas can be considered for noise reduction. These may include:

- Nearfield shielding adjacent to operating noise sources to block line of site to receivers, such as barriers or enclosures.
- Incorporation of measures to reduce knocking or impact noise for vibrofeeders and screens.
- Selection of low noise vehicles alternatives for industrial pot carriers within the Slag handling area.
- Additional noise measurements of operating equipment, and comparison against assumed noise sources provided in Appendix C. The operational noise model may be refined where appropriate.

8.3.1 Furnace top bleeder testing

It is anticipated that L_{A1(1min)} noise levels from the furnace top bleeder testing will reach up to 85 dBA at the nearest residential receivers. As such, notification will be provided to surrounding residences of this testing prior to its commencement. The notification will include details around its anticipated start time and date, duration of noise event, description of the noise, and anticipated noise levels.

8.4 Operational Noise Management Plan (NMP)

An operational noise management plan should be developed to minimise the risk of adverse noise impacts during the operation. It should be refined throughout the design process and have consideration to:

- The relevant licence conditions
- Conditions of approval

- The Noise Policy for Industry
- Australian Standards 1055 Acoustics Description and measurement of environmental noise
- Approved methods for the measurement and analysis of environmental noise in NSW currently in draft form
- Conclusions of validation noise monitoring prior to operations commencing

The operational noise management plan should include:

- Operational noise management measures to be implemented
- Updated operational noise predictions at sensitive receivers
- A noise monitoring program
- A complaints handling protocol

Table 8.3 provides draft inclusions for incorporation into the operational noise management plan to minimise the risk of adverse noise impacts at sensitive receivers during the operation.

Table 8.3Draft operational noise management plan inclusions

Control type	Measure
Operational noise manageme	ent measures for operators/workers
Operational noise management measures for operators/workers	 All equipment will be properly maintained in accordance with the manufacturer's specifications. All equipment will be operated in the appropriate manner. The use of engine/compression brakes on-site will be minimised. Dropping and scraping of materials on the ground will be minimised, where practical. Building openings such as doors or shutters will remain closed when not in use. All buildings and enclosures will be maintained to preserve their acoustic performance. All significant items of noisy plant will be designed and tested to meet the required internal or external noise levels to satisfy environmental noise goals. Where noisy maintenance is required, it will be scheduled to occur during periods when receivers are less sensitive, such as during the daytime.
Noise monitoring program	
Noise complaint records	In the event of a noise complaint received from the community, the complaint will be promptly investigated and resolved.
Noise monitoring qualifications	All attended noise monitoring will be carried out by a suitably qualified noise specialist. Records of routine equipment calibration and testing will be maintained by the qualified noise specialist undertaking the monitoring.
Frequency of noise monitoring	Noise monitoring will be carried out during the first year of operation, to confirm compliance and verify noise emissions. On completion of this year, the frequency of noise monitoring will be reviewed.

9. Evaluation and conclusion

This noise and vibration impact assessment report has been prepared on behalf of BlueScope for the project to support the EIS and responds to the SEARs for noise and vibration. It describes the existing ambient and background noise and vibration and assesses the potential noise impacts associated with the construction and operational phases of the proposal and the increases in noise along the local transport network (during construction and operation) with respect to the following guidelines:

- Operational phase Noise Policy for Industry (NPfI) (EPA, 2017)).
- Construction phase Interim Construction Noise Guideline (ICNG) (DECC, 2009). The Draft Construction Noise Guideline (DCNG) (EPA, 2021) has also been considered for general guidance only.
- Road transport network Road Noise Policy (DECCW, 2011).
- Vibration Assessing Vibration: A Technical Guideline (DEC, 2006) and BS 7385-2:1993 Evaluation and measurement for vibration in buildings Part 2 – Guide to damage (British Standards, 1993).
- Blasting Technical Basis for Guidelines to Minimise Annoyance due to blasting overpressure and ground vibration (ANZEC, 1990).

Recommended mitigation and management measures were identified in response to the impact assessment findings.

9.1 Impacts from the proposal during operation

An assessment of operational noise from the proposal has been undertaken to predict noise levels at noise sensitive receivers. Operational noise criteria has been proposed for residential receivers based on a review of the existing Environment Protection License (EPL) 6092 for the 5BF, and guidance from the NSW EPA *Noise Policy for Industry* (NPfI) (NSW EPA, 2017). Operational noise criteria for non-residential receivers has been provided from NPfI.

An operational noise model has been prepared to predict operational noise levels at noise sensitive receivers. Predictions show that compliance with the proposed operational noise criteria is achieved at all noise sensitive receivers, based on the operation of equipment considered part of typical operations. An acoustic intensity breakdown of received noise levels indicate that noise emission from the Slag handling and Stockhouse operational source group areas comprise over half of the received acoustic energy from the site.

The operational noise criteria used in the assessment is based on the NPfI discrete process criteria, which aims to ensure that noise emission from the proposal does not contribute to the existing total industrial noise level at the most affected receivers. As compliance is achieved, no cumulative noise impacts are anticipated considering the existing industrial noise in the area are anticipated.

To ensure that noise predictions are representative of operational noise levels from the proposals, noise validation measurements should be undertaken prior to operations commencing. Based on the results of this, the noise model and assumptions may be refined, and operational mitigation measures can be incorporated where appropriate. This may include:

- Nearfield source shielding, such as barriers and enclosures.
- Impact noise mitigation devices.

Sleep disturbance impacts have been assessed against the sleep disturbance screening criterion provided in the NPfI. Operational activities with the potential for short-duration $L_{A1(1min)}$ noise events have been identified, and predictions have been made to residential receivers. It is predicted that $L_{A1(1min)}$ noise levels are below the screening criterion, and as such no sleep disturbance noise impacts are anticipated from the proposal.

9.2 Impacts from the proposal during construction

Construction noise levels have been predicted to the sensitive receivers within the study area with consideration to the acoustic requirements of the *Interim Construction Noise Guideline* (DECCW, 2011). Construction scenarios have been prepared to assess construction noise from laydown area operations, and 6BF construction activities.

It is predicted that construction noise levels from almost all laydown area operations and construction area activities are below the NMLs for all sensitive receivers, for works both within and outside standard construction hours. Exceedances of the NMLs are predicted during high intensity 6BF construction activities outside of standard construction hours. These exceedances are triggered from the use of high noise generating equipment such as impact piles and rock breakers, and will occur for a short duration at the commencement of construction activities. It is planned that they only take place within standard construction hours. At source mitigation treatments may also be considered such as:

- Low noise attachments for rock breakers.
- Resilient pad (dolly) between pile and hammerhead for impact piling.

There is the potential for construction of these projects to occur concurrently which may lead to cumulative construction noise impacts. Based on predicted construction noise levels, potential cumulative construction noise impacts would only be anticipated during high intensity 6BF construction activities, however this is only considered minor. Noise emission from all other construction activities is predicted to be significantly below the NMLs at the nearest residential receivers, which makes up the majority of construction activities for the proposal.

An assessment of construction vibration has been undertaken against criteria from Assessing Vibration: A *Technical Guideline* (DEC, 2006) for structural damage, and *BS6472: Guide to Evaluation of Human Exposure to Vibration in Buildings* (1 Hz to 80 Hz) (British Standards, 2008) for human comfort impacts. It is anticipated that short term human comfort impacts may be experienced for residences close to site preparation works in the No.1 Works laydown area during the use of an 18T vibratory roller. These impacts will be limited to the duration of the these works, which are anticipated to only occur for a short duration at the commencement of construction activities. It is based on a highly conservative approximation of the potential works, since at this stage it is not certain whether the roller is required, or for what duration.

Monitoring occurred for four blasts in January 2009 as part of previous reline works. It concluded no discernible blast events (ground vibration or airblast overpressure) were identified at monitoring undertaken 1.1 kilometres to the southwest. Similarly blasting required for the 6BF will take place approximately 1.1 kilometres away from the nearest residential receivers in Cringila and will use a similar methodology to the blasting at 5BF. Due to the similar distance from the source, no ground vibration or airblast overpressure impacts from blasting are anticipated at any of the nearby residential receivers.

Construction traffic noise levels on public roads are predicted to comply with the road traffic noise assessment criteria at the nearest residential receiver to the road and no construction traffic impacts are expected. Construction traffic along internal private roads near sensitive receivers is also predicted to comply with construction NMLs for the site.

10. References

ANZEC. (1990). Technical Basis for Guidelines to minimise annoyance due to blasting overpressure and ground vibration.

Australian Industrial Energy. (2018). Appendix K Traffic and Access report – Port Kembla Gas Terminal EIS.

Australian Industrial Energy. (2018). Port Kembla Gas Terminal – Noise and Vibration Impact Assessment.

Australian Standards. (2010). Guide to noise and vibration control on construction, demolition and maintenance sites.

Australian Standards. (2018). AS1055 Description and Measurement of Environmental Noise.

BlueScope Steel / Hatch. (2009). Environmental noise and vibration monitoring results for No. 5 Blast Furnace Reline Project .

British Standards. (1993). Evaluation and measurement for vibration in buildings Part 2 – Guide to damage .

British Standards. (2000). Building acoustics - Estimation of acoustic performance of buildings based on the performance of elements – Part 4: Transmission of indoor sound to the outside'.

British Standards. (2008). BS6472 Guide to Evaluation of Human Exposure to Vibration in Buildings.

British Standards. (2009). Code of Practice Part 2 Vibration for noise and vibration on construction and open sites – Part 2: Vibration .

CONCAWE. (1981). The propagation of noise from petroleum and petrochamical complexes to neighbouring communities.

DEC. (2006). Assessing Vibration: A Technical Guideline.

DECC. (2009). Interim Construction Noise Guideline.

DECCW. (2011). Road Noise Policy.

Department of Transport, Welsh Office. (1988). Calculation of Road Traffic Noise (CoRTN).

DPIE. (2021). Secretary's Environmental Assessment Requirements XXXX.

EPA. (2017). Noise Policy for Industry.

EPA. (2021). Approved methods for the measurement and analysis of environmental noise in NSW (draft form).

EPA. (2021). Draft Construction Noise Guideline.

GHD. (2021). Jerrara Power EfW facility - Environmental Impact Assessement.

ISO. (1996). Acoustics — Attenuation of sound during propagation outdoors — Part 2: General method of calculation.

RMS. (2016). Construction Noise and Vibration Guideline.

TfNSW. (2016). Construction Noise and Vibration Guideline.

TfNSW. (2019). Construction Noise and Vibration Strategy.

Appendices

Appendix A Acoustic concepts and terminology

Acoustic concepts and terminology

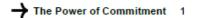
Definition of 'noise'

Sound may be defined as any pressure variation that the human ear can detect. The terms "sound" and "noise" are more or less interchangeable however, "noise" is generally often referred to as unwanted sound.

Factors that contribute the environmental noise

Noise from an activity such as construction noise or noise during the operation of a facility at a given receiver location can be affected by a number of different factors, including:

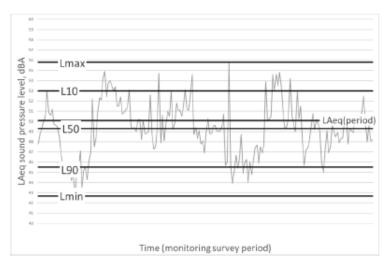
How loud the source activity is and the type of source:


- Point (for e.g. a pump or motor)
- Line (for e.g. a road or railway line)
- Area (for e.g. the external façades of an industrial building)
- The distance from the source to receiver
- The type of ground between the sound and receiver locations (e.g. hard surfaces or porous ground)
- The ground topography between the source and the receiver. For e.g. is it flat or hilly? Blocking the line of sight will generally reduce the noise level for the receiver
- Obstacles that may block the line of sight between the source and the receiver. For e.g. buildings or noise walls
- Atmospheric absorption (dependent on humidity and temperature)
- Meteorological conditions that may increase or reduce environmental sound propagation (for e.g. wind direction or temperature inversions)

Noise measurements

Noise is generally measured using a specially designed 'sound level meter' (SLM) and must meet internationally recognized performance standards. To avoid expressing sound or noise in terms of Pa, which could involve some unmanageable numbers, the logarithmic decibel or dB scale is used. The scale uses the hearing threshold of 20 μ Pa or 20 x 10⁻⁸ Pa as the reference level and is defined as 0 dB.

Typical noise levels


The table below presents typical noise sources for each various sound pressure levels and a corresponding subjective noise level description.

Subjective level	Sound pressure level (dBA)	Typical sources
Silent	0	Threshold of hearing
Almost silent	20	Recording studio
Quiet	30	Bedroom
	40	Private office
Moderate	50	General office
	60	Department store
Loud	70	Loud television
	80	Kerb side of busy street
Very loud	90	Construction site
	100	Loud car horn (3 m away)
Extremely loud	110	Grinding on steel
	120	Heavy rock concert
Intolerable	130	Threshold for pain

Typical noise descriptors

Noise is represented by the descriptor L_{AN}, representing a statistical sound measurement recorded on the 'A' weighted scale. A typical noise monitoring chart is shown in the graph below along with the noise descriptors.

Where:

- L_{Amax}: The maximum sound level recorded during the measurement period.
- L_{Amin}: The minimum sound level recorded during the measurement period.
- LA10(period): The A-weighted sound pressure level that is exceeded for 10% of the measurement period.
- L_{Aeq(period)}: Equivalent sound pressure leve, the steady sound level that, over a specified period of time, would produce the same energy equivalence as the fluctuating sound level actually occurring.
- LA90(period): The A-weighted sound pressure level that is exceeded for 90% of the time over which a
 given sound is measured. This is considered to represent the background noise e.g. LA90(15min).

Changes in noise levels

The table below presents a qualitative description of average human responses to changes in noise levels.

Difference	Human response
Difference of 2 dBA	Generally imperceptible by the human ear
Difference of 5 dBA	Considered significant
Difference of 10 dBA	Perceived as a doubling (or halving) of the noise source
Addition of two identical noise levels	Increase levels by 3 dBA
Addition of second noise level of similar character	If the secondary noise level is a minimum 8 dBA below the primary noise level, the noise level will not significantly increase
Doubling of distance between source and receiver	Results in a 3 dBA decrease for a line source and 6 dBA for a point source
A doubling of traffic volume	Results in a 3 dBA increase in noise

Audibility of noise

The table below presents quantitative guidance and qualitative descriptions regarding the audibility of noise.

Audibility	Description
Inaudible	Noise source cannot be heard. The noise level is generally less than the background noise level, potentially by more than 10 dBA or greater
Barely audible	Characteristics of the noise is difficult to define or masked by extraneous noise. The noise level is generally 5-7 dBA below the background noise or ambient noise level, depending on the nature of the noise e.g. constant or intermittent
Just audible	Characteristics of the noise can be defined but extraneous noise sources are also contributing to the received noise. The noise level is typically below the background and ambient noise level.
Audible	Characteristics of the noise can be easily defined. The noise level may be at the level of the background noise and above.
Dominant	The noise source is significantly 'louder' than all other noise sources. The noise level will likely be significantly greater than the background noise level.

Types of noise sources

The table below offers a qualitative description of various noise types and provides the noise descriptor that is typically used to measure the type of noise.

Duration of the noise	Description	
Continuous noise	Continuous noise is produced by equipment or activities that operates without interruption in the same mode, for e.g. blowers, pumps and processing equipment. Measuring for just a few minutes with hand-held equipment is sufficient to determine the noise level. If tones or low frequencies are heard, the frequency spectrum can be measured for documentation and further analysis. Continuous noise sources are generally captured by the Lso noise descriptor.	
Intermittent noise	Intermittent noise is a noise level that increases and decreases rapidly. This might be caused by a train passing by, factory equipment that operates in cycles, or aircraft flying above. Intermittent noise is measured in a similar way to continuous noise, with a sound level meter. The duration of each occurrence and the time between each event is important to note. To gain a more reliable estimate of the noise level, multiple occurrences of the noise source is measured to gain a reliable estimate. Intermittent noise sources are generally captured by the Leq noise descriptor.	
Impulsive noise	The noise from impacts or explosions, for e.g. from a pile driver, punch press or gunshot, is called impulsive noise. It is brief and abrupt, and its startling effect causes greater annoyance than would be expected from a simple measurement of sound pressure level. To quantify the impulsiveness of noise, the difference between a quickly responding and a slowly responding parameter can be used. Impulsive noise sources are generally captured by the Lmax or Lpeak noise descriptor.	
Frequency content	Description	
Low frequency	Noise containing major components in the low-frequency range (10 hertz [Hz] to 160 Hz) of the frequency spectrum	
Tonal noise	Tonal noise contains one or more prominent tones (i.e. distinct frequency components), and is normally regarded as more offensive than 'broad band' noise	
Defining characteristic	Description	
Extraneous noise	Noise resulting from activities that are not typical of the area. Atypical activities may include construction, and traffic generated by holiday periods and by special events such as concerts or sporting events. Normal daily traffic is not considered to be extraneous.	
Subject noise	The noise in question removed from any extraneous noise in the area	
Offensive noise	The definition of offensive noise in the POEO Act is noise:	
	(a) that, by reason of its level, nature, character or quality, or the time at which it is made, or any other circumstances:	
	 (i) is harmful to (or is likely to be harmful to) a person who is outside the premises from which it is emitted, or 	
	(ii) interferes unreasonably with (or is likely to interfere unreasonably with) the comfort or repose of a person who is outside the premises from which it is emitted, or	
	(b) that is of a level, nature, character or quality prescribed by the regulations or that is made at a time, or in other circumstances, prescribed by the regulations.	

Frequency analysis

Frequency analysis is the process used to examine the tones (or frequency components) which make up the overall noise or vibration signal. This analysis was traditionally carried out using analogue electronic filters, but is now normally carried out using Fast Fourier Transform (FFT) analysers. The units for frequency are Hertz (Hz), which represent the number of cycles per second. Frequency analysis can be in:

- Octave bands (where the centre frequency and width of each band is double the previous band)
- 1/3 octave bands (3 bands in each octave band)
- Narrow band (where the spectrum is divided into 400 or more bands of equal width)

4

Vibration

Definition of 'vibration'

Vibration may be defined as cyclic or transient motion. This motion can be measured in terms of its displacement, velocity or acceleration. Most assessments of human response to vibration or the risk of damage to buildings use measurements of vibration velocity.

Vibration descriptors

These may be expressed in terms of 'peak' velocity or 'rms' velocity. The former is the maximum instantaneous velocity, without any averaging, and is sometimes referred to as 'peak particle velocity', or PPV. The latter incorporates 'root mean squared' averaging over some defined time period. Vibration measurements may be carried out in a single axis or alternatively as triaxial measurements. Where triaxial measurements are used, the axes are commonly designated vertical, longitudinal (aligned toward the source) and transverse. The common units for velocity are millimetres per second (mm/s). As with noise, decibel units can also be used, in which case the reference level should always be stated. A vibration level V, expressed in mm/s can be converted to decibels by the formula 20 log (V/Vo), where Vo is the reference level (10⁻⁹ m/s). Care is required in this regard, as other reference levels may be used by some organisations.

Types of vibration

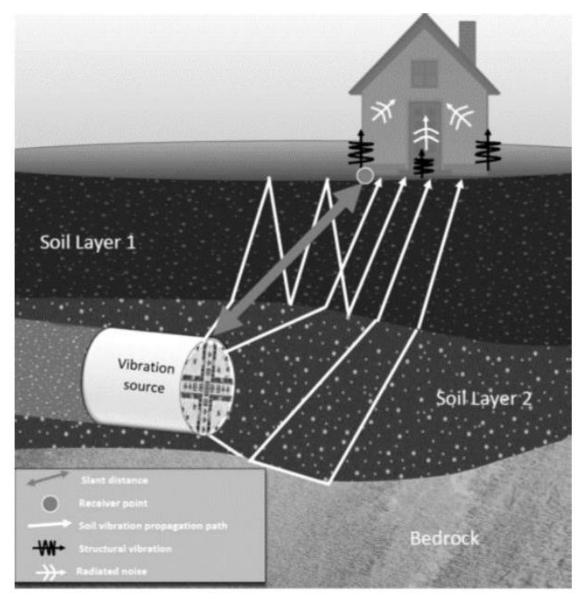
Vibration in buildings can be caused by many different external sources, including industrial, construction and transportation activities. The vibration may be continuous (with magnitudes varying or remaining constant with time), impulsive (such as in shocks) or intermittent (with the magnitude of each event being either constant or varying with time). A description of each vibration type including examples are presented in the table below.

Vibration type	Description	Examples
Continuous vibration	Vibration continues uninterrupted for a defined period (usually throughout daytime and/or night-time). This type of vibration is assessed on the basis of weighted rms acceleration values	Machinery, steady road traffic, continuous construction activity (such as tunnel boring machinery)
Impulsive vibration	A vibration source (continuous or intermittent) which has a rapid build up to a peak followed by a damped decay that may or may not involve several cycles of vibration (depending on frequency and damping). This type of vibration is assessed on the basis of weighted rms acceleration values	Infrequent: Activities that create up to 3 distinct vibration events in an assessment period, e.g. occasional dropping of heavy equipment, occasional loading and unloading.
Intermittent vibration	Interrupted periods of continuous (for e.g. a drill) or repeated periods of impulsive vibration (for e.g. a pile driver), or continuous vibration that varies significantly in magnitude. This type of vibration is assessed on the basis of vibration dose values	Trains, nearby intermittent construction activity, passing heavy vehicles, forging machines, impact pile driving, jack hammers. Where the number of vibration events in an assessment period is three or fewer this would be assessed against impulsive vibration criteria

How humans perceive vibration

People are able to 'feel' vibration at levels lower than those required to cause even superficial damage to the most susceptible classes of building (even though they may not be disturbed by the motion). An individual's perception of motion or response to vibration depends very strongly on previous experience and expectations, and on other connotations associated with the perceived source of the vibration. For example, the vibration that a person responds to as 'normal' in a car, bus or train is considerably higher than what is perceived as 'normal' in a shop, office or dwelling.

Typical vibration levels


Typical ground vibration from civil construction activities occurs in the frequency range of approximately 8 Hz to 100 Hz. Within this frequency range, building contents such as blinds and pictures would commence visible movement at 0.5 mm/s. At vibration levels higher than 0.9 mm/s, rattling of windows, crockery or loose objects would be audible and annoying.

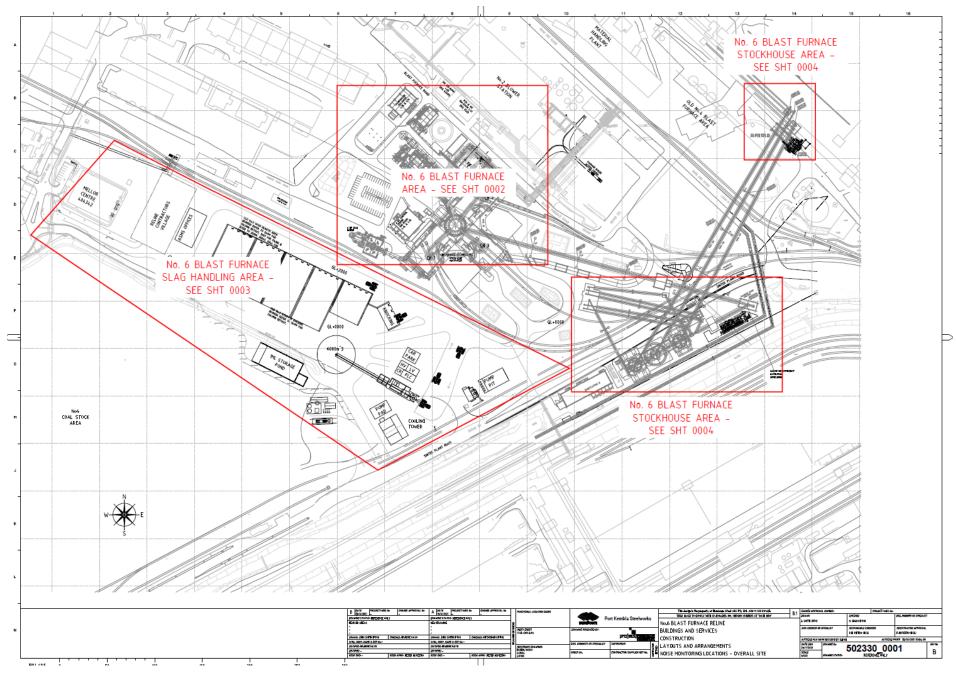
Velocity level (mm/s)	Typical source	Response
0.01	Typical background vibration level	Scanning electron microscopes to 50000 x amplification
0.03		500x amplification bench microscopes
0.1	Average passenger train vibration	Approximate threshold for human perception of vibration
0.3	Average freight train vibration Max passenger train vibration	Approx. residential annoyance for train passbys
1	Large rock breaker	Vibration level that will generally result in complaints
3	Blasting/ Impact pile driving	Threshold for minor cosmetic damage

Ground-borne noise and vibration

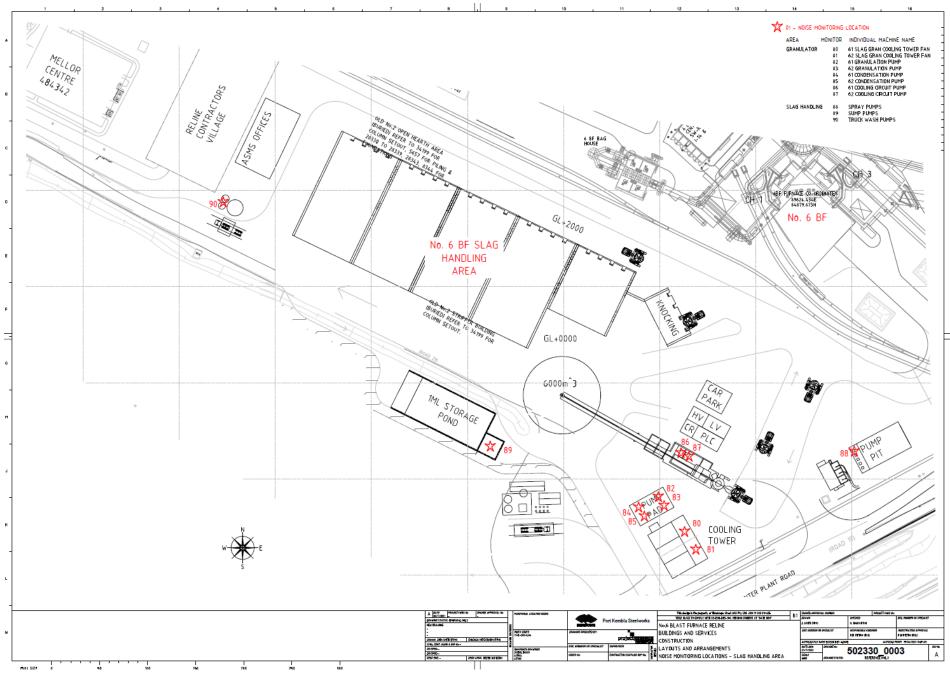
Noise that propagates through a structure as vibration and is radiated by vibrating wall, ceiling and floor surfaces is termed "ground-borne noise", "regenerated noise", or sometimes "structure borne noise". Ground-borne noise originates as vibration and propagates between the source and receiver through the ground and/or building structural elements, rather than through the air. Typical sources of ground-borne noise include tunnelling construction works or underground railway operations.

The figure below presents the various paths by which vibration and ground-borne noise may be transmitted between a source and receiver for construction activities that occur below the ground level (for e.g. a tunnel boring machine).

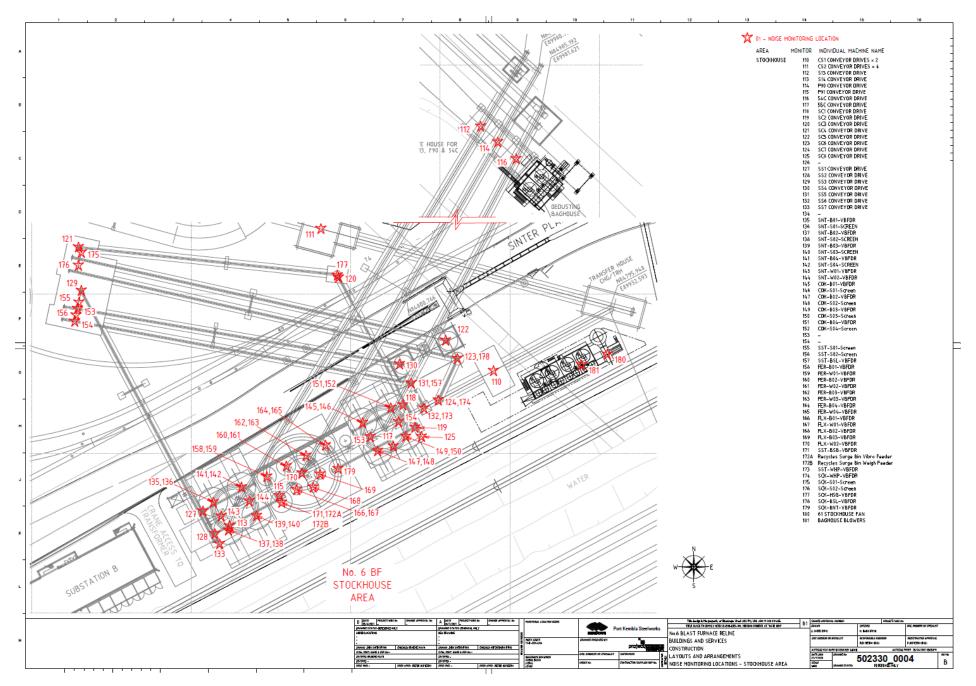
Acronyms and abbreviations

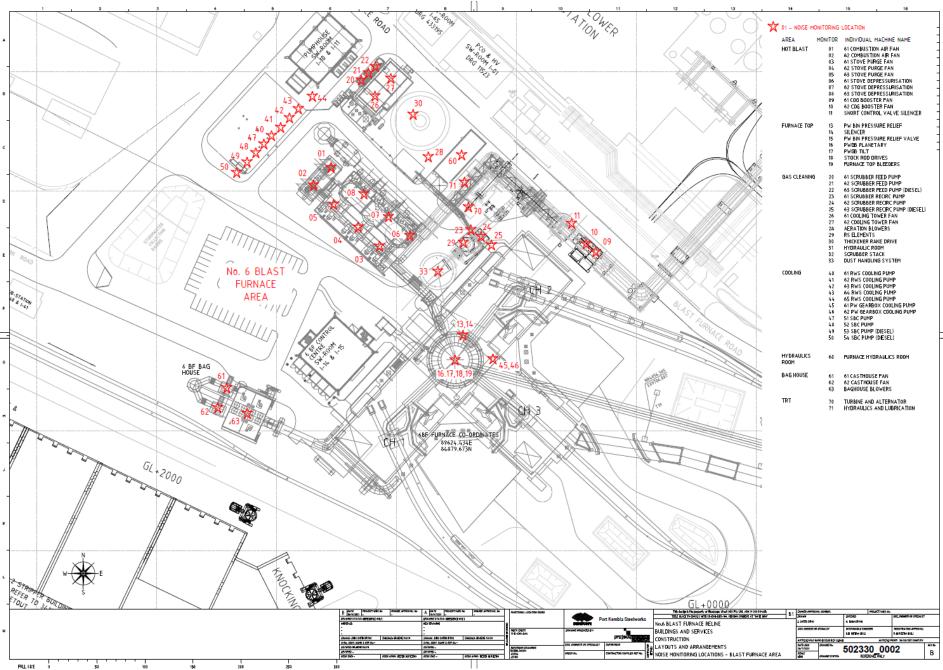

Term	Definition	
AWS	Automatic Weather Station	
BOM	Bureau of Meteorology	
dB	Decibel is the unit used for expressing the sound pressure level (SPL) or power level (SWL) in acoustics.	
dBA	Decibel expressed with the frequency weighting filter used to measure 'A-weighted' sound pressure levels, which conforms approximately to the human ear response, as our hearing is less sensitive at low and high frequencies.	
dBZ or dBL	The unit used to measure 'Z-weighted' sound pressure levels with no weighting applied, linear.	
CEMP	Construction Environmental Management Plan	
DECC	Department of Environment and Climate Change	
DECCW	Department of Environment, Climate Change and Water	
EPA	Environmental Protection Authority	
ICNG	Interim Construction Noise Guideline (DECC, 2009).	
NPfl	Noise Policy for Industry (EPA, 2017).	
LAeq(period)	Equivalent sound pressure level: the steady sound level that, over a specified period of time, would produce the same energy equivalence as the fluctuating sound level actually occurring.	
LA10(period)	The noise level exceeded for 10 per cent of the time and is approximately the average of the maximum noise levels.	
LA90(period)	The sound pressure level that is exceeded for 90% of the measurement period.	
Lamax	The absolute maximum noise level in a noise sample	
NSW	New South Wales	
OOHW	Out-of-hours Works	
PPV	Peak particle velocity is the maximum vector sum of three orthogonal time-synchronized velocity components regardless of whether these component maxima occurred simultaneously.	
RBL	Rating Background Level . The overall single-figure background level representing each assessment period (day/evening/night) over the whole monitoring period.	
rms	Root Mean Square Amplitude (rms) is the square root of the average of the squared values of the waveform. In the case of the sine wave, the RMS value is 0.707 times the peak value, but this is only true in the case of the sine wave.	
RNP	Road Noise Policy (DECCW, 2011).	
SEARs	Secretary's Environmental Assessment Requirements	
SPL	Sound Pressure Level	
SWL	Sound Power Level	
SWRO	Seawater Reverse Osmosis	
Rw	Weighted Sound Reduction Index which provides a single-number quantity which characterises the airborne sound insulation of a material or building element over a range of frequencies	
твм	Tunnel Boring Machine	
VDV	Vibration dose value - As defined in BS6472 – 2008, VDV is given by the fourth root of the integral of the fourth power of the frequency weighted acceleration.	
WFP	Water Filtration Plant	

Common Terms


Term	Definition
A weighting	The human ear responds more to frequencies between 500 Hz and 8 kHz and is less sensitive to very low-pitch or high-pitch noises. The frequency weightings used in sound level measurements are often related to the response of the human ear to ensure that the meter better responds to what you actually hear
Adverse weather	Weather effects that enhance noise (that is, wind and temperature inversions) that occur at a site for a significant period of time (that is, wind occurring more than 30% of the time in any assessment period in any season and/or temperature inversions occurring more than 30% of the nights in winter).
Ambient noise	The all-encompassing noise associated within a given environment. It is the composite of sounds from many sources, both near and far. This is described using the Leq descriptor
Background noise	The underlying level of noise present in the ambient noise, excluding the noise source under investigation, when extraneous noise is removed. This is described using the L90 descriptor
Compliance	The process of checking that source noise levels meet with the noise limits in a statutory context.
Determining authority	Defined by Section 110 of the <i>Environmental Planning and Assessment Act</i> 1979 as 'a Minister or public authority and, in relation to any activity, means the Minister or public authority by or on whose behalf the activity is or is to be carried out or any Minister or public authority whose approval is required in order to enable the activity to be carried out.'
Extraneous noise	Noise resulting from activities that are not typical of the area. Atypical activities may include construction, and traffic generated by holiday periods and by special events such as concerts or sporting events. Normal daily traffic is not considered to be extraneous
EIS	Environmental Impact Assessment
Feasible and reasonable measures	Feasibility relates to engineering considerations and what is practical to build. reasonableness relates to the application of judgement in arriving at a decision, taking into account the following factors: - Noise mitigation benefits (amount of noise reduction provided, number of people protected); Cost of mitigation (cost of mitigation versus benefit provided); Community views (aesthetic impacts and community wishes);
	Noise levels for affected land uses (existing and future levels, and changes in noise levels)
Ground-borne noise	Noise heard within a building that is generated by vibration transmitted through the ground into the structure from construction works, sometimes referred to as 'regenerated noise' or 'structure-borne noise'. Ground-borne noise can be more noticeable than airborne noise for underground works such as tunnelling. The ground-borne noise levels are only applicable when ground-borne noise levels are higher than airborne noise levels.
Ground-borne vibration	Vibration transmitted from a source to a receptor via the ground
Hertz	The measure of frequency of sound wave oscillations per second. 1 oscillation per second equals 1 hertz.
Masking	The phenomenon of one sound interfering with the perception of another sound. For example, the interference of traffic noise with use of a public telephone on a busy street.
Maximum noise event	The loudest event or events within a given period of time. This is generally described using the L _{max} descriptor
Meteorological conditions	Wind and temperature inversion conditions
Most-affected location	Location(s) that experience (or will likely experience) the greatest noise impact from the construction works under consideration. In determining these locations, existing background noise levels, noise source location(s), distance and any shielding between the construction works (or proposed works) and the residences and other sensitive land uses need to be considered.

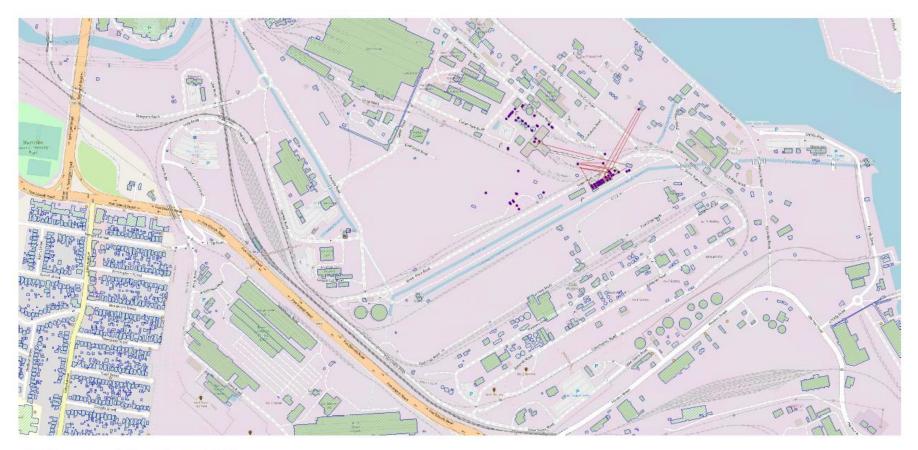
-	
Term	Definition
Noise management level	The Noise Management Level (NML) as defined as the EPA's ICNG. To be measured and assessed at the property boundary that is most exposed to construction noise, and at a height of 1.5 m above ground level. If the residential property boundary is more than 30 m from the residence, the location for measuring or predicting noise levels is at the most affected point within 30 m of the residence.
Noise sensitive receiver	An area or place potentially affected by noise which includes: a residential dwelling an educational institution, library, childcare centre or kindergarten a hospital, surgery or other medical institution an active (e.g. sports field, golf course) or passive (e.g. national park) recreational area commercial or industrial premises
	a place of worship.
Non-compliance	Development is deemed to be in non-compliance with its noise consent/ licence conditions if the monitored noise levels exceed its statutory noise limit (exceptions may be given if the noise level exceeds by less than 2 dB)
Octave	A division of the frequency range into bands, the upper frequency limit
Project noise trigger level	Target noise levels for a particular noise generating facility. They are based on the most stringent of the intrusive criteria or amenity criteria. Which of the two criteria is the most stringent is determined by measuring the level and nature of existing noise in the area surrounding the actual or propose noise generating facility.
Proposal	The construction and operation of the SWRO site, the modifications to the Illawarra WFP site and associated infrastructure including the power route, the delivery pipeline, the se and the intake and outlet tunnels.
proposal site	The immediate location of the proposal, which is the area that has the potential to be directly disturbed by construction and operation.
Resonance	Resonance describes the phenomenon of increased amplitude that occurs when the frequency of a periodically applied force is equal or close to a natural frequency of the system on which it acts.
Study area	Land in the vicinity of, and including, the proposal site. The 'study area' is the wider area surrounding the proposal site.
Temperature inversion	An atmospheric condition in which temperature increases with height above the ground.
Third-octave	Single octave bands divided into three parts.
1	


Appendix B Operational noise sources general arrangement

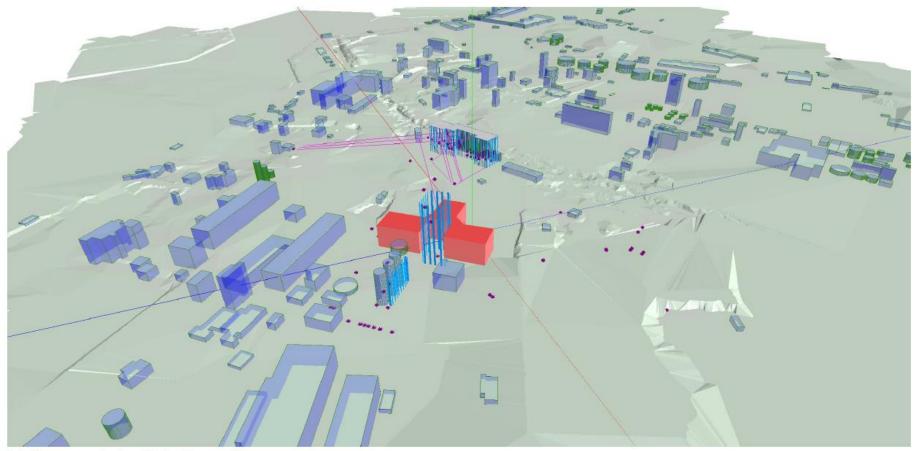

GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project

GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project

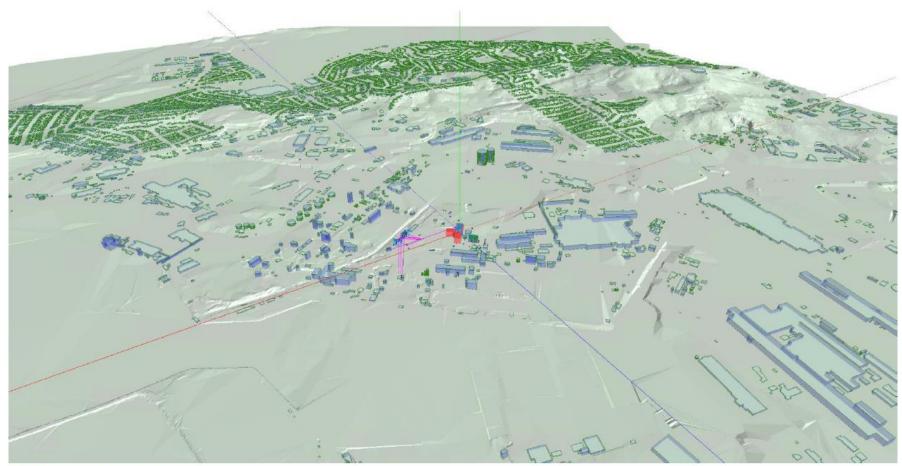
GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project



GHD | BlueScope Steel (AIS) Pty Ltd | 12541101 | Blast Furnace No. 6 Reline Project


Appendix C Noise source levels and modelling assumptions

Hot Blast 61 Comit Hot Blast 62 Comit Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 COG Hot Blast 62 Stove Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Gas Cleaning 61 Socio Gas Cleaning 61 Socio Gas Cleaning 63 Socio Gas Cleaning 63 Socio Gas Cleaning 61 Socio <	sprace te no ombustion Air Fan ombustion Air Fan owe Purge Fan owe Purge Fan owe Purge Fan owe Depressurisation Valve owe Depressurisation Valve OG Booster Fan OG Booster Fan OG Booster Fan Statute Faller Statute	BB-Internation D 1 2 3 4 5 6 7 8 9 10 11 14 13 16 21 22 23 24 25 26	305980.7445 306014.7968 306005.0611 305995.3243 306092.3597 306089.9245	0194425.678 0194425.678 0194302.087 0194302.087 0194302.087 0194400.92 0194409.92 0194308.148 0194308.941 0194308.941 0194308.096 0194404.113 0194307.872 0194307.872 0194347.261 0194347.261 0194347.261	metres 2.6 2.5 1 1 3.6 3.6 3.6 5 5 22 72-5 76-5 60.4 47.1 40.6 0	dBA 102 102 - - 106 106 106 106 101 101 101 101 101 101	Operating time per 15 minute period, minutes 15 15 - - 5 5 5 5 8 8 8 8 0 0 0		LAcq15min noise level, dBA 102 - - - 101 101 101 88 98 98 123	- - 106 106 106 - -	Noise level source GHD measurements 2021 GHD measurements 2021 Not contributing to noise emission Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 61 Comit Hot Blast 62 Comit Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 COG Hot Blast 62 Stove Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Gas Cleaning 61 Socio Gas Cleaning 61 Socio Gas Cleaning 63 Socio Gas Cleaning 63 Socio Gas Cleaning 61 Socio <	ombustion Air Fan ombustion Air Fan owe Purge Fan owe Purge Fan owe Depressurisation Valve owe Depressurisation Valve owe Depressurisation Valve owe Depressurisation Valve OG Booster Fan OG Booster Fan Control Valve Silencer Jin Pressure Relief Valve Bi Pinetary Bi Thi Rob Pinetary Bi Thi Rob Drives nea top bleeders nubber Field Pump nubber Field Pump nubber Field Pump nubber Field Pump nubber Field Pump nubber Revier Pump	1 2 3 4 6 6 7 7 8 9 9 9 9 9 9 11 11 13 16 11 14 11 16 11 18 19 20 21 22 23 22 24 25 26	305000 0011 300703 1456 300700 2150 305060 4802 305060 4802 305060 4802 306005 4802 306005 4802 306005 4802 306005 3243 306005 4855 306037 3023 306034 2852 306034 2852 306034 2852 306034 2852 305045 2855 305045 2855 305045 4852 305045 4852 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505 30505	0184225.078 0184225.078 0184302.087 0184302.087 0184302.087 0184403.04 0184403.02 0184302.08 0184415.372 0184302.084 0184302.084 0184307.872 0184307.872 0184307.872 0184307.281 0184347.281 0184347.281	25 25 1 1 36 36 36 5 5 5 22 22 72 5 604 47.1 46.6 0	102 102 - - 106 106 108 101 101 101 101 140 114	15 15 - - 5 5 5 5 8 8 8 0 0	- - - - - - - - - - - - - - - - - - -	102 102 - - 101 101 101 98 98	255555ment, dBA - - - 108 108 - - - - - - - - - - - - -	GHD measurements 2021 GHD measurements 2021 Not contributing to noise emission Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 612 Comit Hot Blast 612 Stove Hot Blast 612 Stove Hot Blast 613 Stove Hot Blast 61 Coco Hot Blast 62 Stove Hot Blast 62 Stove Hot Blast 62 Coco Hot Blast 62 Coco Hut Blast 62 Coco Fumace Top PW Bin I Fumace Top PW GB T Fumace Top PW GB T Gas Cleaning 61 Sorub Gas Cleaning 61 Sorub Gas Cleaning 62 Sorub Gas Cleaning 61 Sorub Gas Cleaning 62 Cooling Gas Cleaning 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 SWC Cooling 64 SWC Cool	ombustion Air Fan towe Purge Fan towe Purge Fan towe Purge Fan towe Depressurisation Valve owe Depressurisation Valve towe Depressurisation Valve OS Booster Fan Control Valve Silencer In Pressure Relief Valve IB Pinetary IB Thit Rod Drives neat top bleeders crubber Feed Pump crubber Revier Pump crubber Fan	3 4 5 6 7 8 9 10 11 11 14 13 16 17 18 20 21 22 23 24 25 26	305673.1456 305600.2159 305600.4802 305601.47988 306005.0611 306005.0611 306005.243 306005.2543 306005.2543 306008.2543 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 305605.156 305695.6156	6164417.283 6184402.687 6184401.304 6184408.20 6184308.148 6184308.148 6184405.783 6184383.941 6184398.026 6184304.113 6184397.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	25 1 1 3.6 3.6 5 5 22 22 78.5 60.4 47.1 40.6 0	102 	- - 5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	102 - - 101 101 101 08 98	- - - 106 108 108 - -	GHD measurements 2021 Not contributing to noise emission Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 61 Stove Hot Blast 62 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Fumace Top PW Bin I Fumace Top PW GB F Fumace Top PW GB F Fumace Top FW GB G Fumace Top FW GB G Gas Cleaning 61 Soub	towe Purge Fan towe Purge Fan towe Purge Fan towe Purge Fan towe Depressurisation Valve towe Depressurisation Valve towe Depressurisation Valve towe Depressurisation Valve OG Booster Fan OG Booster Fan OG Booster Fan OG Booster Fan OG Booster Fan The Persure Relef Stenoer In Pressure Relef Valve B Planter In Pressure Relef Valve B Planter In Pressure Relef Valve B Planter In Pressure Relef Valve B Tit Red Drives and the Planter Planter Tubber Red Purge Case) anbber Red Purge Desel) anbber Red Purge Disel) anbber Red Purge Disel) State Fan Disel Purge Fan	3 4 5 6 7 8 9 10 11 11 14 13 16 17 18 20 21 22 23 24 24 26	206000.2150 205580.4402 305580.7445 30601.7445 30601.7465 30602.561 30602.561 30602.2567 30608.0245 30602.2567 30608.0245 30603.3023 30603.4262 30603.4262 30603.4262 30603.4262 30603.4262 30603.4262 30503.4262	618402.687 6184401.304 6184409.62 6184409.62 6184408.783 6184415.379 6184303.041 6184367.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261	1 1 3.6 3.6 5 5 22 70.5 60.4 47.1 46.6 0	- - 106 106 106 101 101 101 101 140 114	- - 5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	- - 101 101 101 98 98	- - 106 106 - -	Not contributing to noise emission Not contributing to noise emission OHD measurements 2021 GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 62 Stove Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 61 COS Hot Blast 61 COS Hot Blast 61 COS Hot Blast 61 COS Hot Blast 51 Cor Fumace Top PW Bin I Fumace Top PWGB T Fumace Top PWGB T Fumace Top PWGB T Gas Cleaning 61 Scrub Gas Cleaning 61 Scrub Gas Cleaning 63 Scrub Gas Cleaning 61 Scrub	tow Purge Fan tow Purge Fan tow Depressurisation Valve tow Depressurisation Valve ow Depressurisation Valve OG Booster Fan OG Booster Fan Control Valve Silencer Jin Pressure Relief Valve Jin Pressure Relief Valve Jis Planetary B Tilt Relative Status Red Drives are top bleeders comber Feed Pump crubber Feed Pump crubber Feed Pump crubber Feed Pump crubber Revier Pump crubber Revier Pump crubber Revier Pump crubber Revier Pump crubber Fan	4 5 6 7 8 9 10 11 11 13 16 17 18 19 20 21 20 22 23 22 24 25 6	305600.4602 3036014.7465 3036014.7468 306005.0611 305092.243 306092.2567 306092.9245 306092.9245 306092.9245 306093.7023 306034.2682 306034.2682 306034.2682 305034.2682 305093.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42682 305095.42685685 30	6184401.304 6184409.92 6184308.148 6184405.763 61844363.763 618445.379 6184309.096 6184404.113 6184307.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0	106 106 101 101 140 114	5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	101 101 98 98	- 106 106 106 - -	Not contributing to noise emission Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 61 Stove Hot Blast 63 Stove Hot Blast 63 Stove Hot Blast 61 Stove Hot Blast 61 COG Hot Blast 61 COG Hot Blast 61 COG Hot Blast 5nort Cc Fumace Top PW Bin I Fumace Top PW GB F Fumace Top PWGB F Fumace Top PWGB F Gas Cleaning 61 Sorub Gas Cleaning 62 Sorub Gas Cleaning 63 Sorub Gas Cleaning 63 Sorub Gas Cleaning 64 Sorub Gas Cleaning 64 Sorub Gas Cleaning 64 Sorub Gas Cleaning 64 RWS Cooling 64 RWS Cooling 61 Sorub Cooling 61 Sorub Cooling 63 SNBC Cooling 61 SNBC Cooling 61 SNC Cooling <td>ove Purge Fan ove Depressurisation Valve ove Depressurisation Valve ove Depressurisation Valve Sono Depressurisation Valve OG Booster Fan Control Valve Silencer in Pressur Relief Valve 80 Planetary 80 Planetary 81 Rit Rod Drives notober Feed Pump stubber Feed Pump stubber Feed Pump stubber Feed Pump stubber Feed Pump stubber Revis Pump Stubber Re</td> <td>5 6 7 8 9 10 11 11 13 16 17 18 10 20 21 22 23 22 23 24 26</td> <td>305680.7445 306014.7068 306005.0611 305695.3243 306092.3567 306039.8245 306037.3023 306037.3023 306034.2682 306037.3023 306034.2682 306034.2682 305034.2682 305034.2682 305034.2682 305034.2682 305034.2682 305034.2682 3050454.454</td> <td>6184400.92 6184400.763 6184406.763 6184406.763 6184303.041 6184306.096 6184360.096 6184367.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261</td> <td>3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0</td> <td>106 106 101 101 140 114</td> <td>5 5 8 8 0 0</td> <td>4.8 4.8 -3.0 -3.0 -18.5</td> <td>101 101 98 98</td> <td>- 106 106 108 - -</td> <td>Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)</td>	ove Purge Fan ove Depressurisation Valve ove Depressurisation Valve ove Depressurisation Valve Sono Depressurisation Valve OG Booster Fan Control Valve Silencer in Pressur Relief Valve 80 Planetary 80 Planetary 81 Rit Rod Drives notober Feed Pump stubber Feed Pump stubber Feed Pump stubber Feed Pump stubber Feed Pump stubber Revis Pump Stubber Re	5 6 7 8 9 10 11 11 13 16 17 18 10 20 21 22 23 22 23 24 26	305680.7445 306014.7068 306005.0611 305695.3243 306092.3567 306039.8245 306037.3023 306037.3023 306034.2682 306037.3023 306034.2682 306034.2682 305034.2682 305034.2682 305034.2682 305034.2682 305034.2682 305034.2682 3050454.454	6184400.92 6184400.763 6184406.763 6184406.763 6184303.041 6184306.096 6184360.096 6184367.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0	106 106 101 101 140 114	5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	101 101 98 98	- 106 106 108 - -	Not contributing to noise emission GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 61 Stove Hot Blast 62 Stove Hot Blast 63 Stove Hot Blast 61 COG Hot Blast 61 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 50 COG Fumace Top PW Bin I Fumace Top PWGB T Fumace Top PWGB T Fumace Top Stock RC Gas Cleaning 61 Scrub Gas Cleaning 61 Scrub Gas Cleaning 62 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 64 Scrub Gas Cleaning 64 Scrub Gas Cleaning 64 Scrub Gas Cleaning 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 SWS Cooling 64 SWS Cooling 64 SWS Stockhouse S12 Coc Stockhouse <td>low Degressisation Valve ow Degressisation Valve OG Booster Fan OG Booster Fan Control Valve Siencer In Pressure Relief Valve 18 Planetary 18 Tit Kod Drives ace top bleeders nubber Feed Pump nubber Feed Pump Dabber Redire Pump Databer Redire Pump Diesel) Databer Redire Pam</td> <td>6 7 8 9 10 11 14 13 16 17 18 19 20 21 22 23 22 23 24 26</td> <td>3060147.068 306005.0611 306095.243 306092.2567 306089.245 306089.245 306089.245 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 3050692.368 3050692.3183 3050692.3183</td> <td>6184398.148 6184406.763 6184415.379 6184398.941 6184398.096 6184404.113 6184357.872 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184342.804</td> <td>3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0</td> <td>106 106 101 101 140 114</td> <td>5 5 8 8 0 0</td> <td>4.8 4.8 -3.0 -3.0 -18.5</td> <td>101 101 98 98</td> <td>108 108 108 - -</td> <td>GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)</td>	low Degressisation Valve ow Degressisation Valve OG Booster Fan OG Booster Fan Control Valve Siencer In Pressure Relief Valve 18 Planetary 18 Tit Kod Drives ace top bleeders nubber Feed Pump nubber Feed Pump Dabber Redire Pump Databer Redire Pump Diesel) Databer Redire Pam	6 7 8 9 10 11 14 13 16 17 18 19 20 21 22 23 22 23 24 26	3060147.068 306005.0611 306095.243 306092.2567 306089.245 306089.245 306089.245 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 3050692.368 3050692.3183 3050692.3183	6184398.148 6184406.763 6184415.379 6184398.941 6184398.096 6184404.113 6184357.872 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184342.804	3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0	106 106 101 101 140 114	5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	101 101 98 98	108 108 108 - -	GHD measurements 2021 GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 62 Stove Hot Blast 63 Stove Hot Blast 61 COG Hot Blast 61 COG Hot Blast 61 COG Hot Blast Snort Cc Fumace Top PW Bin I Fumace Top PW GB F Fumace Top PWGB F Fumace Top PWGB F Fumace Top FURGE F Gas Cleaning 61 Sorub Gas Cleaning 61 Sorub Gas Cleaning 61 Sorub Gas Cleaning 62 Sorub Gas Cleaning 63 Sorub Gas Cleaning 63 Sorub Gas Cleaning 64 Cooling Gas Cleaning 64 Cooling Gas Cleaning 64 RWS Cooling 64 RWS Cooling 64 SWC Cooling 63 SND Stockhouse S13 Con Stockhouse S14 Con Stockhouse S14 Con Stockhouse S12 Con Stockhouse S14 Con <	ove Depressitation Valve ove Depressitation Valve OG Booster Fan OG Booster Fan Control Valve Silencer Bin Pressure Relief Valve Bit Pressure Relief Valve Bit Pressure Relief Valve Bit Tit Rod Drives notober Feed Pump nubber Feed Pump nubber Feed Pump Databer Revis Pump nubber Revis Pump nubber Revis Pump nubber Revis Pump Jonaber Revis Pump Jonaber Revis Pump Jonaber Revis Pump Jonaber Revis Pump Jonaber Revis Pump	7 8 9 10 11 14 13 16 17 18 19 20 21 22 23 22 24 25 26	306005.0611 305665.3243 306082.3567 306082.8245 306088.8245 306037.023 306037.023 306037.023 306034.2682 306034.2682 306034.2682 305692.42682 305695.2685 305696.6156 305696.8133	6184406.763 6184415.379 6184383.941 6184396.096 6184404.113 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184342.804	3.6 3.6 5 5 5 22 79.5 60.4 47.1 46.6 0	106 106 101 101 140 114	5 5 8 8 0 0	4.8 4.8 -3.0 -3.0 -18.5	101 101 98 98	108 108 -	GHD measurements 2021 GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 63 Stove Hot Blast 61 COG Hot Blast 62 COG Hot Blast 62 COG Hot Blast 5 Snot Co Furnace Top PW Bin Furnace Top PW Bin Furnace Top PW Bin Furnace Top Stock RC Gas Cleaning 61 South Gas Cleaning 61 South Gas Cleaning 61 South Gas Cleaning 63 South Gas Cleaning 64 South Gas Cleaning 65 South Gas Cleaning 64 South Gas Cleaning 65 South Gas Cleaning 61 Coolin Gas Cleaning 61 PW G Gooling 61 PW G Cooling 62 PWS Cooling 64 PWS Cooling 65 PWS Cooling 75 PWS	tow Depressinisation Valve OG Booster Fan Control Valve Silencer In Pressure Relief Silencer In Pressure Relief Valve IB Planetary IB Tit Kod Drives ace top bleeders unbber Feed Pump unbber Feed Pump Dabber Feed Pump Dabber Feed Pump Dabber Feed Pump Dabber Feed Pump Dabber Feed Pump Diabber Recire Pump Dabber Recire Pump Databer Recire Pump Databer Recire Pump Databer Recire Pump Diataber Recire Pump Diataber Recire Pump Diataber Recire Pump Diataber Recire Pump	11 14 13 16 17 18 19 20 21 22 23 24 25 26	305696.3243 306082.3567 306089.0245 306080.8658 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 305034.2682 305693.2058 305696.8156 305696.3133 306042.4544	6184415.379 6184393.941 6184396.096 6184404.113 6184404.113 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184342.804	3.6 5 5 22 79.5 60.4 47.1 46.6 0	106 101 101 140 114	8 0 0	4.8 -3.0 -3.0 -16.5	101 98 98	108 - -	GHD measurements 2021 SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 61 COG Hot Blast 62 COG Hot Blast Sonot Co Furnace Top PW Bin 1 Furnace Top PW Bin 1 Furnace Top PW Bin 2 Furnace Top PWGB 1 Furnace Top PWGB 1 Furnace Top PWGB 1 Furnace Top PWGB 1 Gas Cleaning 61 Sonut Gas Cleaning 82 Coolin Gas Cleaning 84 Sonut Gas Cleaning 85 Ber Gas Cleaning 85 Ber Gas Cleaning 85 Ber Gas Cleaning 85 Sonut Gas Cleaning 85 Sonut Cooling 85 RWS Cooling 85 SPWS Cooling 85 SBC Cooling 85 SBC Cool	OG Booster Fan OG Booster Fan Control Valve Silencer Ian Pressure Relief Valve 89 Planetary 18 Til Rod Drives Isoe top bleeden unbber Feed Pump Inubber Feed Pump Inubber Feed Pump Inubber Relorie Pump	11 14 13 16 17 18 19 20 21 22 23 24 25 26	306092.3597 306089.0245 306089.0868 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 305034.2682 305093.2958 305995.6156 305996.0156 305996.3133 305042.4544	6184393,941 6184396,096 6184404,113 6184357,872 6184357,872 6184347,261 6184347,261 6184347,261 6184347,261 6184347,261 618442,804	5 5 22 79.5 60.4 47.1 46.6 0	101 101 140 114	8 0 0	-3.0 -3.0 -16.5	98 98	-	SWL_Bluescope (Table 6.3) SWL_Bluescope (Table 6.3)
Hot Blast 62 COG Hot Blast Snort Co Fumace Top PW Bin1 Fumace Top Stock Ra Gas Clearing 61 Scrub Gas Clearing 61 Scrub Gas Clearing 63 Scrub Gas Clearing 63 Scrub Gas Clearing 63 Scrub Gas Clearing 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 SSC Cooling 64 SSC Stockhouse S13 Con Stockhouse S14 Cor Stockhouse <td< td=""><td>DG Booster Fan Control Valve Slencer In Pressure Relief Slencer Bressure Relief Valve B Tit Rod Drives net top bleeders unbber Feed Pump unbber Feed Pump Dubber Redore Pump Unbber Redore Pump Unbber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dostaber Redore Pump (Diesel) Dosling Tower Fan</td><td>11 14 13 16 17 18 19 20 21 22 23 24 25 26</td><td>306089.9245 306080.8658 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 305993.2958 305996.6156 305998.3133 305042.4544</td><td>6184306.096 6184404.113 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261</td><td>5 22 79.5 60.4 47.1 48.6 0</td><td>101 140 114</td><td>8 0 0</td><td>-3.0 -16.5</td><td>98</td><td>-</td><td>SWL_Bluescope (Table 6.3)</td></td<>	DG Booster Fan Control Valve Slencer In Pressure Relief Slencer Bressure Relief Valve B Tit Rod Drives net top bleeders unbber Feed Pump unbber Feed Pump Dubber Redore Pump Unbber Redore Pump Unbber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dubber Redore Pump Dostaber Redore Pump (Diesel) Dosling Tower Fan	11 14 13 16 17 18 19 20 21 22 23 24 25 26	306089.9245 306080.8658 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 305993.2958 305996.6156 305998.3133 305042.4544	6184306.096 6184404.113 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	5 22 79.5 60.4 47.1 48.6 0	101 140 114	8 0 0	-3.0 -16.5	98	-	SWL_Bluescope (Table 6.3)
Hot Blast Snort Co Furnace Top PW Bin I Furnace Top PW Bin I Furnace Top PW Bin I Furnace Top PW GB F Furnace Top Stock Rc Furnace Top Stock Rc Furnace Top Stock Rc Furnace Top Stock Rc Furnace Top Stock Rc Gas Cleaning 61 Sorub Gas Cleaning 71 Coolin Gas Cleaning 71 Sorub Gas Gas Gas 71 Sorub Gas Gas 71 Sorub Cooling 71 Sorub Cooling 71 Sorub Cooling 71 Sorub Cooling 72 Sorub Stockhouse S13 Con Stockhouse S13 Con Stockhouse S13 Con Stockhouse S10 Con	I Control Valve Silencer Sin Pressure Relief Valve 89 Planetary 18 Otto 18 Otto	11 14 13 16 17 18 19 20 21 22 23 24 25 26	306080.8658 306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 305993.2958 305998.3133 305042.4544	6184404.113 6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	79.5 60.4 47.1 46.6 0	140 114	0	-16.5			
Fumace Top PW Bin 1 Fumace Top PW Bin 1 Fumace Top PW Bin 1 Fumace Top PW GE F Fumace Top FWGE F Fumace Top Fumace Top Gas Cleaning 61 Scrub Gas Cleaning 61 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 SBC Cooling 61 SBC Cooling 54 SBC Stockhouse S13 Con Stockhouse S14 Con Stockhouse S14 Con Stockhouse S14 Con <t< td=""><td>In Pressure Relief Silencer Sin Pressure Relief Valve 89 Planetary 180 Titt 180 Ti</td><td>14 13 16 17 18 19 20 21 22 23 24 23 24 25 26</td><td>306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 305093.2958 305096.0156 305098.3133 306042.4544</td><td>6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184462.804</td><td>79.5 60.4 47.1 46.6 0</td><td>114</td><td>0</td><td></td><td></td><td></td><td></td></t<>	In Pressure Relief Silencer Sin Pressure Relief Valve 89 Planetary 180 Titt 180 Ti	14 13 16 17 18 19 20 21 22 23 24 23 24 25 26	306037.3023 306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 306034.2682 305093.2958 305096.0156 305098.3133 306042.4544	6184357.872 6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184462.804	79.5 60.4 47.1 46.6 0	114	0				
Fumace Top PWGB T Fumace Top PWGB T Fumace Top PWGB T Fumace Top Stock Rc Fumace Top Stock Rc Fumace Top Stock Rc Fumace Top Stock Rc Gas Cleaning 61 Sorub Gas Cleaning 70 Sorub Gooling 61 SWS Cooling 61 SWS Cooling 61 SWS Cooling 61 SWS Cooling 61 SWS Cooling 61 SWS Cooling 62 SSC Cooling 63 SSE Cooling 64 SBC Cooling 53 SSC Cooling 54 SSC Stockhouse S13 Con Stockhouse S13 Con Stockhouse F10 Con Stockhouse SCC Con	sin Pressure Relief Valve 8 Planetary 80 Times to top bleeders aubber Feed Pump aubber Red Pump (Dese) aubber Redro Pump aubber Redro Pump	13 16 17 18 19 20 21 22 23 24 25 26	306037.3023 306034.2682 306034.2682 306034.2682 306034.2682 305993.2958 305995.6156 305996.3133 305042.4544	6184357.872 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184347.261	60.4 47.1 46.6 0					140	Calculated from Hatch monitoring report farfield measurements
Fumace Top PW/GE F Fumace Top PW/GE F Fumace Top Stock Rc Fumace Top Stock Rc Fumace Top Fumace Top Gas Cleaning 61 Scnub Gas Cleaning 63 Scnub Gas Cleaning 64 Scnub Gas Cleaning 75 Scnub Gas Cleaning 64 RWS Cooling 64 RWS Cooling 61 SWC Cooling 61 SWC Cooling 61 SWC Cooling 61 SWC Cooling 51 SWC Cooling 51 SWC Stockhouse S13 Con Stockhouse S14 Con Stockhouse S14 Con	18 Planetary 18 Tit 18 Tit 18 Tot 18 Tot	16 17 18 19 20 21 22 23 24 25 26	306034.2682 306034.2682 306034.2682 305034.2682 305093.2958 305095.6156 305096.3133 305042.4544	6184347.261 6184347.261 6184347.261 6184347.261 6184347.261 6184462.804	47.1 46.6 0	-			91		GHD measurements 2021
Fumace Top PW/GB 1 Fumace Top Stock RC Fumace Top Stock RC Gas Cleaning 61 Sonub Gas Cleaning 62 Sonub Gas Cleaning 63 Sonub Gas Cleaning 83 Sonub Gas Cleaning 82 Sonub Gas Cleaning 83 Sonub Gas Cleaning 82 Sonub Gas Cleaning 82 Sonub Cooling 62 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 SBC Stockhouse S12 Con	is Tit " Rod Drives not top bleeders unbber Feed Pump unbber Feed Pump (Desel) unbber Reior Pump unbber Reior Pump unbber Reior Pump Ondig Tower Fan	17 18 19 20 21 22 23 24 25 26	306034.2682 306034.2682 306034.2682 305093.2958 305095.6156 305098.3133 306042.4544	6184347.261 6184347.261 6184347.261 6184347.261 6184462.804	46.6 0	-	0	-22.6	91		GHD measurements 2021
Fumace Top Stock Rc Fumace Top Fumace Top Gas Cleaning 61 Scrub Gas Cleaning 61 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 61 Scrub Gas Cleaning 62 Scrub Gas Cleaning Cooling Gas Cleaning 02 Scrub Gas Cleaning 02 Scrub Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 SBC Cooling 63 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse S13 Con Stockhouse S14 Con Stockhouse S14 Con Stockhouse S14 Con Stockhouse S12 Con	Rod Drives ace top bleeders stubber Feed Pump stubber Feed Pump stubber Readro Pump stubber Readro Pump stubber Readro Pump stubber Readro Pump Jondber Readro Pump Jong Tower Fan	18 19 20 21 22 23 24 25 26	306034.2682 306034.2682 305993.2958 305995.6156 305998.3133 306042.4544	6184347.261 6184347.261 6184462.804	0		-	-	-		Not contributing to noise emission
Fumace Top Fumace Gas Cleaning 61 South Gas Cleaning 62 South Gas Cleaning 63 South Gas Cleaning 63 South Gas Cleaning 61 South Gas Cleaning 61 South Gas Cleaning 61 South Gas Cleaning 62 South Gas Cleaning 62 Couli Gas Cleaning 82 Couli Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 62 SBC Cooling 63 SBC Cooling 53 Stochhouse Stochhouse 513 Conis	ace top bleeders srubber Feed Pump srubber Feed Pump srubber Reotro Pump srubber Reotro Pump srubber Reotro Pump onding Tower Fan ooling Tower Fan	19 20 21 22 23 24 25 26	306034.2682 305993.2958 305995.6156 305998.3133 306042.4544	6184347.261 6184462.804		-	-	-	-	-	Not contributing to noise emission
Gas Cleaning 61 Scrub; Gas Cleaning; 62 Scrub; Gas Cleaning; 63 Scrub; Gas Cleaning; 61 Scrub; Gas Cleaning; 62 Coolin; Gas Cleaning; 62 Coolin; Gas Cleaning; Dust Har Cooling; 62 RWS Cooling; 64 SBC; Cooling; 64 RWS Cooling; 64 SBC; Stochnouse; C31 Cor Stochnouse; C31 Cor Stochnouse; S13 Cor Stochnouse; S14 Cor Stochnouse; F10 Cor Stochnouse; F10 Cor Stochnouse; F10 Cor Stochnouse; F10 C	anbber Feed Pump crubber Feed Pump (Diesel) anbber Redire Pump (anbber anbber Redire Pump anbber Redire Pump crubber Redire Pump (Diesel) ooling Tower Fan	20 21 22 23 24 25 26	305993.2958 305995.6156 305998.3133 306042.4544	6184462.804		104	15	•	104		SWL_Bluescope (Table 6.3)
Gas Cleaning 62 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 62 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 62 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 63 Scrub Gas Cleaning 10 Scrub Gas Cleaning 10 Scrub Gas Cleaning 10 Scrub Gas Cleaning 11 RWS Cooling 61 RWS Cooling 64 RWS Cooling 64 RWS Cooling 65 RWS Cooling 65 SCB Cooling 65 SCC Stockhouse SSC Stockhouse S12 Cor Stockhouse S12 Cor Stockhouse S14 Cor Stockhouse S14 Cor Stockhouse S14 Cor Stockhouse S14 Cor	crubber Feed Pump crubber Feed Pump (Diesel) crubber Recirc Pump crubber Recirc Pump crubber Recirc Pump (Diesel) cooling Tower Fan	21 22 23 24 25 26	305995.6156 305998.3133 306042.4544		90		0	-16.5	154		Calculated from Hatch monitoring report farfield measurements
Gas Cleaning 61 Scrub Gas Cleaning 62 Scrub Gas Cleaning 62 Coolin Gas Cleaning 82 Scrub Gas Cleaning 82 Scrub Gas Cleaning 82 Scrub Gas Cleaning 82 Scrub Gas Cleaning 93 Scrub Cooling 62 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 SWS Cooling 61 SWC Cooling 61 SWC Cooling 61 SWC Cooling 51 SBC Cooling 53 SWC Cooling 54 SBC Cooling 54 SBC Cooling 51 Cor Stockhouse S13 Cor Stockhouse F10 Cor Stockhouse F10 Cor Stockhouse	crubber Feed Pump (Diesel) crubber Recirc Pump crubber Recirc Pump crubber Recirc Pump (Diesel) ooling Tower Fan ooling Tower Fan	22 23 24 25 26	305998.3133 306042.4544	6184465426		94	15		94		SWL_Hatch (Table 6.2)
Gas Cleaning él 5 Scub Gas Cleaning él 2 Scub Gas Cleaning él 2 Scub Gas Cleaning él 2 Scub Gas Cleaning él 2 Cooli Gas Cleaning él 2 Cooli Gas Cleaning él 2 Cooli Gas Cleaning él 2 Cooli Gas Cleaning él 2 RWS Cooling él 1 RWS Cooling él 2 RWS	crubber Recirc Pump crubber Recirc Pump crubber Recirc Pump (Diesel) ooling Tower Fan ooling Tower Fan	23 24 25 26	306042.4544			94	15	-	94		SWL_Hatch (Table 6.2)
Gas Cleaning 62 Scrub Gas Cleaning 63 Scrub Gas Cleaning 61 Cooli Gas Cleaning 62 Cooli Gas Cleaning 82 Cooling Gas Cleaning RS Elem Gas Cleaning RS Elem Gas Cleaning Dist Har Cooling 04 RWS Cooling 04 RWS Cooling 06 RWS Cooling 07 RWS Cooling 08 RWS Cooling 07 RWS Cooling 08 RWS Cooling 08 RWS Cooling 08 RWS Cooling 08 RWS Cooling 18 SBC Cooling 18 SBC Cooling 51 SBC Cooling 51 Cor Stockhouse S1 Cor Stockhouse S1 Cor Stockhouse F1 Cor Stockhouse F1 Cor Stockhouse S1 Cor Stockhouse S1 Cor Stockhouse S1 Cor <	crubber Recirc Pump crubber Recirc Pump (Diesel) coling Tower Fan coling Tower Fan	24 25 28			0.8		0	-	99		SWL_Hatch (Table 6.2)
Gas Cleaning 61 Scrub Gas Cleaning 61 Cooli Gas Cleaning 62 Cooli Gas Cleaning 74 Cooli Gas Cleaning 85 Elem Gas Cleaning 71 Nicken Gas Cleaning 71 Nicken Gas Cleaning 71 Nicken Gas Cleaning 71 Nicken Gooling 61 PW/ Cooling 63 PW/ Cooling 64 PW/ Cooling 64 PW/ Cooling 64 PW/ Cooling 65 PW/ Cooling 65 PW/ Cooling 65 PW/ Cooling 65 State Cooling 75 State St	crubber Recirc Pump (Diesel) ooling Tower Fan ooling Tower Fan	25 26	208044 1747		0.75	90	15	-	90		SWL_Bluescope (Table 6.3)
Gas Cleaning 61 Cooli Gas Cleaning Acrotion Gas Cleaning Acrotion Gas Cleaning RS Elem Gas Cleaning Dust Har Cooling 01 RS Berry Cooling 02 RWS Cooling 02 RWS Cooling 03 RWS Cooling 04 RWS Cooling 04 RWS Cooling 04 RWS Cooling 05 RWS Cooling 83 RWS Cooling 84 RWS Cooling 84 RWS Stockhouse S13 Con Stockhouse F90 Con Stockhouse F91 Con Stockhouse 54 CC con Stockhouse 54 CC con Stockhouse 54 CC con	ooling Tower Fan ooling Tower Fan	26				91	15	-	91		SWL_Bluescope (Table 6.3)
Gas Cleaning 62 Coolin Gas Cleaning Aeration Gas Cleaning RS Elem Gas Cleaning Dust Har Cooling 61 PMVS Cooling 61 PMVS Cooling 61 PMVS Cooling 64 PMVS Cooling 64 PMVS Cooling 64 PMVS Cooling 65 PMVS Cooling 62 PMVC Cooling 62 PMVC Cooling 62 SBC Cooling 53 SBC Cooling 54 SBC Cooling 54 SBC Cooling 54 SBC Stockhouse S13 Coring Stockhouse S14 Coris Stockhouse F10 Coris Stockhouse F02 Coris Stockhouse F02 Coris Stockhouse F02 Coris Stockhouse	ooling Tower Fan		306045.8265			98	0	-	98		SWL_Hatch (Table 6.2)
Gas Cleaning Aeraton Gas Cleaning RS Eleaning Gas Cleaning Dust Har Gas Cleaning Bull RWS Cooling 61 RWS Cooling 61 RWS Cooling 62 RWS Cooling 64 RWS Cooling 65 RWS Cooling 65 RWS Cooling 65 SBC Cooling 51 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Stockhouse CS1 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F10 Con Stockhouse S12 Cor		27	305998.7729	6184456.895	11.5	-	-	-	-		Not contributing to noise emission
Gas Cleaning RS Elem Gas Cleaning Dust Har Cooling 61 RWS Cooling 61 RWS Cooling 62 RWS Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 RWS Cooling 64 RWS Cooling 61 RWS Cooling 62 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 CSC Stockhouse S13 Corn Stockhouse F14 Cor Stockhouse F12 Cor Stockhouse F12 Cor Stockhouse 54C Cor Stockhouse 5C1 Cor Stockhouse SC1 Cor	tion blowers		306005.2373	6184464.201	11.5	-	-	-	-		Not contributing to noise emission
Gas Cleaning Thickene Gas Cleaning Dust Har Cooling 61 RWS Cooling 61 RWS Cooling 62 RWS Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 RWS Cooling 61 RWS Cooling 61 SBC Cooling 51 SBC Cooling 53 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS2 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F10 Con Stockhouse F10 Con Stockhouse S4 Coc			306020.9013	6184431.707		92	15	-	92		GHD measurements 2021
Gas Cleaning Dust Har Cooling 61 RWS Cooling 62 RWS Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 64 RWS Cooling 61 RWS Cooling 61 RWS Cooling 61 RWS Cooling 51 SBC Cooling 53 CBC Stockhouse CS1 Cor Stockhouse S13 Corn Stockhouse F10 Con Stockhouse F10 Con Stockhouse 54C Cor Stockhouse 54C Cor Stockhouse SC Chrose			306035.8439		8	•	-	-	-		Not contributing to noise emission
Cooling 61 RWS Cooling 62 RWS Cooling 63 RWS Cooling 64 RWS Cooling 61 RWS Cooling 61 SBC Cooling 51 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse S12 Cor Stockhouse S14 Cor Stockhouse F91 Cor Stockhouse F91 Cor Stockhouse S4C Cor Stockhouse S4C Cor Stockhouse F91 Cor Stockhouse S4C Cor	ener Rake Drive	30	306014.8567	6184449.169	9	104	15	-	104		SWL_Bluescope (Table 6.3)
Cooling 62 RWS Cooling 63 RWS Cooling 64 RWS Cooling 64 RWS Cooling 65 RWS Cooling 61 RWS Cooling 61 RWS Cooling 61 RWS Cooling 61 RWS Cooling 51 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse S12 Cor Stockhouse F14 Cor Stockhouse F10 Cor Stockhouse F10 Cor Stockhouse 54C Cor Stockhouse 54C Cor Stockhouse 5C1 Cor	Handling System	33	306026.28	6184384.112	7.6	89	15	-	89		SWL_Hatch (Table 6.2)
Cooling 63 RWS Cooling 64 RWS Cooling 65 RWS Cooling 61 SBC Cooling 61 SBC Cooling 63 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse S13 Cor Stockhouse S14 Cor Stockhouse F10 Cor Stockhouse F10 Cor Stockhouse S4C Cor Stockhouse SC Cor Stockhouse SC Cor	WS Cooling Pump		305957.4963	6184439.136	1	-	-	-	-	-	Not contributing to noise emission
Cooling 64 RWS Cooling 65 RWS Cooling 61 RWG Cooling 61 SBC Cooling 61 SBC Cooling 61 SBC Cooling 61 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S12 Cor Stockhouse S14 Cor Stockhouse F10 Cor Stockhouse F10 Cor Stockhouse S4C Cor Stockhouse S4C Cor Stockhouse S4C Cor Stockhouse SC Cor Stockhouse SC Cor	WS Cooling Pump		305960.0158	6184442.13	1	-	-	-	-	-	Not contributing to noise emission
Cooling 66 FW/S Cooling 61 FW/G Cooling 61 FW/G Cooling 61 FW/G Cooling 61 FW/G Cooling 61 SBC Cooling 61 SBC Cooling 63 SBC Cooling 63 SBC Cooling 63 SBC Stockhouse CS1 Cor Stockhouse S13 Cor Stockhouse S14 Cor Stockhouse F14 Cor Stockhouse F14 Cor Stockhouse F14 Cor Stockhouse F14 Cor Stockhouse F24 Cor Stockhouse F26 Cor Stockhouse F36 CC Cor Stockhouse F27 CC Cor Stockhouse F37 CC Cor Stockhouse F37 CC Cor	WS Cooling Pump		305962.7983	6184445.127	1	-	-	-	-		Not contributing to noise emission
Cooling 61 PW G Cooling 62 PW G Cooling 61 SBC Cooling 51 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Cooling 53 SBC Stockhouse CS1 Cor Stockhouse S13 Cor Stockhouse S14 Cor Stockhouse F91 Cor Stockhouse F91 Cor Stockhouse SCC Cor Stockhouse SC Cor Stockhouse SC Cor Stockhouse SC Cor	WS Cooling Pump		305965.4498	6184448.122	1	-	-	-	-	-	Not contributing to noise emission
Cooling 62 PW G Cooling 51 SBC Cooling 52 SBC Cooling 52 SBC Cooling 53 SBC Stockhouse CS1 Cor Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S13 Cor Stockhouse S14 Cor Stockhouse F91 Cor Stockhouse F91 Cor Stockhouse S4C Cor	WS Cooling Pump		305970.7517	6184454.115	1	-	-	-	-		Not contributing to noise emission
Cooling 61 SBC Cooling 52 SBC Cooling 53 SBC Cooling 53 SBC Stockhouse CS1 Cor Stockhouse S13 Cor Stockhouse S14 Cor Stockhouse S14 Cor Stockhouse FB0 Con Stockhouse FBC Cor Stockhouse 54C Cor Stockhouse 55C Cor	W Gearbox Cooling Pump	45	306049.7954		34.1	-	-	-	-	-	Not contributing to noise emission
Cooling 52 SBC Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S14 Con Stockhouse F09 Con Stockhouse F09 Con Stockhouse F07 Con Stockhouse 54C Cor Stockhouse 5CC Cor	W Gearbox Cooling Pump	46	306049.7954		34.1	-	-	-	-	-	Not contributing to noise emission
Cooling 53 SBC Cooling 54 SBC Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F91 Con Stockhouse F91 Con Stockhouse 54C Con Stockhouse 54C Con Stockhouse 5CC Cor	BC Pump	47	305953.8507	6184435.017	1	89	15	-	89	-	SWL_Hatch (Table 6.2)
Cooling 54 SBC Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F90 Con Stockhouse F40 Con Stockhouse 54C Con Stockhouse 54C Con Stockhouse SC1 Cor	BC Pump		305949.8745	6184430.523	1	89	15		89		SWL_Hatch (Table 6.2)
Stockhouse CS1 Cor Stockhouse CS2 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F91 Con Stockhouse F91 Con Stockhouse 54C Cor Stockhouse 55C Con Stockhouse SC1 Cor	BC Pump (Diesel)		305946.8923	6184427.153			0	-	89	-	SWL_Hatch (Table 6.2)
Stockhouse CS2 Cor Stockhouse S13 Con Stockhouse S14 Con Stockhouse F90 Con Stockhouse F91 Con Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Cor	BC Pump (Diesel)		305942.2527	6184421.911	1	95	15	-	95		SWL_Hatch (Table 6.2)
Stockhouse S13 Con Stockhouse S14 Con Stockhouse F90 Con Stockhouse F91 Con Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Con	Conveyor Drives * 2	110	306306.576	6184248.759	1.5	104	15	-	104		SWL_Bluescope (Table 6.3)
Stockhouse S14 Con Stockhouse F90 Con Stockhouse F91 Con Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Con	Conveyor Drives * 4	111	306251.8519	6184292.295	1	104	15	-	104	-	SWL_Bluescope (Table 6.3)
Stockhouse F90 Con Stockhouse F91 Con Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Con	Conveyor Drive	112	306371.0849		4.1		11	-1.5	102	-	SWL_Bluescope (Table 6.3)
Stockhouse F91 Con Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Con	Conveyor Drive		306224.7538		37.5		11	-1.5	102		SWL_Bluescope (Table 6.3)
Stockhouse 54C Con Stockhouse 55C Con Stockhouse SC1 Cor	Conveyor Drive		306376.0762		4.1	104	15	-	104		SWL_Bluescope (Table 6.3)
Stockhouse 55C Con Stockhouse SC1 Con	Conveyor Drive		306240.317		30.5	104	15	-	104		SWL_Bluescope (Table 6.3)
Stockhouse SC1 Cor	Conveyor Drive		306381.9531	6184445.297	10		9	-2.2	98		SWL_Bluescope (Table 6.3)
Stockhouse SC1 Cor	Conveyor Drive	117	306275.6935	6184224.597	40	100	9	-2.2	98		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306278.6747			95	8	-3.0	92		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306282.5668	6184230.799		95	8		92		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306257.5883	6184277.214	10.5		8		95		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306175.7246	6184285.046		94	15	-	94		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306291.606	6184257.68		88	15	-	88		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306294.6623		23.5	100	15	-	100		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306290.0674	6184240.248	9	100	15	-	100		SWL_Bluescope (Table 6.3)
Stockhouse SC8 Cor	Conveyor Drive		306221.8956		5.2		0	-	95		SWL_Bluescope (Table 6.3)
Stockhouse SS1 Cor	Conveyor Drive		306216.6202			98	11	-1.5	96		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306220.5148			94	11		92		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306176.8934	6184271.407	19.5	88	11	-1.5	86	-	SWL_Bluescope (Table 6.3)
	Conveyor Drive		306277.2878	6184250.407	19.5	104	15	-	104	-	SWL_Bluescope (Table 6.3)
	Conveyor Drive		306280.0459		28	104	15	-	104		SWL_Bluescope (Table 6.3)
			306284.7935	6184237.764	11.5	104	15	-	104		SWL_Bluescope (Table 6.3)
	Conveyor Drive		306284.5852		4.3		0	-	104		SWL_Bluescope (Table 6.3)
	Conveyor Drive Conveyor Drive		306219.6378	6184206.031		99	12	-1.0	98		GHD measurements 2021, corrected to appropriate machine size
	Conveyor Drive Conveyor Drive 801-VBFDR		306219.6378	6184206.031	12.4	102	12	-1.0	101		GHD measurements 2021
	Conveyor Drive Conveyor Drive B01-VBFDR S01-Screen	407	306224.5064	6184197.295		99	12	-1.0	98	109	GHD measurements 2021, corrected to appropriate machine size
	Conveyor Drive Conveyor Drive 801-VBFDR S01-Screen 802-VBFDR		306224.5064	6184197.295	12.4	102		-1.0	101	112	GHD measurements 2021
	Conveyor Drive Conveyor Drive 801-VBFDR S01-Screen 802-VBFDR S02-Screen	138	306233.2419	6184202.164		99	12	-1.0	98		GHD measurements 2021, corrected to appropriate machine size
	Conveyor Drive Conveyor Drive 801-VBFDR \$01-Soreen 802-VBFDR \$02-Soreen 803-VBFDR	138 139	306233.2419	6184202.164	12.4	102	12	-1.0	101		GHD measurements 2021
	Conveyor Drive Conveyor Drive 801-VBFDR S01-Storeen 802-VBFDR 802-VBFDR 803-VBFDR 803-Storeen	138 139 140	202220.0724	6184210.899		99	12	-1.0	98		GHD measurements 2021, corrected to appropriate machine size
	Conveyor Drive Conveyor Drive 801-VBFDR 501-Screen 802-VBFDR 502-Screen 803-VBFDR 503-Screen 804-VBFDR	138 139 140 141	306228.3734	6184210.899	12.4	102	12	-1.0	101		GHD measurements 2021
	Convejor Drive Conveyor Drive 801-VBPDR 501-Soreen 802-VBFDR 502-Soreen 803-VBFDR 803-VBFDR 804-VBFDR 804-Soreen	138 139 140 141 142	306228.3734	6184201.669	3.3	99		4.0			010
Stockhouse SNT-W0	Conveyor Dhive Conveyor Dhive 801-MBPDR 501-Soreen 802-VBFDR 502-Soreen 803-VBFDR 503-VBFDR 504-VBFDR 504-VBFDR 504-VBFDR	138 139 140 141 142 143	306228.3734 306222.0738			88	10	-1.8	97	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse COK-B0	Convejer Dhie Convejer Dhie 801-VBFDR S01-Soreen 802-VBFDR 903-VBFDR 903-VBFDR 804-VBFDR 904-VBFDR 904-Soreen W01-VBFDR	138 139 140 141 142 143 144	306228.3734 306222.0738 306230.8094	6184206.538	3.3	99	10 10	-1.8	97	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse COK-S0	Conveyor Drive Donweyor Drive B01-MBPDR S01-Screen B02-MBFDR S02-Screen B04-VBFDR S04-Screen W01-VBFDR W01-VBFDR B01-MBFDR B01-MBFDR	138 139 140 141 142 143 143 144 145	306228.3734 306222.0738 306230.8094 306265.9361	6184206.538 6184231.834	3.3 15.49	99 96		-1.8 -3.0	97 93	109 109 106	GHD measurements 2021, corrected to appropriate machine size GHD measurements 2021, corrected to appropriate machine size
Stockhouse COK-B0	Convejer Dhie Convejer Dhie 801-VBFDR S01-Soreen 802-VBFDR 903-VBFDR 903-VBFDR 904-VBFDR 904-VBFDR 904-Soreen W01-VBFDR 901-VBFDR 901-Soreen	138 139 140 141 142 143 143 144 145 146	306228.3734 306222.0738 306230.8094 306265.9361 306265.9361	6184206.538	3.3	99 96 99	10	-1.8	97	109 109 106 109	GHD measurements 2021, corrected to appropriate machine size


			MGA Location -	MGA Location -	Heigh above ground,	LAeq1min noise level,	Operating time per 15		LAeg15min noise level	LAmax noise level	
Area	Equipment name	6BF location ID	Easting	Northing	metres	dBA	Operating time per 15 minute period, minutes	Time correction, dB	dBA	 considered in assessment_dBA 	Noise level source
Stockhouse	COK-S02-Screen	148	306270.8046	6184223.099	12.6	99	8	-30	96	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	COK-B03-VBFDR	149	306279.5401	6184227.967	15.49	96	8	-3.0	93	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	COK-S03-Screen	150	306279.5401	6184227.967	12.6	99	8	-3.0	96	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	COK-B04-VBFDR	151	306274.6716	6184236.703	15.49	96	8	-3.0	93	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	COK-S04-Screen	152	306274.6716	6184236.703	12.6	99	8	-3.0	96	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-H01-VBFDR	153	306175.7938	6184265.712	6	96	15		96	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-H02-VBFDR	154	306175.0451	6184261.833	6	96	15	-	96	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-S01-Screen	155	306176.1741	6184267.681	5	96	15		96	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-S02-Screen	156	306175.4253	6184263.802	5	96	15	-	96	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-BSL-VBFDR	157	306281.0359	6184244.514	13	96	15		96	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-B01-VBFDR	158	306236.2377	6184214.415	8.5	96	3	-7.0	89	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-W01-VBFDR	150	306236.2377	6184214.415	2.5	96	3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-B02-VBFDR	160	306242.2821	6184217.784	8.5	96	3	-7.0	89	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-W02-VBFDR	161	306242.2821	6184217.784	2.5	96	3	-7.0	89	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-B03-VBFDR	162	306248.397	6184221.192	8.5	96	3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-W03-VBFDR	163	306248.397		2.5	96	3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-B04-VBFDR	164	306254.4414	6184224.561	8.5	96	3	-7.0	89	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FER-W04-VBFDR	165	306254.4414	6184224.561	2.5	96	3	-7.0	89	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FLX-B01-VBFDR	166	306245.6371	6184210.574	8	96	2	-10.0	86	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FLX-W01-VBFDR	167	306245.6371		2.5	96	2	-10.0	86	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FLX-B02-VBFDR	168	306250.8485	6184211.493	8	96	2	-10.0	86	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FLX-B03-VBFDR	169	306252.9035		8	96	2	-10.0	86	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	FLX-W02-VBFDR	170	306247.4025		2.5	96	2	-10.0	86	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-BSB-VBFDR	171	306241.0412	6184206.504	10	96	3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	Recycles Surge Bin Vibro Feeder	172A	306241.0412		4		3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	Recycles Surge Bin Weigh Feeder	1728	306241.0412	6184206.504	3	96	3	-7.0	89	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SST-WHP-VBFDR	173	306285,2802	6184236.891	2.5	99	0	-3.0	96	109	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-WHP-VBFDR	174	306289.7419		2.5	96	8	-3.0	93	108	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-S01-Screen	175	306176.6695	6184283.436	5	96	•	-0.0	96	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-S02-Screen	176	306175.8824	6184279.36	5	96			96	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-HSG-VBEDR	177	306257.2295		5.7	96	8	-3.0	93	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-BSL-VBFDR	178	306295.4017	6184252.521	10	96	0	-1.8	94	106	GHD measurements 2021, corrected to appropriate machine size
Stockhouse	SCK-BSL-VBFDR	179	306258.5379	6184217.407	10	96	8	-1.8	93	106	GHD measurements 2021, corrected to appropriate machine size
	Fumace Hydraulics Room	60	306258.5379		0	81	•	-3.0	81	100	SWL Hatch (Table 6.2)
TRT	Turbine and Alternator	70	306040.1894	6184412.92	8	01					
TRT	Hydraulics and Lubrication	70	306036,2896	6184421.566	1.2	-	•	•	-	•	Not contributing to noise emission
	81 Stockhouse Fan	180	306342.3264	6184254.723	1.2	- 104	- 15	-	- 104	-	Not contributing to noise emission
Bag Houses			306342.3264	6184254.723	2	104	15	- -3.0	98	•	SWL_Hatch (Table 6.2)
Bag Houses	Baghouse blowers	181			2	98				•	GHD measurements 2021
Bag Houses	61 Casthouse Fan	61	305939.2652		2		10	•	98	-	SWL_Bluescope (Table 6.3)
Bag Houses	62 Casthouse Fan	62	305935.6928	6184325.456	2	100	10	-	100	-	SWL_Bluescope (Table 6.3)
Bag Houses	Baghouse Blowers * 2	63	305948.028	6184323.33	1	101	8	-3.0	98	-	GHD measurements 2021
Granulator	61 Slag Gran Cooling Tower Fan	80	305976.372	6184139.92	14	88		•	88	-	SWL_Hatch (Table 6.2)
Granulator	62 Slag Gran Cooling Tower Fan	81	305983.0758	6184128.781	14	98		•	98	-	SWL_Hatch (Table 6.2)
Granulator	61 Granulation Pump	82	305964.4485	6184156.29	1.7	91	8	-3.0	88	-	SWL_Hatch (Table 6.2)
Granulator	62 Granulation Pump	83	305966.5592	6184152.639	1.7	93	8	-3.0	90	-	SWL_Hatch (Table 6.2)
Granulator	61 Condensation Pump	84	305953.5106	6184149.97	1.7	91	8	-3.0	88	-	SWL_Hatch (Table 6.2)
Granulator	62 Condensation Pump	85	305955.6203		1.7	91	8	-3.0	88	-	SWL_Hatch (Table 6.2)
Granulator	61 Cooling Circuit Pump	86	305974.4825		0.5	91	8	-3.0	88	-	SWL_Hatch (Table 6.2)
Granulator	62 Cooling Circuit Pump	87	305976.9181		0.5	91	8	-3.0	88	-	SWL_Hatch (Table 6.2)
Slag Handling	Spray Pumps	88	306063.9964		0.5	91		•	91	-	SWL_Hatch (Table 6.2)
Slag Handling	Sump Pumps	89	305875.1914	6184181.41	0.5	91	15	-	91	-	SWL_Hatch (Table 6.2)
Slag Handling	Truck Wash	90	305732.812	6184303.688	0	-	-	-	-	-	Not contributing to noise emission
Slag Handing	Knocking Block	91	305981.62	6184251.77	2	110	15		110	120	GHD database

Noise model – plan view

Noise model – 3D view close

Noise model – 3D view far

Appendix D Full operational noise results

Receiver ID	Operational noise level LAeq(15min), dBA	Receiver Type	Operational noise criteria (NPfl discrete process assessment) Laeq(15min), dBA	Compliance?	
4004		A stive execution		Vac	
ARR1 ARR2		Active recreation Active recreation		Yes Yes	
ARR3		Active recreation		Yes	
ARR4		Active recreation Active recreation		Yes	
ARR5				Yes	
EDU1		Educational institute		Yes	
EDU2		Educational institute		Yes	
EDU3		Educational institute		Yes	
EDU4		Educational institute		Yes	
POW1		Place of worship		Yes	
POW2		Place of worship		Yes	
PRR1	20	Passive recreation		Yes	
PRR2	28	Passive recreation		Yes	
RES1		Residential - NCA04		Yes	
RES2		Residential - NCA03		Yes	
RES3	33	Residential - NCA03		Yes	
RES4	22	Residential - NCA01	31	Yes	
RES5	33	Residential - NCA04	38	Yes	
RES6	35	Residential - NCA04	38	Yes	
RES7	33	Residential - NCA04	38	Yes	
RES8	38	Residential - NCA03	41	Yes	
RES9	32	Residential - NCA04	38	Yes	
RES10	33	Residential - NCA03	41	Yes	
RES11	35	Residential - NCA04		Yes	
RES12		Residential - NCA03		Yes	
RES13		Residential - NCA02		Yes	
RES14		Residential - NCA04		Yes	
RES15		Residential - NCA04		Yes	
RES16		Residential - NCA04		Yes	
RES17		Residential - NCA02		Yes	
RES18		Residential - NCA03		Yes	
RES19		Residential - NCA03		Yes	
RES20		Residential - NCA03		Yes	
RES21		Residential - NCA04		Yes	
RES22		Residential - NCA04		Yes	
RES23		Residential - NCA03		Yes	
RES24		Residential - NCA03		Yes	
RES25		Residential - NCA03		Yes	
RES26		Residential - NCA03		Yes	
RES27		Residential - NCA03		Yes	
RES28		Residential - NCA03		Yes	
RES29		Residential - NCA03		Yes	
RES30		Residential - NCA02		Yes	
RES31		Residential - NCA02		Yes	
RES32		Residential - NCA02		Yes	
RES33		Residential - NCA02		Yes	
RES34		Residential - NCA02		Yes	
RES35		Residential - NCA02		Yes	
RES36	20	Residential - NCA01	31	Yes	
RES37	19	Residential - NCA01	31	Yes	
RES38	26	Residential - NCA01	31	Yes	
RES39	23	Residential - NCA01	31	Yes	
RES40	23	Residential - NCA01	31	Yes	
RES41	21	Residential - NCA01		Yes	

ghd.com

→ The Power of Commitment

Appendix G Hazard and risk assessment

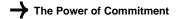
Blast Furnace No. 6 Reline Project

Hazard and Risk Report

BlueScope Steel (AIS) Pty Ltd

7 March 2022

→ The Power of Commitment


GHD Pty Ltd | ABN 39 008 488 373 180 Lonsdale Street, Level 9 Melbourne, Victoria 3000, Australia T +61 3 8687 8000 | F +61 3 8732 7046 | E melmail@ghd.com | ghd.com

Document status

Status	Revision	Author	Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S4	0	Fiona Duncan	M. Erskine		K. Rosen	Kullow	26/10/21
S4	1	Fiona Duncan	M. Erskine	N.Gole	K. Rosen	Kullow	07/03/22

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive summary

BlueScope Steel (AIS) Pty Ltd's (BlueScope) Port Kembla Steelworks operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance. 5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation. 6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate. GHD Pty Ltd (GHD) was commissioned by BlueScope to prepare a preliminary risk screening in accordance with *State Environment Planning Policy No. 33 - Hazardous and Offensive Development* (SEPP 33).

The results of the dangerous goods and transport screening indicate that the project does not exceed any of the SEPP 33 thresholds for operation but storage of explosives during construction exceeds the SEPP 33 threshold. Given the use of explosives during construction of the project it has been considered 'potentially hazardous' and a Preliminary Hazard Analysis (PHA) has been prepared. It is considered that there is potential for moderately serious harm, and a Level 2 PHA is appropriate. A Level 2 PHA uses a semi-quantitative approach based on comprehensive hazard identification to demonstrate that the activity does not pose a significant risk.

Assessments of the air quality, and noise and vibration impact of the project have been completed as part of the EIS, as the development is 'potentially offensive'. The results from the air quality and noise and vibration assessments indicate that if appropriate control measures are in place during construction and operation, the project will minimise the impact of the relevant amenity criteria. Over the lifecycle of the project, and with safeguards, the project is not expected to release a significant quantity of pollutant emissions and is not considered to be an 'offensive industry'.

A qualitative hazard identification study was completed as a systematic way to identify any potential offsite impacts, during construction and operation. The hazard identification study identified the following hazards with the potential for offsite impact, all of which can be suitably controlled:

- Fire/explosion from the natural gas supply
- Fire/explosion from self-generated gas (coke ovens gas)
- Explosion from molten metal and water
- Discharge of toxic dust and/or fumes (blast furnace gas and coke ovens gas)
- Use/handling of explosives

Of these impacts, three were considered serious enough that further semi-quantitative analysis was warranted, specifically internal furnace molten metal explosions, coke ovens gas leaks and ignition, and fuel gas leaks and ignition. The assessment showed that there was no off-site impact and that the risk complies to HIPAP 4 risk criteria.

The hazard identification study demonstrates that the project could be designed, constructed and operated in a manner that will meet relevant regulations, standards and policies.

It is recommended that the following controls be implemented that incorporate practices that will prevent risk scenarios occurring through:

- Inspection and maintenance regime for the gas reducing station, the coke ovens gas and the blast furnace gas pipework and associated fittings
- Separation, or tightly controlled usage, of water around the furnace areas, including procedures/training regarding the expectations for management of water leaks
- Furnace design to avoid inadvertent water leakage into the furnace
- Inspection and maintenance regime for furnace closed water systems
- Bollards or equivalent to protect ground level fuel gas infrastructure such as the natural gas reducing station
- Explosives stored at least 90 metres from the site boundary

It is important to note that any new equipment should have procedures developed for safe operation. This is particularly important for the operation of any new fixed or mobile machinery to prevent injury to people.

Any changes to the assumptions used in this report should result in a review of the PHA and update as required.

This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.3 and the assumptions and qualifications contained throughout the report.

Contents

1.	Introd	luction	1
	1.1	Background and project overview	1
	1.2	Purpose of this report	1
	1.3	Limitations	1
2.	Legis	lative and policy context	3
	2.1	Applying SEPP 33: Hazardous and Offensive Development Application Guidelines	3
	2.2	Hazardous Industry Planning Advisory Paper No 4 – Risk Criteria for Land Use Safety Planning	3
	2.3	Hazardous Industry Planning Advisory Paper No 6 – Guidelines for Hazard Analysis	3
	2.4	Multi-Level Risk Assessment	3
	2.5	Secretary's environmental assessment requirements	3
3.	Metho	odology	5
•	3.1	Approach to assessment	5
		3.1.1 SEPP 33 screening	5
		3.1.2 Hazard identification	5
		3.1.3 Preliminary Hazard Analysis	5
4.	Existi	ng environment	7
	4.1	Project area	11
5.	Prelin	ninary risk screening and emissions	13
	5.1	Dangerous goods storage	13
		5.1.1 Construction	13
		5.1.2 Operation	14
	5.2	Transport screening	16
		5.2.1 Construction of the project5.2.2 Operation of project	16 16
	5.3	Summary of risk screening results	16
	5.4	Amenity overview	16
	0.4	5.4.1 Air quality assessment	16
		5.4.2 Noise and vibration impact assessment	16
	5.5	Summary of emissions results	17
6.	Prelin	ninary hazard analysis	18
	6.1	Hazard identification	18
	6.2	Hazardous materials	20
		6.2.1 Natural gas	20
		6.2.2 Molten metal	21
		6.2.3 Explosives	21
		6.2.4 Blast furnace gas	21
	6.2	6.2.5 Coke ovens gas Hazard scenarios	21 22
	6.3		
	6.4	Consequence determination 6.4.1 Assumptions	22 22
		6.4.2 Results	22
	6.5	Likelihood estimation	24
	6.6	Risk assessment	24
			_ ·

7. Recommendations			
7.1	Explosives management	25	
7.2	Emergency management	25	
Concl	usions	26	
Refere	ences	27	
	7.1 7.2 Concl	7.1 Explosives management	

Table index

Table 2.1	Hazard and risk SEARs	4
Table 5.1	Construction chemicals	13
Table 5.2	Construction chemical threshold comparison	14
Table 5.3	Operational chemicals	14
Table 5.4	Operation chemical threshold comparison	15
Table 6.1	Hazard identification list	19
Table 6.2	Conditions for textbook calculations	22
Table 6.3	Conditions for PHAST modelling	23
Table 6.4	Summary of heat radiation consequences	23
Table 6.5	Summary of overpressure consequences	23
Table 6.6	On-site jet fire frequencies	24
Table 6.7	On-site explosion frequencies	24
Table 6.8	Risk criteria compliance	24

Figure index

Figure 3.1	SEPP 33 screening process	6
Figure 4.1	Regional location	8
Figure 4.2	Site layout	9
Figure 4.3	Key features	10
Figure 4.4	Project Area	12
Figure 6.1	PHA process	18

Appendices

Appendix A	Consequence Calculation Summary	

- Appendix B PHAST Consequence Modelling Summary
- Appendix C Frequency Calculation Summary

Terms and abbreviations

Abbreviation	Description
ADG	Australian Dangerous Goods Code
AS	Australian Standard
AS/NZS	Australian and New Zealand Standard
bar	Measurement of atmospheric pressure
BF	Blast Furnace
BFG	Blast Furnace Gas
°C	Degrees Celsius
CBD	Central Business District
COG	Coke Ovens Gas
CSSI	Critical State Significant Infrastructure
DG	Dangerous Good
DPIE	Department of Planning, Industry and Environment
EIS	Environmental Impact Statement
EP&A	Environmental Planning and Assessment
GHD	GHD Pty Ltd
HIPAP	Hazardous Industry Planning Advisory Paper
К	Kelvin
kg	Kilograms
km	Kilometres
kPag	Kilopascals gauge
kW/m ²	Kilowatts per meters squared
LGA	Local Government Area
LPG	Liquid Propane Gas
m	Metres
mm	Millimetres
MPag	Mega Pascals gauge
MSDS	Material Safety Data Sheet
NSW	New South Wales
PHA	Preliminary Hazard Analysis
PHAST	Process Hazard Analysis Software Tool
PKSW	Port Kembla Steelworks
PPE	Personal Protective Equipment
SEPP 33	State Environment Planning Policy Number 33
SWMS	Safe Work Method Statement
UN	United Nations

1. Introduction

1.1 Background and project overview

BlueScope Steel (AIS) Pty Ltd's (BlueScope) Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

The project has been declared critical state significant infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP).

1.2 Purpose of this report

GHD Pty Ltd (GHD) was commissioned by BlueScope to prepare a preliminary risk screening in accordance with *State Environment Planning Policy No. 33 - Hazardous and Offensive Development* (SEPP 33). This report will support the preparation of an Environmental Impact Statement (EIS) under the EP&A Act for the project.

This report addresses the relevant criteria in the NSW Secretary's Environmental Assessment Requirements (SEARs) for the project issued in July 2021 (as outlined in section 2.5) and assesses the potential hazards and risks of the project under SEPP 33.

As such, this report focuses on the impact of potential hazards associated with the use of dangerous goods and hazardous substances that may arise during the construction and operation of the project. Specifically, this report:

- Describes the existing environment with respect to the project
- Screens the quantities of dangerous goods expected to be used during construction and operation of the project
- Assesses the impacts of construction and operation of the project specific to dangerous goods and other hazardous substances
- Recommends measures to mitigate the impacts identified

1.3 Limitations

This report has been prepared by GHD for BlueScope Steel (AIS) Pty Ltd and may only be used and relied on by BlueScope Steel (AIS) Pty Ltd for the purpose agreed between GHD and BlueScope Steel (AIS) Pty Ltd as set out in section 1.2.

GHD otherwise disclaims responsibility to any person other than BlueScope Steel (AIS) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by BlueScope Steel (AIS) Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

2. Legislative and policy context

The project has been declared CSSI in accordance with Section 5.13 of the EP&A Act.

2.1 Applying SEPP 33: Hazardous and Offensive Development Application Guidelines

The Department of Planning's, NSW, 2011 guideline, "*Applying SEPP 33: Hazardous and Offensive Development Application Guidelines*" provides the process for assessing if developments are potentially hazardous or offensive, including threshold levels that trigger the potentially hazardous or offensive status. SEPP 33 is the main guidance document that has been followed for this assessment.

The project has been declared CSSI and requires approval from the NSW Minister for Planning and Public Spaces. *State Environment Planning Policy No. 33 - Hazardous and Offensive Development* (SEPP 33) is required to be considered as part of the EIS. SEPP 33 provides a process for identifying a potentially hazardous development should storage and transport screening thresholds be exceeded.

2.2 Hazardous Industry Planning Advisory Paper No 4 – Risk Criteria for Land Use Safety Planning

The Department of Planning's, NSW, 2011, *Hazardous Industry Planning Advisory Paper No 4 – Risk Criteria for Land Use Safety Planning* (HIPAP No 4) sets out risk criteria for industries that are considered hazardous. This document is only used if SEPP 33 indicates a development is potentially hazardous.

2.3 Hazardous Industry Planning Advisory Paper No 6 – Guidelines for Hazard Analysis

The Department of Planning's, NSW, 2011, *Hazardous Industry Planning Advisory Paper No 6 – Guidelines for Hazard Analysis* (HIPAP No 6) lists the process required for preliminary hazard analysis (PHA). This document is only used if SEPP 33 indicates a development is potentially hazardous.

2.4 Multi-Level Risk Assessment

The Department of Planning's, NSW, 2011, *Multi-level Risk Assessment* lists the process required for completing a risk assessment at a qualitative, semi-quantitative or fully quantitative level of detail. This document is only used if SEPP 33 indicates a development is potentially hazardous and a PHA is required.

2.5 Secretary's environmental assessment requirements

The SEARs relevant to hazards and risk, together with a reference to where they are addressed in this report, are outlined in Table 2.1.

Table 2.1 Hazard and risk SEARs

Requirements	Where addressed in this report
A preliminary risk screening completed in accordance with State Environmental Planning Policy No. 33 - Hazardous and Offensive Development (SEPP 33) and <i>Applying SEPP 33</i> (2011), with a clear indication of class, quantity and location of all dangerous goods and hazardous materials associated with the development	Section 5
Should preliminary screening indicate that the project is "potentially hazardous", a PHA must be prepared in accordance with <i>Hazardous Industry Planning Advisory Paper No.</i> 6 - Guidelines for Hazard Analysis (2011) and Multi-Level Risk Assessment (2011)	Section 6
Systems and procedures to prevent and manage all types of emergencies	Section 6.1 and Section 7

3. Methodology

This section describes the methodology used to undertake the hazard and risk study.

3.1 Approach to assessment

3.1.1 SEPP 33 screening

SEPP 33 applies to any project which falls under the policy's definition of 'potentially hazardous industry' or 'potentially offensive industry'. If not controlled appropriately, some activities within these industries may create an offsite risk or offence to people, property or the environment thereby making them potentially hazardous or potentially offensive. The purpose of this report is to determine if the project is potentially hazardous using the SEPP 33 risk screening process or potentially offensive considering expected discharge requirements. If the screening indicates that the project is potentially hazardous, then a PHA is required. The overall risk screening process, as outlined in SEPP 33 is summarised in Figure 3.1. If the project is potentially offensive, after considering the quantity and nature of any discharges and the significance of the offence likely to be caused, having regard to surrounding land use and the proposed controls, then additional controls are required.

The risk screening process typically concentrates on the storage of specific dangerous good (DG) classes that have the potential for significant offsite effects. Specifically, the assessment involves the identification of classes and quantities of all DGs to be used, stored or produced on site with an indication of storage locations. The quantities of DGs are then assessed against the SEPP 33 threshold quantities. If any of the SEPP 33 threshold quantities are exceeded, then a PHA is required.

3.1.2 Hazard identification

Following screening and during the final assessment of the project, a determination of whether the project poses significant risk or offence is required. Hazard identification highlights any risks associated with the interaction of the project (as a whole) with the surrounding environment. This is a systematic process to identify any potential offsite impacts. The aim of the hazard identification process is to show the project does not pose any significant risk or offence.

The hazard identification is a desktop qualitative assessment and involves documenting possible events that could lead to a possible off-site incident. The assessment then lists potential causes of the incident, as well as identification of operational and organisational safeguards to prevent the incidents from occurring or to mitigate their impact. The hazard identification is conducted for both construction and operation of the project.

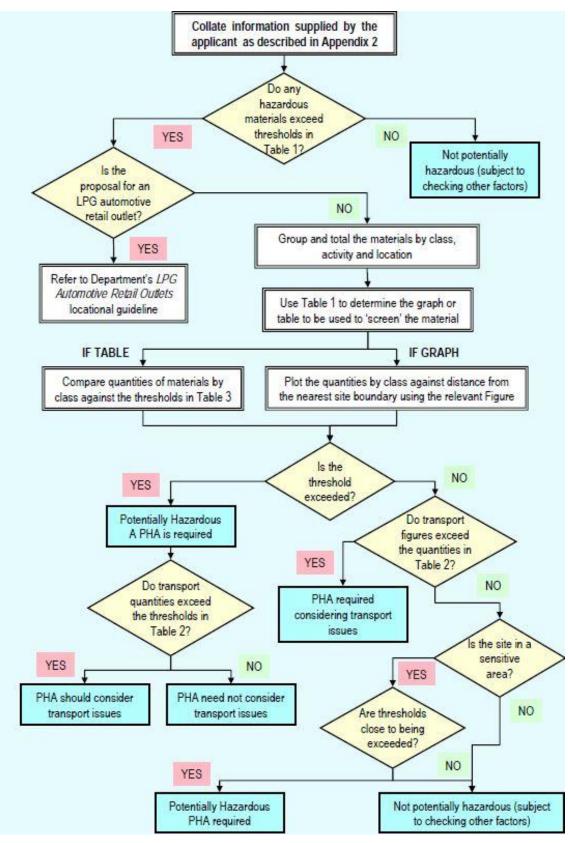
3.1.3 Preliminary Hazard Analysis

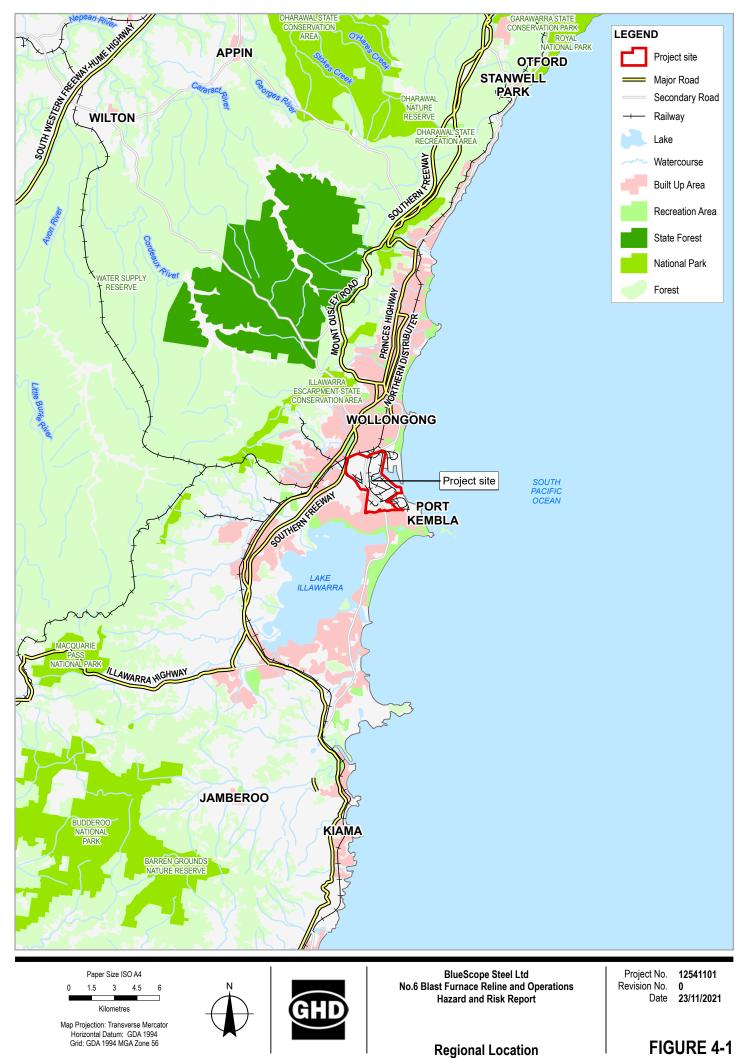
For development projects classified as 'potentially hazardous industry', a PHA is completed to determine the risk to people, property and the environment at the proposed location and in the presence of controls. Criteria of acceptability are used to determine if the development project is classified as a 'hazardous industry'. If this is the case, the development project may not be permissible within most industrial zonings in NSW.

The PHA will identify potential hazards, analyse these hazards in terms of their impact to people and the environment and their likelihood of occurrence, quantify the resultant risk to surrounding land uses and assess the risk to demonstrate that the project will not impose an unacceptable level of risk.

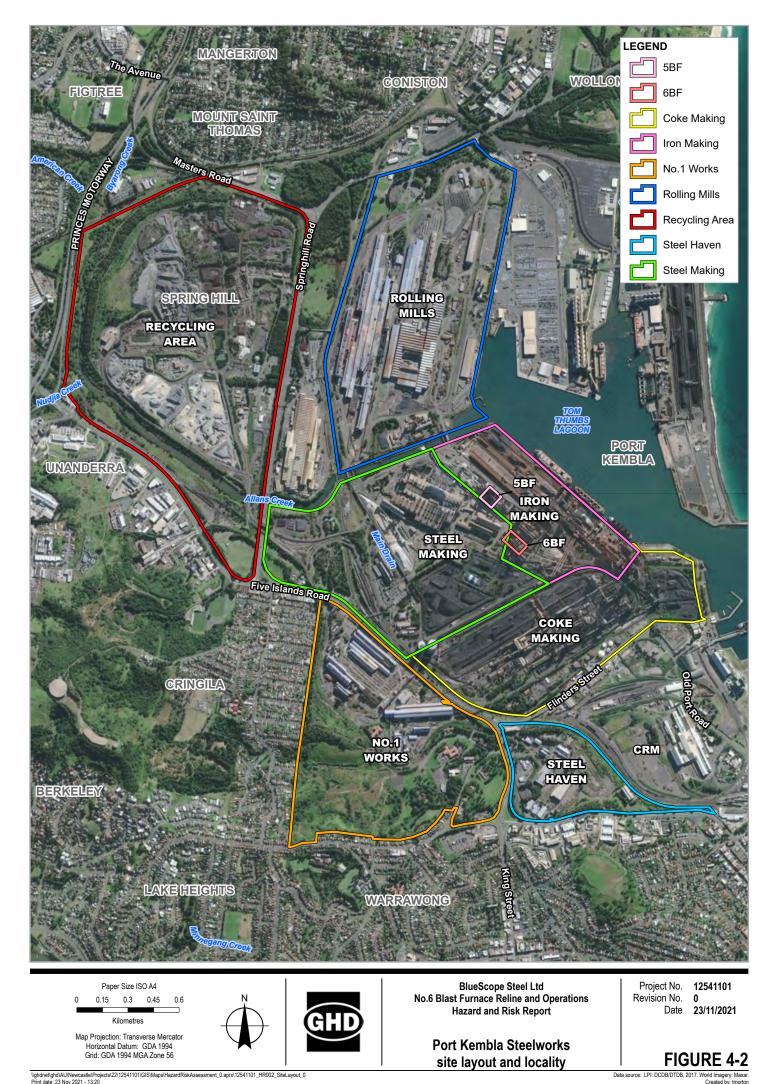
Applying SEPP 33 (2011) identifies three levels of PHA. If a PHA is required, a judgement of the level of risk associated with the project is determined using the results of the screening and hazard identification stages. The three levels of PHA are:

- Level 1 if significant but not serious potential for harm is identified, a qualitative PHA is completed
- Level 2 if medium potential for harm is identified, a semi-quantitative PHA is completed
- Level 3 if high potential for harm is identified, a quantitative PHA is completed

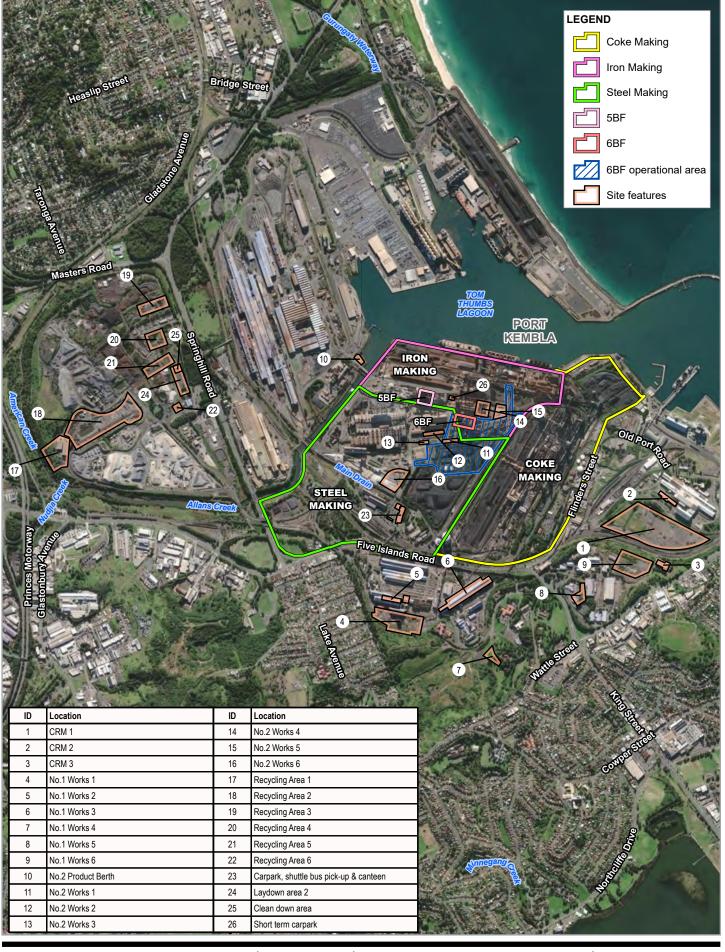



Figure 3.1 SEPP 33 screening process

4. Existing environment


The project is located within an industrial site of approximately 750 hectares (ha) at Port Kembla in the Wollongong LGA and Illawarra region of NSW. Sydney is approximately 80 kilometres (km) to the north of Port Kembla, while the Wollongong Central Business District (CBD) is approximately 2.5 km to the north and Lake Illawarra is approximately 3 km to the south. Port Kembla is the main industrial centre of the Illawarra region.

Key features of Port Kembla are the heavy industrial area and the port including industrial developments such as PKSW, fertiliser production facilities and petroleum hydrocarbon storage and wholesaling. The port of Port Kembla is zoned SP1 – Special Activities. The Inner Harbour, specifically developed as an all-weather shipping port, covers approximately 60 ha with around 2.9 km of commercial shipping berths. BlueScope operates berths in the Inner Harbour that supply materials for the PKSW.


The area surrounding Port Kembla industrial area is primarily occupied by residential development. These urban areas provide small and large-scale retail outlets, community services (e.g. medical facilities, hospital, schools and sporting facilities) and commercial facilities (e.g. banking and post office). The closest urban developments to PKSW are the suburbs of Cringila, Berkeley, Lake Heights, Warrawong and Port Kembla to the south, and Unanderra, Cobblers Hill, Mount St Thomas, Coniston and Figtree to the north and west. The urban areas of Cringila are located adjacent to the No. 1 Works and No. 2 Works areas and are the nearest to the project area, being approximately 1.2 km to the southwest as shown on Figure 4.1 to Figure 4.3.

\ghdnet\ghd\AU\Newcastle\Projectsi22\12541101\GIS\Maps\HazardRiskAssessment_0.aprx\12541101_HR001_RegionalLocality_0 Print date: 23 Nov 2021 - 13:19 Data source: Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3, 2006. Created by: tmortor

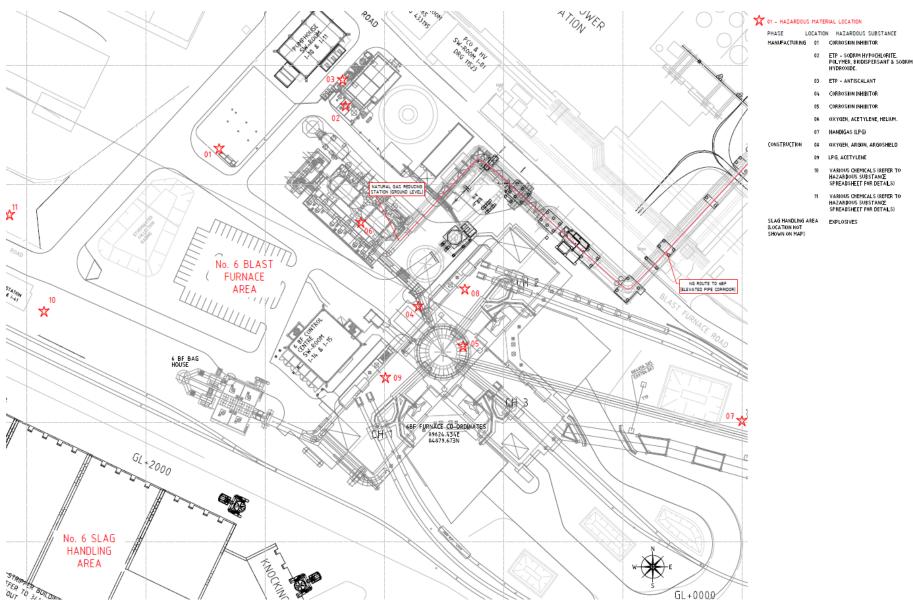
\lghdnet\ghd\AU\Newcastle\Projects\22\12541101\GIS\Maps\HazardRiskAssessment_0.aprx\12541101_HR002_SiteLayout_0
Print date: 23 Nov 2021 - 13:20

Paper Size ISO A4 0 0.15 0.3 0.45 0.6 Kilometres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Hazard and Risk Report Project No. **12541101** Revision No. **0** Date **23/11/2021**

Key project features

\ghdnet\ghd\UNewcastle\Projects\22\12541101\GIS\Maps\HazardRiskAssessment_0.aprx\12541101_HR003_KeyFeatures_0 Print date: 23 Nov 2021 - 13:20


FIGURE 4-3

4.1 Project area

For the purpose of the EIS, the project area includes 6BF and the associated construction area. The project area is shown in Figure 4.4. The project involves the relining of 6BF over a period of approximately 3 years to return it to service and commence ironmaking after 5BF ceases operation.

The reline of the furnace involves:

- Removal of remaining burden material and iron skull
- Stripping of the staves, refractories and hearth from inside the shell
- Repairs to the furnace shell where required
- Installation of the new hearth, sidewall refractories and staves
- Repairs/replacement of the tuyeres, tapholes, furnace cooling systems and instrumentation
- Upgrade work to the 6BF ancillary systems for continuous operation

5. Preliminary risk screening and emissions

5.1 Dangerous goods storage

5.1.1 Construction

A summary of the chemicals used and/or stored on-site during construction of the project is shown in Table 5.1. During construction it is assumed that minimal storage of chemicals will occur, and no stockpiling will occur (justin-time use). The maximum expected quantity and DG classification are provided in Table 5.1.

Product Name	UN number	DG Class	Packing group (PG)	SUB RISK/S	Maximum Quantity (kg)
Bottled Gases					
Oxygen	1072	2.2		5.1	729
LPG	1075	2.1			180
Acetylene	1001	2.1			249
Argon	1006	2.2			922
Argoshield	1956	2.2			944
Nitrogen	1066	2.2			906
Medical air		2.2			559
Miscellaneous					
Paint (spray cans)	various	2.1			50
Paint (liquid)	various	3	Ш		500
Solvents - thinners, MEK	various	3	Ш		1,000
Diesel	3082	9	111		5,000
Kerosene	1223	3	111		200
Epoxies	various	3	111		500
Welding fluxes	N/A	N/A			50
Adhesives	various	3	111		100
Cleaning agents	various	8	Ш		1,000
Carbon and ceramic refractory blocks (monolithic and brick)	N/A	N/A			1,300,000
COG residue	N/A	N/A			1,000
BFG residue	N/A	9	111		1,000
Gearbox oil	various	3	111		500
Grease	various	3	111		500
Aircon refrigerant	various	2.2			200
Explosives		1.1			150

 Table 5.1
 Construction chemicals

The screening thresholds for on-site storage are shown in Table 5.2. Based on the DG class, the SEPP 33 storage thresholds for the construction of the project are exceeded for explosives if storage is unconstrained. It is possible for the storage of explosives to not exceed the thresholds if the location is set back from the boundary (see section 6.2.3 for more details).

Table 5.2 Construction chemical threshold comparison

DG class	Combined storage threshold (tonnes)	Combined quantity (tonne)	Exceedance of SEPP 33 threshold
1.1	0.1	0.15	Fail (exceeds the threshold)
2.1	0.5	0.25	Pass (does not exceed)
2.1 (LPG)	10	0.18	Pass (does not exceed)
2.2	None	3.33	Pass (excluded) *
3 - II	5	1.50	Pass (does not exceed)
3 - III	5	2.20	Pass (does not exceed)
5.1	5	0.73	Pass (does not exceed)
8 - II	25	1.0	Pass (does not exceed)
9 - III	None	6.0	Pass (excluded) *

* This refers to dangerous goods that SEPP 33 has excluded from requiring a threshold quantity.

5.1.2 Operation

A summary of the chemicals used and/or stored on-site during operation of the project is shown in Table 5.3. Assumptions have been made about the usage of these chemicals on-site. The DG classification and the quantities have also been provided in Table 5.3.

Product Name	UN number	DG Class	PG	SUB RISK/S	Quantity (kg)
Water Treatment Chemicals					
NALCO® 1392	3265	8	III		1500
ACTI-BROM 7342	N/A	N/A			1500
HI-TEX 82220	N/A	N/A			4500
CAT-FLOC 8103 PLUS	N/A	N/A			1500
Sodium Hypochlorite 12.5% Solution	1791	8	11		3450
Caustic soda - Liquid (46% - 50%)	1824	8	11		18000
Furnace Cooling Chemicals					·
Nalco 8338	3266	8			354
Nalco 8338	3266	8			2596
Nalco 8338	3266	8			354
Manufacturing Bottled Gases					
Air Compressed		2.2			121
Oxygen Compressed	1072	2.2		5.1	541.6
HANDIGAS (LPG)	1075	2.1			90
Acetylene	1001	2.1			444
HELIUM COMPRESSED	1046	2.2			25.35
Piped Gases					
COG	1023	2.3		2.1	No storage vessels onsite
BFG	1953	2.3		2.1	No storage vessels onsite

Table 5.3Operational chemicals

Product Name	UN number	DG Class	PG	SUB RISK/S	Quantity (kg)
Natural gas	1971	2.1			No storage vessels onsite
Oxygen	1072	2.2		5.1	No storage vessels onsite
Nitrogen	1066	2.2			No storage vessels onsite
Miscellaneous					
CIGWELD COMWELD BRONZE FLUX	1458	5.1	III		20
CONCRESIVE 2530 (B)	2735	8	III		20
Gearbox oil	various	3	III		1,000
Grease	various	3	III		1,000
KEROSENE	1223	3	III		160
WHITE KNIGHT SQUIRTS GLOSS BLACK AEROSOL	1950	2.1			6
WORMALD HFC-227EA (WORMALD HFC-227EA)	3296	2.2			No storage vessels onsite
BELZONA® 2921 (ELASTOMER GP CONDITIONER)	1193	3	II		20
BELZONA® 2211 (MP HI-BUILD ELASTOMER) SOLIDIFIER	3082	9	111		20

The screening thresholds for on-site storage are shown in Table 5.4. Based on the DG class, the SEPP 33 storage thresholds for operation of the project are not exceeded for any chemical.

Table 5.4 Operation chemical threshold comparison

DG class	Combined storage threshold (tonnes)	Combined quantity (tonne)	Exceedance of SEPP 33 threshold
2.1	0.5	0.45	Pass (does not exceed)
2.1 (LPG)	10	0.09	Pass (does not exceed)
2.2	None	0.69	Pass (excluded) *
3 - II	5	0.02	Pass (does not exceed)
3 - III	5	2.16	Pass (does not exceed)
5.1	5	0.56	Pass (does not exceed)
8 - II	25	21.5	Pass (does not exceed)
8 - III	50	4.8	Pass (does not exceed)
9 - III	None	0.02	Pass (excluded) *

* This refers to dangerous goods that SEPP 33 has excluded from requiring a threshold quantity.

5.2 Transport screening

5.2.1 Construction of the project

It is assumed that during construction of the project, there would be low volumes of DGs stored in the construction compounds, using a just-in-time usage regime. Therefore, the transportation volumes of chemicals during construction are considered minimal. The transport screening minimum threshold for any DG vehicle movements is 100 per year. Based on this, the SEPP 33 transport thresholds for construction of the project are not exceeded. In accordance with the requirements of SEPP 33, BlueScope will undertake further consultation with DPIE regarding the proposed transport and handling arrangement associated with the project.

5.2.2 Operation of project

Transport of DGs during operation of the project is expected to follow similar patterns to current blast furnace operations. As such, the transportation screening thresholds for operation are not exceeded. At this stage of the project's development, it is assumed that DGs would primarily access the site via Springhill Road from Port Kembla.

5.3 Summary of risk screening results

The results of the dangerous goods and transport screening indicate that the project does not exceed any of the thresholds for operation but does exceed the thresholds for storage of explosives during construction. Given the use of explosives during construction, the project has been considered 'potentially hazardous' and a PHA has been prepared.

5.4 Amenity overview

Assessments of the air quality, and noise and vibration impact of the project have been completed as part of the EIS, as the development is 'potentially offensive'.

5.4.1 Air quality assessment

The air quality assessment results predict minor criteria exceedances at receptors located across the study area. Exceedances as a result of the project are incremental and for some pollutants, such as particulate matter, have been modelled to occur as a result of elevated background levels. Overall the air quality assessment found that the operation of 6BF would result in a net reduction of emissions to air as a result of environmental control improvements proposed as part of the project. Emissions can be managed through appropriate selection of construction equipment, compliance monitoring in accordance with the site Environmental Protection Licence (EPL) and community engagement. The results of the air quality assessment are detailed in Appendix C of the EIS.

5.4.2 Noise and vibration impact assessment

The noise and vibration impact assessment results indicate that the predicted noise levels during construction of the project would meet noise management levels (NML) for most construction scenarios during standard hours and outside of standard hours. Some high noise intensity but short duration works such as pile driving and blasting may result in exceedances of the NMLs at some receivers. The assessment is dependent on the location and intensity of construction activities and has recommended locations for activities to minimise noise impacts at sensitive receptors. Reasonable and feasible management measures including consulting with potentially impacted residents have been recommended to manage these impacts.

For operations, the predicted noise levels at residences against project noise trigger levels indicate compliance with the requirements subsequent to the incorporation of mitigation measures to reduce noise levels at the source. Generally speaking, operational noise from 6BF will be similar to noise currently generated by 5BF. The results of the noise and vibration impact assessment are detailed in Appendix D of the EIS.

5.5 Summary of emissions results

The results from the air quality, and noise and vibration assessments indicate that if appropriate control measures are in place during construction and operation, the project will minimise the impact of the relevant amenity criteria. Over the lifecycle of the project, and with safeguards, the project is not expected to release a significant quantity of pollutant emissions and is not considered to be an 'offensive industry'.

6. Preliminary hazard analysis

The results of the SEPP 33 screening indicate that due to the quantity of explosives stored on site during construction, a PHA is required. It is considered that there is potential for moderately serious harm, and a Level 2 PHA is appropriate.

A Level 2 PHA uses a semi-quantitative approach based on comprehensive hazard identification to demonstrate that the activity does not pose a significant risk. The PHA follows the process shown in Figure 6.1, which complies with the Department of Planning's *Multi-level Risk Assessment Guideline*.

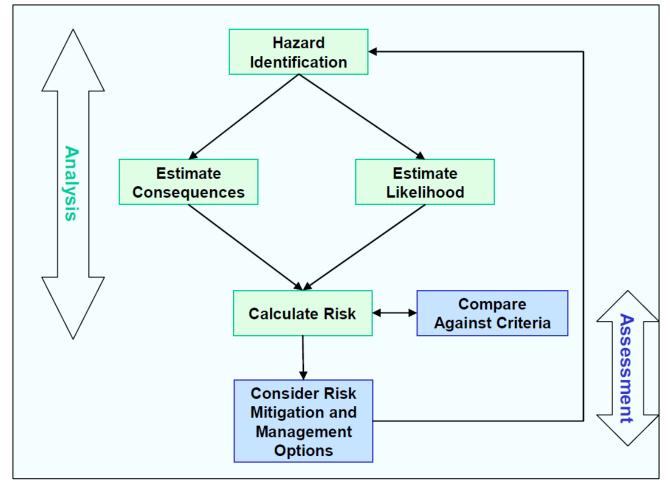


Figure 6.1 PHA process

6.1 Hazard identification

The results of the hazard identification are provided in Table 6.1. The hazard identification was conducted as a desktop study and focussed specifically on both the construction and operation activities of the project. Safeguards are also outlined in Table 6.1 and are required to ensure the risk scenarios that were identified are contained or at least controlled to an acceptable level.

Table 6.1Hazard identification list

Hazard scenario	Causes	Consequence	Further assessment to assess potential off- site impacts	Identified/ recommended safeguards
Vehicle interactions	Vehicle movements in vicinity of personnel	Personal injury	No	Traffic management plan including standard traffic rules, signage Site speed limits One way traffic movement through the site for delivery vehicles Designated pedestrian areas Driver competency Construction management plan
Natural hazards	Flooding, earthquake, lightning	Personal injury Plant shut down Possible fire	No	Structures and tanks designed to appropriate codes and standards Housekeeping standards Site drainage
External fire (adjacent to site)	Fire or explosion from adjacent land users	Asset damage Plant shut down Personal injury	No	Site fuel management Buildings designed to appropriate codes Fire protection systems Housekeeping standards
Furnace explosion	Incorrect fuel / air mix Internal water leak	Asset damage Personal injury	No	Standard operating procedures Closed loop cooling system with leak detection system Process monitoring systems Gas Safety Regulations, training and accreditations based on AS3814 (Industrial and Commercial Gas Fired Appliances) and AS1375 (Industrial Fuel Fired Appliances)
Molten metal spill	Splash Loss of containment	Asset damage Personal injury	No	Standard operating procedures Maintenance and inspection strategies Furnace operation training and accreditations for personnel Plant and process design
Molten metal explosion	Contact with water	Asset damage Personal injury	Yes	Closed loop cooling system with leak detection system Standard operating procedures Maintenance and inspection strategies Furnace operation training and accreditations for personnel Plant and process design
Flammable gas leak and ignition	Fire or explosion following a fuel gas leak due: – Failure/ damage of pipework – Failure/ damage of cylinders – Impact damage – Corrosion	Asset damage Personal injury	Yes	Barriers erected around gas pipe in key areas Pressure piping and pressure vessel design Standard operating procedures Maintenance and inspection strategies

Hazard scenario	Causes	Consequence	Further assessment to assess potential off- site impacts	Identified/ recommended safeguards
Use/ handling of explosives	Removal of furnace skull	Asset damage Personal injury	Yes	Licenced explosives contractor Handling procedures Safe Working Method Statement Use as minimal amounts as possible Containment (within blast furnace)
Loss of containment of chemicals, including dangerous goods	Damage to storage containers e.g. due to external impact Corrosion Wear & tear	Environmental damage Personal injury	No	Purpose designed chemical store, including bunds Inspection and maintenance strategies Handling procedures Standard operating procedures Spill kits
Contact with chemicals, including dangerous goods	Transfer and handling	Personal injury	No	Transfer and handling procedures Standard operating procedures PPE
Toxic release	Failure/ damage of pipework	Personal injury	Yes	Safe piping design Inspection and maintenance strategies

6.2 Hazardous materials

Based on the results of the hazard identification, the following scenarios may have the potential for off-site impacts:

- Fire/explosion from the natural gas supply
- Fire/explosion from self-generated gas (coke ovens gas)
- Explosion from molten metal and water
- Discharge of toxic dust and/or fumes (blast furnace gas and coke ovens gas)
- Use/handling of explosives

6.2.1 Natural gas

Fire/explosion incident resulting from leaks in the gas supply branch pipeline extending from the gas mains to the on-site gas reducing station could result in high heat radiation levels with potential for off-site impacts. However, the likelihood of this occurring is low as the pipeline is on an elevated pipe corridor, fully welded and situated in a controlled industrial environment. Additionally, whilst the location of the fuel gas will move from 5BF to 6BF, there is no fundamental change in the quantity of fuel gas on site. The potential hazards associated with the quantity of fuel gas on site have been considered previously in applications for consent. As such it is not considered in the consequence analysis.

At the gas reducing station (ground level), the pressure is reduced from the feed pressure of 1,140 kPag to a value of 400 kPag downstream in the reticulation system for gas appliance usage and 15 kPag for the stoves.

The worst-case scenario considered is that of an ignited gas release occurring at the gas reducing station. The reducing station is considered to have the highest potential risk because of the pressure and exposure to surrounding activities. Likely leak sources include piping connections and flanges. With the elevated pipe corridor, the potential for damage by impact from a vehicle on internal roads is limited to the reducing station, so is not considered beyond this location.

6.2.2 Molten metal

The scenario of a molten metal-water explosion resulting from water contacting molten metal in a furnace could conceivably occur if moisture was accidentally introduced (from a leak in a cooling element). Outside of the furnace, a molten metal-water explosion could occur if moisture or pooled water contacts molten metal or slag during transfer processes. There are documented molten metal-water explosions, with associated fatalities, in the metal processing industry e.g. Aluminium Association data compiled in the past 19 years shows 25 severe molten aluminium-water explosions with 19 associated fatalities (Jacoby 2000), although it is noted that steel molten metal explosions may not be as severe as aluminium molten metal explosions (Tabatabei and Turner 2009).

Both iron and steel molten metal explosions have occurred previously on site, which have resulted in projectiles impacting and/or penetrating building walls but have not impacted locations at or beyond the site boundary. As such, missile effects off-site are not considered further. Impurities if present could also increase the risk of explosion. It is considered that most of the effects of the above scenarios would be limited to the site, however, given the possibility of overpressure impacts off-site, limited quantitative analysis was conducted. Whilst molten metal explosions can occur both inside and outside of the furnace, the analysis has focused only on the interior furnace explosion as the confined nature of the furnace as opposed to the semi-confined, more open nature outside, will result in a higher explosion efficiency with correspondingly larger consequences, however will still not have offsite impacts.

6.2.3 Explosives

Blasting is expected to be undertaken to remove the salamander material retained inside the 6BF hearth should the ability to remove this material by mechanical means such as jack hammer mounted excavator prove insufficient. It is estimated that 500 tonnes of residual iron skull/salamander material must be removed. Based on this, it is assumed that the maximum quantity of explosives stored on site at any point in time during construction is 150 kg. To comply with DG storage thresholds, it is recommended that the explosives are stored at least 90 metres from the site boundary. If explosives storage is near 6BF, it is recommended that storage is an appropriate distance away from any blasting activities and in accordance with AS 2187.1 - *Explosive storage, transport and use - storage.* As the storage location can be 90 metres from any boundary given size of PKSW and the location of 6BF, the offsite risk is negligible, and it is not considered in the consequence analysis.

6.2.4 Blast furnace gas

Blast Furnace Gas is a toxic gas. It comprises of carbon monoxide, carbon dioxide, nitrogen, water vapour and hydrogen. A failure in the pipework or associated fittings could result in a potential release to the atmosphere. There are a number of engineering controls designed to reduce this likelihood to rare. Additionally, whilst the location of the blast furnace gas will move from 5BF to 6BF, there is no fundamental change in the quantity of blast furnace gas on site. The potential hazards associated with the quantity of blast furnace gas on site have been considered previously in applications for consent. Blast Furnace Gas will have a localised toxic effect and the offsite risk is negligible, so is not considered in the consequence analysis.

6.2.5 Coke ovens gas

Coke Ovens Gas is a flammable and toxic gas. It is a composition of hydrogen, methane, carbon monoxide, carbon dioxide, nitrogen, ethylene, ethane, benzene, toluene, hydrogen sulphide and trace amounts of acetylene. A failure in the pipework or associated fittings could result in a potential release to the atmosphere. There are a number of engineering controls designed to reduce this likelihood to rare. Additionally, whilst the location of the coke ovens gas will move from 5BF to 6BF, there is no fundamental change in the quantity of coke ovens gas on site. The potential hazards associated with the quantity of coke ovens gas on site have been considered previously in applications for consent. Coke Ovens Gas will also have a localised toxic effect, but the offsite risk is negligible, so is not considered in the consequence analysis. However, given the possibility of overpressure impacts off-site, limited quantitative analysis was conducted.

6.3 Hazard scenarios

The following scenarios were identified as being worthy of further analysis:

- Flange leak (5 mm) in the above-ground section of the 50 mm gas branch pipeline (11.4 barg) at the gas reducing station
- Split (50 mm) to the 100 mm fuel gas piping connection on the gas reducing station outlet (4 barg)
- Rupture (50 mm) to the above-ground section of the 500 mm gas branch pipeline (11.4 barg) at the gas reducing station by vehicle impact
- Explosion resulting from the contacting of molten metal and 100 litres of water (cooling system leak) in a furnace
- Coke ovens gas connection leak (10 mm) to the 400 mm pipeline (0.14 barg)
- Coke ovens gas pipe split (200 mm) to the 400 mm pipeline (0.14 barg)

Smaller leaks from the natural gas fuel supply and the piped coke ovens gas are also possible but will have consequences less than the hazard scenarios analysed. As such they have not been considered in this PHA.

6.4 **Consequence determination**

The release, dispersion and flammable effect for natural gas pipeline/fitting leaks, vehicle impact to the natural gas reducing station and molten metal – water explosions are calculated using the appropriate textbook calculations (see Appendix A). A description of the consequence conditions employed is provided in Table 6.2.

For coke ovens gas releases, the release, dispersion and flammable effects are performed using PHAST (Process Hazard Analysis Software Tool) 8.4, a commercial software package. PHAST 8.4 package models have been extensively utilised, and a description of the consequence models employed is provided in Appendix B.

It should be noted that consequence modelling is not the same as risk modelling. Consequence modelling only represents the impact zone that would be affected if a release should occur. It does not consider the following important risk considerations:

- Likelihood of a release, i.e. a leak frequency
- Probability of a wind direction towards a particular location

6.4.1 Assumptions

Storage pressure

Quantity

The conditions outlined in Table 6.2 and Table 6.3 were used in the consequence determination.

Condition			Natural Gas	s (methane)	
Temperature		20 °C		20 °C	

inlet - 11.4 bar gauge

continuous

Table 6.2 Conditions for textbook calculations

outlet - 4 bar gauge

continuous

Molten Metal

Not applicable

Table 6.3 Conditions for PHAST modelling

	-				
Condition	Coke Ovens Gas				
Composition (vol/vol) for modelling	Hydrogen	62.0%	0.1742 kg		
	Methane	26.5%	0.5532 kg		
	Carbon monoxide	5.6%	0.2039 kg		
	Carbon dioxide	1.9%	0.1094 kg		
	Nitrogen	1.2%	0.0394 kg		
	Ethylene	1.0%	0.0437 kg		
	Ethane	1.0%	0.0395 kg		
	Benzene	0.6%	0.0065 kg		
	Hydrogen Sulphide	0.2%	0.0009 kg		
Temperature	20 °C				
Pipeline pressure	0.14 bar gauge				
Pipeline internal diameter	400 mm				
Quantity	continuous, 1.9 kg/s (21,0	00 m³/hr)			
Surface roughness	1 m (regular large obstacle coverage)				
Weather conditions	1.5 / F (stable night time of 20 °C	1.5 / F (stable night time conditions with light wind and moderate clouds)			

6.4.2 Results

A summary of the determined consequences is provided in Table 6.4 and Table 6.5. The consequences are worst case scenarios as they assume no intervention to limit the release. For the leak scenarios some level of intervention would be expected. As such, the contours can be considered conservative.

Table 6.4Summary of heat radiation consequences

Release Scenario	Maximum Distance	num Distance Downwind of Release to Heat Radiation (m)			
	4.7 kW/m² (injury)	12.6 kW/m² (fatality)	23 kW/m ² (property damage)		
Natural gas pipeline (inlet pipeline of gas reducing station) – flange leak	5.1	4.0	3.5		
Natural gas pipeline (outlet pipeline of gas reducing station) – pipe split	31.1	24.6	21.9		
Natural gas pipeline (inlet pipeline of gas reducing station) – vehicle strike pipe rupture	48.6	38.5	34.3		
Coke ovens gas pipeline – connection leak	Does not reach level	Does not reach level	Does not reach level		
Coke ovens gas pipeline – connection split	26.9	21.7	18.2		

Details of the calculations are in Appendix A.

Table 6.5 Summary of overpressure consequences

Release Scenario	Maximum Distance Downwind of Release to Overpressure (m)			
	0.07 bar (injury)	0.14 bar (property damage)	0.21 bar (fatality)	
Molten metal – water contact	100.0	68.0	48.0	
Coke ovens gas pipeline – connection split (delayed explosion)	38.8	30.8	28.1	

Details of the calculations are in Appendix A.

None of the consequence distances extend beyond the boundary and there is no off-site impact. All scenarios have the potential to affect the on-site worker population.

6.5 Likelihood estimation

The likelihood of the worst-case scenarios resulting in a fatality or injury was calculated using an event tree. The assignment of the frequency and probability values has been made based on industry failure frequencies, specialist risk management judgement and the quantified consequences.

It is important to note that the determination of 'absolute values' for assigned probabilities is less important than consistently using 'comparative' or 'relative' values. The overall aim is to provide a ranking to compare with risk criteria.

A summary of the results is shown in Table 6.6 and Table 6.7. As no consequences reach off-site, these frequencies are not included.

Scenario	Natural Gas Flange Leak	Natural Gas Pipe Split	Natural Gas Vehicle Impact	Coke Ovens Gas Connection Leak	Coke Ovens Gas Pipe Split
Frequency of gas release (per annum)	5.00 x 10 ⁻⁰⁶	6.70 x 10 ⁻⁰⁷	1.10 x 10 ⁻⁰⁸	1.60 x 10 ⁻⁰⁶	6.5 x 10 ⁻⁰⁸
Frequency of jet fire (per annum)	5.00 x 10 ⁻⁰⁹	1.27 x 10 ⁻⁰⁹	3.24 x 10 ⁻⁰⁹	1.60 x 10 ⁻⁰⁹	1.24 x 10 ⁻¹⁰
Frequency of fatality (per annum)	5.00 x 10 ⁻¹⁰	1.02 x 10 ⁻⁰⁹	2.91 x 10 ⁻⁰⁹	0.00	9.88 x 10 ⁻¹¹

Table 6.6On-site jet fire frequencies

Details of the calculations are provided in Appendix C.

 Table 6.7
 On-site explosion frequencies

Scenario	Molten Metal – Water Interaction	Coke Ovens Gas Pipe Split
Frequency of explosion (per annum)	1.00 x 10 ⁻⁰⁶	6.50 x 10 ⁻⁰⁸
Frequency of fatality (per annum)	8.00 x 10 ⁻⁰⁷	4.16 x 10 ⁻⁰⁸

Details of the calculations are provided in Appendix C.

6.6 Risk assessment

A summary of the compliance of all the events with the relevant risk criteria from HIPAP 4 is provided in Table 6.8. This assessment shows that the project will comply with the risk criteria.

Event	Individual Fatality Risk	One Injury / Fatality every X Years	HIPAP Risk Criteria	Compliance
Fire and explosion scenarios with property damage offsite	0.00	-	5.00 x 10 ⁻⁰⁵	Complies
Fire and explosion scenarios with serious injury to offsite people	0.00	-	5.00 x 10 ⁻⁰⁵	Complies
Fire and explosion scenarios with fatality of offsite people	0.00	_	1.00 x 10 ⁻⁰⁶	Complies
Fire and explosion scenarios with fatality of onsite personnel	8.46 x 10 ⁻⁰⁷	1,200,000	5.00 x 10 ⁻⁰⁵	Complies

7. Recommendations

It is recommended that management procedures be implemented that incorporate practices that will prevent risk scenarios occurring through:

- Inspection and maintenance regime for the gas reducing station, the coke ovens gas and the blast furnace gas pipework and associated fittings
- Separation, or tightly controlled usage, of water around the furnace areas, including procedures/training regarding the expectations for management of water leaks
- Furnace design to avoid inadvertent water leakage into the furnace areas
- Inspection and maintenance regime for furnace closed water systems
- Bollards or equivalent to protect ground level fuel gas infrastructure such as the natural gas reducing station

Explosives being stored at least 90 metres from the site boundary. It is important to note that any new equipment should have procedures developed for safe operation. This is particularly important for the operation of any new fixed or mobile machinery to prevent injury to people.

Any changes to the assumptions used in this report should result in a review of the PHA and updates as required.

7.1 Explosives management

Explosives will be used on site during construction as part of skull breaking activities in the blast furnace.

Explosives should be stored in a non-ferrous receptacle clearly marked 'Explosives' that is kept closed and locked (except during use by authorised personnel) and stored in the original containers which are securely sealed. The storage area should be a well-ventilated magazine licenced for Class 1.1 explosives, which protects the explosives from the weather, contamination, sources of ignition and access from unauthorised individuals. Storage should be isolated from other dangerous good stores and the area free of debris, waste and combustibles. The explosives containers should be protected against physical damage and regularly checked for spills and leaks.

Magazines are required to comply with the requirements of AS 2187.1 *Explosives – Storage, transport and use – Storage* which addresses issues with design and location of the magazine, security, inventory and management of the explosives, and safety concerns.

Where more than 2.5 kg of Class 1.1 explosives are stored on a site, every perimeter entrance to the designated construction site must be labelled with a 'Hazchem' placard in accordance with the Explosives Regulations. Adequate security needs to be provided for the explosives storage area, and only those who are authorised for unsupervised access to the area may have means to unlock the explosive storage magazine.

Limited quantities of explosives are expected to be stored on site at any one time, however, at the storage area and during use, there shall be no smoking, naked light, heat or ignition source present. The explosives stock should be rotated to prevent ageing (use on first in-first out basis).

7.2 Emergency management

In order to manage emergency situations that may arise as part of the project, an Emergency Response Plan will be developed. The response plan will include as a minimum:

- Details of each of the hazard scenarios as identified in Section 6.3 of this report
- Details of the risks associated with each of these scenarios
- Emergency response plans detailing measures to be undertaken should an emergency scenario eventuate

BlueScope has significant experience in managing risks associated with blast furnace operation and currently operates 5BF in accordance with an existing Emergency Response Plan. An Emergency Response Plan was in place at 6BF during its previous campaign, and therefore has well established protocols in place to manage the identified risks.

8. Conclusions

This report includes a preliminary risk screening of the project in accordance with the requirements of SEPP 33. The results of the dangerous goods screening indicate that the project does exceed the thresholds within the SEPP 33 requirements for dangerous good storage, specifically class 1 (explosive) chemicals, however the results of the transport screening do not exceed the dangerous good movement thresholds. As a result, the project is deemed a 'potentially hazardous industry'.

The intent during construction is that there would be low volumes of dangerous goods stored in construction compounds, using a just-in-time usage regime.

A qualitative hazard identification study was completed as a systematic way to identify any potential offsite impacts, during construction and operation. The hazard identification study identified the following hazards with the potential for offsite impact, all of which can be suitably controlled:

- Furnace molten metal explosion
- Natural gas leak and ignition
- Coke ovens gas leak and ignition
- Use/ handling of explosives
- Toxic release

Of these impacts, three were considered serious enough that further analysis was warranted; specifically furnace molten metal explosions, coke ovens gas leaks and ignition and natural gas leaks and ignition. The assessment showed that there was no off-site impact and that the risk complies to HIPAP 4 risk criteria.

All risks identified can be managed to tolerable levels provided the safeguards identified (see Table 6.1) are enacted.

The hazard identification study demonstrates that the project could be designed, constructed and operated in a manner that will meet relevant regulations, standards and policies.

Assessments of the air quality, and noise and vibration impact of the project have been completed as part of the EIS, as the development is 'potentially offensive'. The results from the air quality and noise and vibration assessments indicate that if appropriate control measures are in place during construction and operation, the project will minimise the impact of the relevant amenity criteria. Over the lifecycle of the project, and with safeguards, the project is not expected to release a significant quantity of pollutant emissions and is not considered to be an 'offensive industry'.

9. References

Department of Planning, NSW, (2011), Applying SEPP 33: Hazardous and Offensive Development Application Guidelines.

Department of Planning, NSW, (2011), Hazardous Industry Planning Advisory Paper No 4 – Risk Criteria for Land Use Safety Planning.

Department of Planning, NSW, (2011), Hazardous Industry Planning Advisory Paper No 6 – Guidelines for Hazard Analysis.

Department of Planning, NSW, (2011), Multi-level Risk Assessment Guideline.

Standards Australia, (1997), AS/NZS 4452, The storage and handling of toxic substances Storage and Handling.

Safe Work Australia, (2012) Code of Practice: Managing risks of hazardous chemicals in the workplace.

Jacoby, J.E., Explosions During Aluminium Scrap Melting in the Recycling Industry - Causes and Prevention, in Fourth International Symposium on the recycling of metals and engineered materials, Stewart, D.L., Stephens, R. and Daley, J.C., Editors, 2000, TMS-AIME, Warrendale, PA.

Tabatabei E. and Turner, R., August 2009, Molten Metal Splash and Furnace Refractory Safety (website accessed September 2021 Molten Metal Splash and Furnace Refractory Safety | Foundry Management & Technology (foundrymag.com)).

Dangerous Goods Safety Guidance Note – Storage of explosives, Government of Western Australia – Department of Mines, Industry Regulation and Safety, January 2018.

Appendix A Consequence Calculation Summary

A-1 Introduction

The consequences of selected hazard scenarios identified in section 6.3 of the report are calculated in the following sections. Namely:

- Jet fire resulting from a natural gas release (flange leak and pipe split)
- Molten metal water explosion (moisture from water bottle into a furnace)

A-2 Jet fire

The models used to calculate the magnitude and radiation levels of the resulting jet fire scenarios are presented in Lees (1996).

The scenarios considered are:

- Flange leak (5 mm) in the above-ground section of the 50 mm gas branch pipeline (11.4 barg) at the gas reducing station
- Split (50 mm) to the 100 mm fuel gas piping connection on the gas reducing station outlet (4 barg)

Failure of the pipe or connection will result in a sustained release of gas under pressure, potentially resulting in a jet fire. For the purposes of the calculations, it is assumed that the fire is based on the formation of an unobstructed, turbulent free jet.

A-3 Jet fire gas flow

Gas flow from both the high pressure sections of the facility (approximately 11 barg on the inlet to the metering station and 4 barg on the outlet respectively) is critical, i.e. sonic or choked.

The discharge rate (G) is calculated using the following formula from Coulson et al (1999).

$$G = C_d A_r P_1 \left[\left(\frac{M \gamma}{R T_1} \right) \left(\frac{2}{\gamma + 1} \right)^{\left(\frac{\gamma + 1}{\gamma - 1} \right)} \right]^{1/2}$$

Where:

Cd = discharge coefficient (assumed 0.61)

Ar = effective open area (m²)

P1 = initial release pressure (Pa)

M = molecular weight (assumed methane, 0.016 kg/mol)

R = universal gas constant (8.314 J/mol.K)

T₁ = initial release temperature

 γ = Specific heat ratio, assumed 1.4

A-4 Jet fire magnitude

It is generally assumed that the flame will have approximately the same length as an unignited jet. The shape of the gas jet release and the resultant jet fire can be approximately predicted using models from TNO (1979). The jet is modelled as a long cylinder at ambient conditions.

The jet diameter (d_i) is given by:

$$d_{f} = \frac{D_{o}}{2 K_{1} \sqrt{b_{2}}}$$

$$K_{1} = \left(\frac{0.32 \rho_{a}}{\sqrt{\rho_{o}}}\right) \left(\frac{b_{1}}{b_{1} + b_{2}}\right) j$$

$$b_{1} = 50.5 + 48.2 \rho_{a} - 9.95 \rho_{a}^{2}$$

$$b_{2} = 23 + 41 \rho_{a}$$

Where

Do = diameter of the rupture in gas flow calculations (m)

 $\rho \circ$ = density of gas at outflow conditions (kg/m³)

 ρ a = density of gas at ambient conditions (kg/m³)

j = composition at the end of the flare, assumed 0.05 vol fraction (LEL)

The flow is assumed to reach ambient conditions instantaneously so the jet diameter can be considered as being coincident with the discharge point.

The jet length (L_f) is given by:

$$L_f = \frac{D_o}{K_1}$$

A-5 Jet fire radiation

The model used for calculation of the radiation from the jet fire is from Lees (1999) and is an extension of the model from API RP521 'Flare Radiation'.

The radiated heat from the midpoint on the flare centerline (Q_p) is given by:

$$Q_p = n G H_c$$

Where

n = efficiency factor, assumed 0.35

G = total gas release rate (kg/s)

 H_c = heat of combustion (kJ/kg)

The heat radiation (*I*) from the midpoint on the flare centreline to a receptor at distance (x) is given by:

$$I = \frac{\tau_g \, Q_p}{4 \, \pi \, x^2}$$
$$\tau_g = 1 - 0.0565 \ln x$$

- 0

A-6 Jet fire results

The results of the consequence analysis are summarised below.

Table A.1Jet fire results

Scenarios	Flange Leak	Pipe Split	Vehicle Impact
Release Duration (min)	Continuous	Continuous	Continuous
Release hole size (m)	0.005	0.05	0.05
Release area Ar (m ²)	0.0000196	0.00196	0.00196
Pressure P1 (Pa)	1,241,325	501,325	1,241,325
Temperature T ₁ (K)	293.15	293.15	293.15
Methane molecular weight M (kg/mol)	0.016	0.016	0.016
Universal gas constant R	8.314	8.314	8.314
Gas Flow Rate G (kg/s)	0.026	1.053	2.608
$ ho$ $_{\circ}$ (kg/m³)	8.290	3.308	8.190
ho a (kg/m³)	0.666	0.666	0.666
K ₁	0.00225	0.00357	0.00227
Jet Fire Diameter d _f (m)	0.156	0.988	0.988
Jet Fire Length L _f (m)	2.2	14.0	22.1
Radiation Q_p (kW)	509	20,537	50,851
Distance (m) to heat radiation I of 23 kW/m ²	3.5	21.9	34.3
Distance (m) to heat radiation I of 12.6 kW/m ²	4.0	24.6	38.5
Distance (m) to heat radiation I of 4.7 kW/m ²	5.1	31.1	48.6

A-7 Explosion

The scenario considered is:

- Explosion resulting from the contacting of molten metal and water in a furnace.

The scenario considered is that of 100 kg of water (0.1 m³) contacting molten metal in a furnace. The process is considered in two steps; firstly, the water is heated at constant volume to 1772 K, resulting in a large pressure build up; secondly, the resultant vapor undergoes a reversible isothermal expansion to atmospheric pressure.

The initial pressure (P_s) of the vapor after the first step is calculated using the ideal gas equation.

$$P_s = \frac{n R T}{V}$$

Where

 $P_s = pressure (Pa)$

n = number of moles of gas

R = universal gas constant (8.314 J/mol.K)

T = temperature of the gas (K)

V = initial volume of gas (m³)

The ideal work resulting from the second step is calculated using the following formula from Sandler (1999).

$$W = n R T \ln \frac{P_S}{P_E}$$

Where

W = Work (KJ)

P_S = Initial pressure (Pa)

$$P_E$$
 = Final pressure (Pa)

n = Number of moles of gas

R = Universal gas constant (8.314 J/mol.K)

T = Temperature of the gas (K)

Schubach (1996) suggest an explosive efficiency (energy transferred to shock wave) for a pressure burst explosion of 30% to 40% of the maximum theoretical reversible work output. For the purposes of determining the consequence of a molten metal / water reaction, the worst-case efficiency (40%) is used.

In order to determine the blast overpressure at a distance from the explosion, the graphical correlation between scaled distance (Z) and peak overpressure (P_r) is used as stated in Shin (2015).

Figure A.1 Reflected peak overpressure versus scaled distance (Shin, 2015)

Once the scaled distance is known, the relationship between the scaled distance (Z) and the actual distance (R) is used.

$$Z = \frac{R}{W^{1/3}}$$

A-8 Explosion results

The results of the explosive consequence analysis are presented in the tables below.

Table A.2 Work results	
Parameter	Value
Mass H ₂ O (kg)	100.0
H ₂ O Moles n (mole)	55.6
Temperature T (K)	1772
Universal gas constant R	8.314
Initial Pressure P _B (kPa)	819,122
Final Pressure P _E (kPa)	101.3
Total Theoretical Work Wt (kJ)	737,017
Explosion efficiency	40%
Actual Work W (kJ)	294.8

Table A.3 Explosion results

Peak Overpressure (kPa)	Scaled Distance (m/kg ^{1/3})	Actual Distance (m)
3.5	40	159.9
7 (injury)	25	100.0
14 (property damage)	17	68.0
21 (fatality)	12	48.0
35	8	32.0
70	5	20.0

A-9 References

Lees, F.P., Hazard Identification, Assessment and Control. Second ed. Loss Prevention in the Process Industries. Vol. 2. 1996, Oxford: Butterworth-Heinemann.

Coulson, J.M., Richardson, J.F., Backhurst, J. R., Haker, J. H., Fluid Flow, Heat Transfer and Mass Transfer. Sixth ed. Chemical Engineering. Vol. 1. 1999, Oxford: Butterworth-Heinemann.

(T.N.O.), T.N.O., Methods of the Calculation of the Physical Effects of the Escape of Dangerous Material (Liquids and Gases). Vol. 1-2. 1979, Rijswijk: Prins Maurits Lab.

Sandler, S.I., Chemical and Engineering Thermodynamics. Third ed. 1999, New York: John Wiley & Sons, Inc.

Schubach, S.A., Bagster, D. F., Some Aspects of Modelling Steam Explosions. Loss Prev. Process Ind, 1996. 9(3): p. 193-197.

Shin, J., Whittaker, A.S, Cormie, D., Incident and Normally Reflected Overpressure and Impulse for Detonations of Spherical High Explosives in Free Air, Journal of Structural Engineering, December 2015.

Appendix B PHAST Consequence Modelling Summary

B-1 Discharge modelling

If there is a hole in a pipeline, vessel, flange or other piece of process equipment, the fluid inside will be released through the opening, provided the process pressure or static head is higher than ambient pressure. The properties of the fluid upon exiting the hole play a large role in determining consequences, e.g., vapour or liquid, velocity of release etc. Figure B1 illustrates an example scenario.

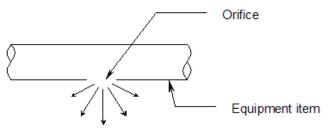


Figure B.1 Typical Discharge

The discharge can be considered to have two stages; the first is expansion from initial storage conditions to orifice conditions, the second from orifice conditions to ambient conditions.

The conditions at the orifice are calculated by assuming isentropic expansion, i.e., entropy before release = entropy at orifice. This allows enthalpy and specific volume at the orifice to be calculated.

The equations for mass flow rate (\dot{m}) and discharge velocity (u_0) are then given by:

$$\dot{m} = C_d A_0 \rho_0 \sqrt{-2(H_0 - H_i)}$$

 $u_0 = C_d \sqrt{(-2(H_0 - H_i))}$

Where:

C_d	=	Discharge Coefficients

A_0	=	Area	of	the	Orifice
0		7.100	0.		0111100

 ρ_0 = Density of the Material in the Orifice

 H_0 = Enthalpy at the Orifice

 H_i = Enthalpy at Initial Storage Conditions

The discharge parameters passed forward to the dispersion model are as follows:

- Release height (m) and orientation.
- Thermodynamic data: release temperature (single phase) (°C) or liquid mass fraction (two-phase), initial drop size (m).
- Other data:
 - For instantaneous release: mass of released material (kg), expansion energy (J).
 - For continuous release: release angle (degrees), rate of release (kg/s), release velocity (m/s), release duration (s).

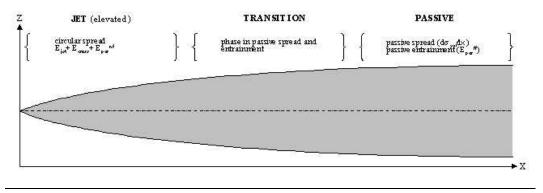
B-2 Dispersion

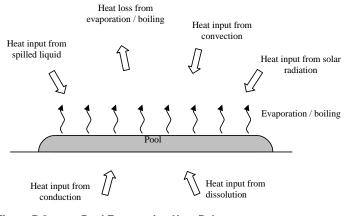
When a vapour leak occurs, some material will be released into the atmosphere. Upon being released it will start to disperse and dilute into the surrounding atmosphere. The limiting (lowest) concentration of interest is related to flammable and toxic limits for flammable and toxic substances respectively. The model used to determine extent of release is described below, along with some of the key input parameters.

The consequence modelling package SAFETI utilises the Unified Dispersion Model. This models the dispersion following a ground level or elevated two-phase unpressurised or pressurised release. It allows for continuous, instantaneous, constant finite duration and general time varying releases. It includes a unified model for jet, heavy and passive two phase dispersion including possible droplet rain out, pool spreading and re-evaporation.

B-3 Jet dispersion

For a continuous, pressurised release, a vapour is released as a jet, i.e., high momentum release. The jet eventually loses momentum and disperses as a passive cloud. Figure B2 below shows a typical release and the various phases involved.




Figure B.2 Jet Dispersion

The cloud is diluted by air entrainment until it eventually reaches the lower limit of concern. During the jet phase, the mixing is turbulent and much air is entrained. In the passive phase, less air is potentially entrained, and it occurs via a different mechanism to the turbulent jet phase. The calculation of the plume therefore depends on many factors, the key parameters being:

- Vapour released, specifically molecular weight
- Discharge conditions including phase(s) of release, velocity etc.
- Atmospheric conditions (a cloud will generally travel further in more stable conditions with lower wind speeds)

B-4 Dispersion from pool evaporation

If a rupture occurs from a drum or vessel containing a liquefied gas, the liquefied gas pools on the ground whilst rapid vaporisation occurs forming a vapour cloud, which ultimately disperses, as a low momentum cloud. Due to the low momentum, the cloud is not turbulent, which is a significant factor in air entrainment and dilution of the cloud. Figure B3 below shows a typical release and some of the inputs into the calculation.

The rate of the evaporation depends on numerous factors, the most important ones being:

- Surface it is released onto (e.g. its thermal properties and temperature)
- Atmospheric conditions (a cloud will generally travel further in more stable conditions with lower wind speeds)
- Boiling point of the liquid
- Pool size

The concentration of interest is normally related to the toxic limits or specified Emergency Response Planning Guideline (ERPG) limits set for the contained hazardous material.

B-5 Toxic load and probability of death

The toxic load L_{toxic} , for a given component i, is calculated from the concentration of the material at a given position. In the case of a continuous cloud, the concentration does not vary with time and the toxic load is given by:

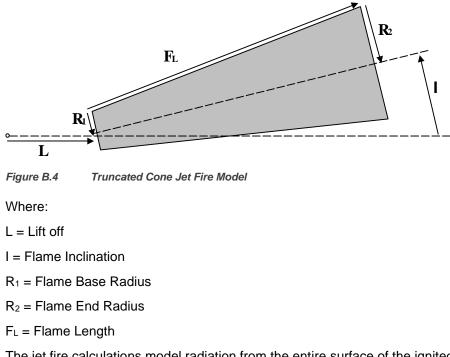
$$L_{Toxic}$$
 $i = t_{exp} \times (f_i C)^{T_N(i)}$

The probability of death P_{death} , for a given component i, at a given position is calculated from a "probit number", P_i , which is calculated from the "toxic load" and calculated given by the following equations:

$$P(i) = T_A(i) + T_B(i) \ln L_{Toxic}(i)$$
$$P_{Death}(i) = \frac{1}{2} \left\{ 1 + erf\left[\frac{P(i) - 5}{\sqrt{2}}\right] \right\}$$

Where:

t_{exp}	=	Exposure Time
f_i	=	Fraction of the Toxic Component in the Cloud
С	=	Concentration of the Component at a Given Position
$T_{N(i)}$	=	Probit Number N of the Component i
$T_{A(i)}$	=	Probit Number N of the Component i
$T_{B(i)}$	=	Probit Number N of the Component i


B-6 Flammable effects

If the release is of a flammable material, it is possible for the release to be ignited. The resulting type of fire (e.g. jet, pool, explosion etc.) depends on the physical properties of the release and whether the ignition is immediate or delayed.

B-6-1 Jet fire

Jet fires are a result of high momentum releases. If a flammable release is ignited instantaneously, a jet fire will result. The flame will have a degree of 'lift off' as the flammable mixture has to dilute to be within the flammable limits. This section briefly discusses the model used for jet fires as well as key parameters in the calculation.

The jet fire calculation utilises the Chamberlain model. In this model, jet fires are modelled as a conical flame, with the ignited portion lift off, inclination and shape being determined by the material being released, the pressure at which it is being released and the hole size that it is being released through. These release parameters are the main inputs to the jet fire radiation calculations. Figure B4 below shows a graphical representation of the jet fire model.

The jet fire calculations model radiation from the entire surface of the ignited portion of the jet. This includes radiation from the cone forming the body of the flame, as well as from the ends of the cone. The amount of radiation that a nearby receiver is exposed to is determined by its distance from the flame surface, as well as by the orientation of the flame relative to the receiver. The key parameters in the calculation of the radiation exposure of a receiver are therefore the flame lift off, the flame inclination, and the dimensions of the ignited portion of the jet (i.e. flame length and end radii).

B-6-2 Fireball model

Fireballs are short-lived flames which generally result from the ignition and combustion of turbulent vapour/two phase (i.e. aerosol) fuels in air. Releases that fuel fireballs are usually near instantaneous and commonly involve the catastrophic failure of pressured vessels/pipelines. Fireballs can dissipate large amounts of thermal radiation which away from their visible boundaries may transmit heat energy that could be hazardous to life and property.

SAFETI uses static models to evaluate fireballs. Static models assume a fireball exists at its maximum size over its lifespan and ignore transient flame characteristics. It provides a conservative flame shape and incident radiation estimates.

The fireball model (Figure B5) determines the flammable mass, fireball duration, radius and lift-off height (height from the centre of the fireball to the ground under the fireball) as well as the surface emissive power to generate the heat radiation effect.

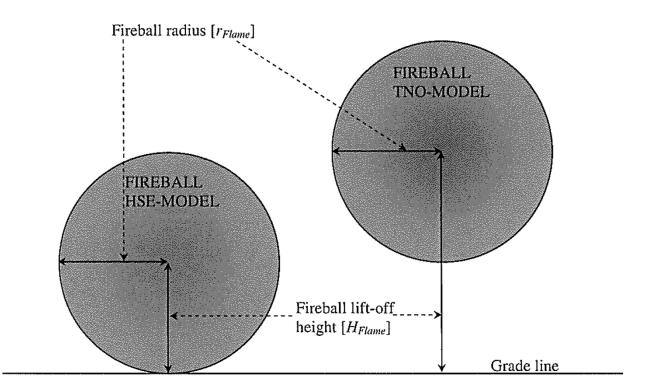


Figure B.5 Fireball Model

B-6-3 Multi energy explosion model

The Multi Energy Model gives overpressure of an explosion as a function of distance from the explosion. The explosion is modelled as a sphere and overpressure is calculated based on scaled distance from the centre. This section explains the key parameters involved in the multi energy model.

The energy released by the explosion, E, is calculated as the product of the mass of fuel in the cloud and the heat of combustion. This assumes a stoichiometric mixture of fuel and air.

The distance scaling factor, S, is related to the energy released by the explosion and the atmospheric pressure by:

$$S = \left[\frac{E}{P_a}\right]^{1/3}$$

The scaled distance r is then given by:

$$r=\frac{d}{S}$$

where d is the actual distance of the receiver from the cloud centre.

To calculate overpressure a set of 10 curves is used. The actual curve used depends on the degree of confinement, with a confinement of 1 being least confined and 10 most confined. Process plants generally have a confinement factor of 7, though it needs to be assessed for each individual process. The graph showing the 10 curves is included in Figure B6.

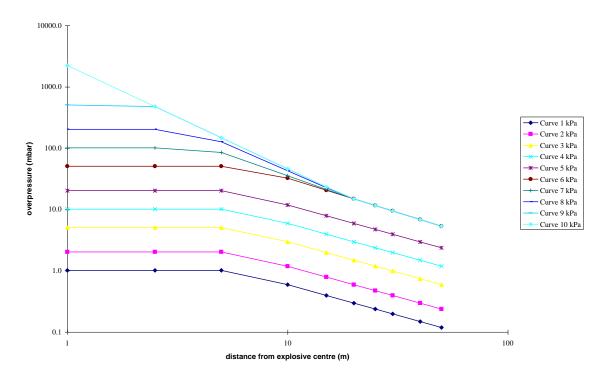


Figure B.6 Multi Energy Curves

B-7 References

Chamberlain, G. A., 1987, Developments in design methods for predicting thermal radiation from flares, Chem. Eng. Res. Des. v65 (1987).

Lees, F.P., "Loss Prevention in the Process Industries", Vol 2, Butterworth Heinemann, Oxford, United Kingdom, 1996.

PHAST v8.4 help file.

TNO Yellow book, 2nd edition, TNO, The Netherlands (1992).

Wilcox, H.W.M. and Holt, A., "A unified model for jet, heavy and passive dispersion including droplet rainout and re-evaporation', CCPS 1999 ADM paper.

Appendix C Frequency Calculation Summary

C-1 Introduction

The frequencies of all hazard scenarios are calculated in the following section. The expected frequency is needed to enable a calculation of the risk. The scenarios are:

- Natural gas flange leak
- Natural gas pipe split
- Natural gas pipe vehicle impact
- Coke ovens gas connection leak
- Coke ovens gas pipe split
- Coke ovens gas pipe split delayed explosion
- Molten metal water explosion

C-2 Release frequencies

An estimate of appropriate release frequencies is from HSE UK failure rates (2017).

Parameter	Basis	Value
50 mm natural gas flange failure – 5 mm (per flange per year)	1 flange	5.00 x 10 ⁻⁰⁶
100 mm natural gas pipe split – 50 mm (per meter per year)	10 meters pipe	6.70 x 10 ⁻⁰⁷
400 mm coke ovens gas pipe pin hole – 10 mm (per meter per year)	10 meters pipe	1.00 x 10 ⁻⁰⁶
400 mm coke ovens gas pipe split – 200 mm (per meter per year)	10 meters pipe	6.50 x 10 ⁻⁰⁸
Fixed cooling water pipework failure (per meter per year)	1 meter pipe	1.00 x 10 ⁻⁰⁶
Serious vehicle accident on site	Estimated repair cost at least \$10k	2.20 x 10 ⁻⁰⁷

C-3 Ignition probability

Once a gas leak has occurred, in order for a jet fire to eventuate, the escaping gas must be ignited by an ignition source. Ignition probability is dependent on the extent of the gas leak as well as the position of the ignition source in the surrounding area.

An estimate of appropriate small plant ignition probabilities is from OPG (2010). The ignition probability for a vehicle strike is from HSE CRR (1997).

Table C.2	Ignition	probabilities
-----------	----------	---------------

Parameter	Value
Gas release within a small plant at 0.1 kg/s	0.001
Gas release within a small plant at 0.5 kg/s	0.0019
Gas release within a small plant at 1,000 kg/s	1.0
Gas release from a vehicle strike	0.29

C-4 Jet fire frequency results

The results of the frequency analysis and risk assessment are summarised below.

Table C.3On-site jet fire results

	Natural Gas Flange Leak	Natural Gas Pipe Split	Natural Gas Pipe Vehicle Impact	Coke Ovens Gas Connection Leak	Coke Ovens Gas Pipe Split
Frequency of serious accident (per annum) – Table C.1	Not applicable	Not applicable	2.20 x 10 ⁻⁰⁷	Not applicable	Not applicable
probability accident ruptures natural gas inlet pipeline (conservative assumption)	Not applicable	Not applicable	0.05 (On-site speed is low)	Not applicable	Not applicable
Frequency of gas release (per annum) – Table C.1	5.00 x 10 ⁻⁰⁶	6.70 x 10 ⁻⁰⁷	1.10 x 10 ⁻⁰⁸	1.00 x 10 ⁻⁰⁶	6.50 x 10 ⁻⁰⁸
Probability of ignition – Table C.2	0.001	0.0019	0.29	0.001	0.0019
Frequency of jet fire (per annum)	5.00 x 10 ⁻⁰⁹	1.27 x 10 ⁻⁰⁹	3.24 x 10 ⁻⁰⁹	1.00 x 10 ⁻⁰⁹	1.24 x 10 ⁻¹⁰
Probability of person impacted (based on consequence)	1	1	1	1	1
Probability impact results in fatality (conservative assumption)	0.1 (On-site operators in immediate area impacted – but not in main thoroughfare)	0.8 (On-site operators in area impacted – near control room)	0.9 (Driver may be incapacitated by accident)	0.0 (Heat contours expected to result in injury only)	0.8 (On-site operators in area impacted)
Frequency of fatality (per annum)	5.00 x 10 ⁻¹⁰	1.02 x 10 ⁻⁰⁹	2.91 x 10 ⁻⁰⁹	0.00	9.88 x 10 ⁻¹¹

C-5 Explosion frequency results

An estimate of the frequency of fixed pipe leak uses HSE UK failure rates (2017).

 Table C.4
 Molten metal explosion frequency

Parameter	Value	
Frequency of failure of the water-cooling pipework (per annum) – Table C.1	1.00 x 10 ⁻⁰⁶	
Probability water leak is exposed to molten metal (conservative assumption)	1	
Explosion frequency (per annum)	1.00 x 10 ⁻⁰⁶	
Probability of person impacted (based on consequence)	1	
Probability impact results in fatality (conservative assumption)	0.8 (On-site operators in area impacted – within furnace room)	
Frequency of fatality (per annum)	8.00 x 10 ⁻⁰⁷	

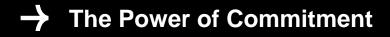
Table C.5 Coke ovens gas pipe split delayed explosion frequency

Parameter	Value
Frequency of split of the coke ovens gas pipe (per annum) – Table C.1	6.50 x 10 ⁻⁰⁸
Probability of delayed ignition (conservative assumption)	0.8 (Working industrial facility with potential ignition sources beyond hazardous area)
Explosion frequency (per annum)	5.20 x 10 ⁻⁰⁸
Probability of person impacted (based on consequence)	1
Probability impact results in fatality (conservative assumption)	0.8 (On-site operators in area impacted)
Frequency of fatality (per annum)	4.16 x 10 ⁻⁰⁸

C-6 References

HSE, Failure Rate and Event Data for use within Risk Assessments, 2017, pgs. 45, 48, 58 and 65.

OGP Risk Assessment Data Directory, ignition probabilities, International Association of Oil and Gas Producers, 2010.


Det Norske Veritas (DNV), Failure Frequency Guidance, Process Equipment Leak Frequency Data for use in QRA, 2013.

HSE Contract Research Report (CRR), Ignition probability of flammable gases, 1997.

Reason, J., Managing the risks of organisational accidents, 1998.

ghd.com

Appendix H Water quality impact assessment

Blast Furnace No. 6 Reline Project

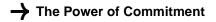
Water Quality Impact Assessment

BlueScope Steel (AIS) Pty Ltd

7 March 2022

→ The Power of Commitment

GHD Pty Ltd ABN 39 008 488 373


133 Castlereagh Street, Level 15 Sydney, NSW 2000, Australia T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com

Document status

Status	Revision	Author	Reviewer A		Approved fo	Approved for issue		
Code			Name	Signature	Name	Signature	Date	
S4	0	C Dengate	S. Murphy		K Rosen		02/02/2022	
S4	1	C Dengate	S. Murphy	là	K Rosen	Karlhow	07/03/2022	

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive Summary

GHD has completed a water quality impact assessment of the construction, commissioning, operation and decommissioning of the No. 6 Blast Furnace (6BF) at the Port Kembla Steelworks. The assessment supports the EIS for the project and responds to the SEARs relating to surface and groundwater quality.

The assessment describes the existing ambient and background water quality and assesses the potential impacts to water quality associated with the construction, operational and decommissioning phases of the project with respect to the following guidelines:

- NSW Marine Water Quality Objectives (WQO's) in NSW (DEC, 2006)
- Storing and Handling Liquids: Environmental Protection (DECC, 2007)
- Managing Urban Stormwater: Soils and construction Volume 2 (DECC, 2008)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2018)

Potential risks to water quality during the construction, commissioning and decommissioning phases are well understood by BlueScope given the experience gained during the successful delivery of the three previous reline projects at the Port Kembla Steel Works (PKSW). Risks to water quality during these phases of the project are proposed to be managed via the existing drainage network and site capture and containment measures, including adequate storage basins, comprehensive monitoring and controlled discharge.

The operation of 6BF following completion of reline activities, commissioning and ramp up will be generally the same as existing operations at No. 5 Blast Furnace (5BF). Specific locations of certain activities within the PKSW site will change due to the transfer of operations to 6BF. However, changes to the quantity or characteristics of water outputs from the blast furnace will be minimal.

Similarly, water uses and discharges from the blast furnace will be consistent with the quantity and quality of those at 5BF. Minor changes to cooling water discharges are expected due to the alternative cooling system associated with 6BF. The stormwater drainage system proposed for the project will enable the capture and reuse of stormwater and containment of any spills, providing an improvement over the current stormwater management capabilities.

An assessment of the future 6BF operations against the above water quality guidelines was undertaken based on the historical 5BF operational monitoring data, previous numerical modelling studies and ecological studies of Allans Creek and the Inner Harbour. Key findings of the assessment are summarised below:

 Relatively few exceedances of the 95% LOSP DGV's occur at the licence discharge point during operations, with the exception of cyanide which nevertheless is compliant with EPL 6092 concentration limits.

As part of BlueScope's ongoing commitment to improvement and efforts to comply with the NSW WQO's and ANZG guidelines, Pollution Reduction Program (PRP) 182 is currently underway to address the identified gaps in data when comparing the analytes measured at No. 2 Blower Station (2BS) drain, which receives flows from the 6BF drain and discharges to Allans Creek, against the list specified in the water quality guidelines. PRP 182 involves extensive sampling to identify and quantify all sources of pollutants entering, and ultimately discharging from, the 2BS drain to Allans Creek, including from the blast furnace effluent treatment system.

Investigations are currently underway at 5BF to determine additional, online treatment solutions to reduce the concentration of cyanide in the effluent treatment system blowdown water before it is discharged to the 2BS drain. Learnings and solutions for cyanide treatment will be applied to future operation of 6BF.

- Products added to the effluent treatment system such as scale inhibiter, flocculant, coagulant and biocides will be dosed at rates in accordance with the manufacturer's guidance and BlueScope's current operational procedures such that no significant impacts to water quality when compared to 5BF? are expected at the proposed discharge concentration.
- Whilst the cooling system proposed for 6BF offers the benefits of both reduced energy and water use in comparison to the existing cooling system at 5BF, an increase of approximately 3,000m³/h of salt water will be required, which represents an increase of around 10% over current operations. At the point of discharge to Allans Creek, these changes are expected to result in a temperature increase of approximately 0.5 1°C.

i

- Numerical modelling previously undertaken on behalf of BlueScope indicates that increased temperatures drop rapidly upon discharge into Allans Creek, with an initial mixing zone of 30m to 40m from the discharge point.
- Allans Creek and the Inner Harbour have been subject to the effects of warmer than ambient industrial discharges for decades and are considered part of a highly disturbed ecosystem. Existing temperatures within 2BS Drain and Allans Creek are not compliant with the default guideline values for temperature and future temperatures are expected to remain non-compliant. However, the predicted increase in temperature at the point of discharge into Allans Creek will comply with the site-specific temperature criteria (an increase of less than 3°C) developed during previous studies and will remain well within the temperature limits that are specified under EPL 6092.
- The risk of negative impacts to groundwater posed by the project is considered low on account of BlueScope's recent and proposed improvements to capture and containment measures and its ongoing groundwater monitoring program.
- Water proposed to be used during the project does not trigger water licencing requirements and will be sourced from an appropriately authorised and reliable supply comprised of both recycled water from the Wollongong Water Recycling Plant (over 85% of the current industrial water mixture) and unfiltered Avon Dam water.

As part of an ongoing commitment to sustainability, BlueScope has successfully completed approximately 77 water-related PRPs and continues to work closely with the EPA to identify opportunities for further improvement. As part of the 6BF reline project, BlueScope has committed to delivering an extensive list of mitigation measures relating to water discharge and water use that will minimise the risk of surface water or groundwater contamination during operation of the project. These include improvements relating to:

- Process and discharge controls
- Stormwater
- Discharge locations
- Water use
- Wastewater management
- Spill management

In addition, the stormwater drainage system proposed for the project will enable the capture and reuse of stormwater, providing improved water cycle management over the current stormwater management capabilities.

Further to the mitigation measures described above, recommendations have been made regarding a number of management plans to be developed following completion of detailed design and implemented during the project.

Based on the investigations and assessment undertaken by GHD and the conclusions drawn in this WQIA, it is considered that, subject to the recommended mitigation measures being applied, the proposed project will not result in any material adverse impacts to water quality, when compared to the current operations of 5BF. Amongst other positive effects, the project will result in reduced water use, improved energy efficiency and improved water capture capability thereby minimising the risk of adverse water quality impacts.

Contents

1.	Intro	duction	1
	1.1	Background and project overview	1
	1.2	Purpose of this report	1
	1.3	Structure of this report	1
	1.4	Project definitions	2
	1.5	Limitations	2
2.	Meth	odology	3
	2.1	Overview	3
	2.2	Legislative and policy context	3
		2.2.1 Secretary's Environmental Assessment Requirements	3
		2.2.2 Guidelines and policies	4
	2.3	Guideline assessment criteria	4
	2.4	Existing discharge concentration limits – EPL 6092	8
	2.5	EPA advice regarding mixing zones	10
3.	Exist	ing environment	11
	3.1	Project location	11
	3.2	Land use	16
	3.3	Existing No. 5 Blast Furnace operations and drainage network	18
		3.3.1 Existing 5BF gas cleaning	18
		3.3.2 Existing 5BF cooling systems	18
		3.3.3 Existing 5BF slag granulation	19
	0.4	3.3.4 Existing 5BF stormwater drainage	19
	3.4	Contamination overview	21
	3.5	Groundwater	22
	3.6	Receiving environment	23
	3.7	Water quality within Port Kembla	25
	3.8	PKSW water quality Pollution Reduction Programs	27
	3.9	Existing site water balance	28
4.	Proje	ct description	29
	4.1	Project Summary	29
	4.2	Construction overview	30
		4.2.1 Construction areas	31
	4.3	Commissioning overview	32
	4.4	Operational overview	33
		4.4.1 Future site water balance	33
		4.4.2 Gas cleaning4.4.3 Cooling systems	34 34
		4.4.4 Slag granulation	34
		4.4.5 Stormwater drainage	35
	4.5	Decommissioning overview	36
5.	Wate	r quality impact assessment	37
	5.1	Project Construction WQIA	37

8.	Refer	ences		57
	7.5	Final o	conclusion	56
	7.4	Impac	ts from the project during decommissioning	56
	7.3	•	ts of the project during operation	54
	7.2	•	ts from the project during commissioning	54
	7.1	•	ts from the project during construction	54
7.			d conclusion	54
_		•	<u> </u>	
	6.4		tion measures during decommissioning	53
		6.3.6 6.3.7	Spill management Ongoing monitoring programs	52 52
		6.3.5	Wastewater management	51
		6.3.4	Water use	51
		6.3.3	Discharge locations	51
		6.3.2	Stormwater	50
		6.3.1	Process and discharge controls	49
	6.3	Mitiga	tion measures during operation	49
	6.2	Mitiga	tion measures during commissioning	49
	6.1	Mitiga	tion measures during construction	49
6.	Mitiga	ation mea	asures	49
	5.4	Projec	ct rundown and decommissioning WQIA	48
		5.3.3	Assessment against relevant water quality criteria	42
		5.3.2		42
		5.3.1	Operational impacts to surface water quality	38
	5.3	Projec	ct operation WQIA	38
		5.2.2	Commissioning impacts to groundwater	38
	0.1	5.2.1	Commissioning impacts to surface water quality	38
	5.2		ct commissioning WQIA	38
		5.1.2	Construction impacts to groundwater	37
		5.1.1	Construction impacts to surface water quality	37

Table index

Table 2.1	SEARs relating to water quality	4
Table 2.2	Relevant water quality criteria	6
Table 2.3	Ambient seawater temperature offshore of Port Kembla (Cardno, 2019)	7
Table 2.4	EPL licence limits – Point 79 No. 2 Blower Station Drain	8
Table 2.5	EPL licence limits – Point 89 Ironmaking East Drain	9
Table 3.1	Summary of Port Kembla ecological health report card findings (modified from UNSW, 2012)	24
Table 3.2	Summary of Allans Creek ecological health report card findings (modified from UNSW, 2012)	24
Table 3.3	Historical water quality (GHD, 2018a)	27
Table 4.1	Project summary	29
Table 4.2	Indicative works schedule	31
Table 4.3	Ancillary facilities	32
Table 5.1	Assessment of products used within the effluent treatment system	39
Table 5.2	Modelled drain flows – Existing summer conditions (Cardno, 2006)	44
Table 5.3	Modelled drain flows – Existing winter conditions (Cardno, 2006)	44
Table 5.4	Measured and predicted temperature conditions at the 2BS drain discharge point	46
Table 5.5	No. 2 Blower Station Drain data assessment summary (2016 – 2021)	47
Table 5.6	No. 2 Blower Station Drain data assessment against DGV (2016 – 2021)	47
Table 6.1	Summary of ongoing monitoring programs	52

Figure index

Figure 2.1	Relevant guideline levels for ambient water quality (DEC 2006)	5
Figure 3.1	Regional location	12
Figure 3.2	Site layout and locality	13
Figure 3.3	Key project features	14
Figure 3.4	Key project features relating to water quality	15
Figure 3.5	Map of surrounding port users (modified from NSWPorts, 2020)	17
Figure 3.6	Water quality monitoring locations (including EPL identification numbers)	19
Figure 3.7	Drain catchment map	20
Figure 3.8	Schematic drawing of current 2BS Drain inputs	21
Figure 3.9	Groundwater sampling locations (modified from JBS&G, 2016)	23
Figure 3.10	Monitoring locations within the broader port	26
Figure 3.11	Existing site water balance at PKSW	28
Figure 4.1	Future site water balance at PKSW	33
Figure 4.2	Schematic drawing of current 2BS Drain inputs	36
Figure 5.1	Simplified No. 6 Blast Furnace Block Flow Diagram RevB	41
Figure 5.2	Average change in water temperature from the previously proposed peak summer load conditions associated with the Cogeneration Project (Cardno,	
	2008)	45
Figure 6.1	Drain catchment map following changes made by the project	50

Abbreviations and acronyms

Term	Definition
AAT	Australian Amalgamated Terminals
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines
AS	Australian Standards
ASS	Acid sulphate soils
BC Act	Biodiversity Conservation Act 2016
BFG	Blast Furnace Gas
BF-BOF operating model	Blast Furnace ironmaking and Basic Oxygen Furnace steelmaking
Biosecurity Act	Biosecurity Act 2015
BS	British Standards
BlueScope	BlueScope Steel (AIS) Pty Ltd
ВоМ	Bureau of Meteorology
BOS	Basic Oxygen Steelmaking
٥°C	Degrees Celsius
CEMP	Construction Environmental Management Plan
CLM Act	Contaminated Land Management Act 1997
СО	Carbon monoxide
CO2	Carbon dioxide
Coastal Management SEPP	State Environmental Planning Policy (Coastal Management) 2018
COG	Coke Oven Gas
COPC	Contaminants of Potential Concern
CSSI	Critical State Significant Infrastructure
DEC	Department of Environment and Conservation NSW
DECC	Department of Environment and Climate Change NSW
DECCW	Department of Environment and Climate Change and Water NSW
DGV	Default Guideline Values
DNAPL	Dense Non-Aqueous Phase Liquid
DO	Dissolved oxygen
DP	Deposited Plan
DPI	Department of Primary Industries
DPIE	Department of Planning, Industry and Environment
EIS	Environmental Impact Statement
EPA	Environment Protection Authority NSW
EPL	Environmental Protection Licence

Term	Definition
GHD	Gutteridge Haskins & Davey
IMED	Ironmaking East Drain
ISO	International Organization for Standardisation (Organisation internationale de normalisation)
km	Kilometre
LBL	Load Based Licensing
LNAPL	Light Non-Aqueous Phase Liquid
LOSP	Level of Species Protection
LOR	Limit of reporting
m	Metre
mg/L	Milligrams per litre
mm	Millimetres
m3/hr	Cubic metres per hour
NTU	Nephelometric Turbidity Units
NSW	New South Wales
рН	Acidity
PKSW	Port Kembla Steel Works
PRP	Pollution Reduction Program
SEARs	Secretary's Environmental Assessment Requirements
SSD	State Significant Development
SWMP	Soil and Water Management Plan
TRT	Top gas recovery turbine
TSS	Total Suspended Solids
µg/L	Micrograms per litre
WGHR	Waste Gas Heat Recovery
WQIA	Water quality impact assessment
5BF	Blast Furnace Number 5
6BF	Blast Furnace Number 6

1. Introduction

1.1 Background and project overview

BlueScope Steel (AIS) Pty Ltd (BlueScope) is one of Australia's leading manufacturers and with its parent company, BlueScope Steel Limited, is a global leader in finished and semi-finished steel products. BlueScope's Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron production from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

The project enables critical steelmaking operations to continue whilst BlueScope evaluates innovative "green steel" technologies that are starting to be piloted globally but will not be commercialised at scale in time to maintain production once the current campaign of the 5BF concludes. The project has been declared Critical State Significant Infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP).

This water quality impact assessment report has been prepared by GHD Pty Ltd (GHD) as part of the EIS for the project. The EIS has been prepared to support the application for project approval and addresses the environmental assessment requirements of the Secretary's Environmental Assessment Requirements (SEARs) pertaining to water quality.

1.2 Purpose of this report

The purpose of this report is to assess the potential water quality impacts from constructing and operating the project. The report:

- Addresses the SEARs (DPIE, 2021) as listed in Section 2.2
- Describes the existing environment with respect to water quality
- Assesses the potential impacts on sensitive receivers of constructing and operating the project
- Recommends measures to mitigate and manage the impacts identified

1.3 Structure of this report

The structure of the report is outlined below.

- Section 1 provides an introduction to the report.
- Section 2 describes the methodology used to undertake the assessment of water quality impacts.
- Section 3 describes the existing water quality environment and the sensitive receivers in the study area.
- Section 4 provides a description of the project during the construction, commissioning and operational phases.
- Section 5 summarises the outcomes of the assessment and a discusses the potential impacts.
- Section 6 provides the mitigation measures recommended to reduce the potential impacts.
- Section 7 summarises the key outcomes of the water quality impact assessment.
- Section 8 lists the references used in this report.

1.4 Project definitions

For the purposes of this report, the following definitions are employed:

- The project is the development that is the subject of the EIS, being the proposed reline and operation of 6BF and associated supporting infrastructure.
- The project area is the area within which the project is located and which will be directly impacted by the project.
- The study area is the site that was investigated during preparation of the EIS. The study area encompasses the project area and a buffer as relevant to searches and investigations inclusive of the catchment within which the project is situated: Inlet Channel, Allans Creek, Tom Thumb Lagoon and Port Kembla Harbour.

1.5 Limitations

This report has been prepared by GHD for BlueScope Steel (AIS) Pty Ltd and may only be used and relied on by BlueScope Steel (AIS) Pty Ltd for the purpose agreed between GHD and BlueScope Steel (AIS) Pty Ltd as set out in Section 1.2 of this report. GHD otherwise disclaims responsibility to any person other than BlueScope Steel (AIS) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by BlueScope Steel (AIS) Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions may change after the date of this report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

2. Methodology

2.1 Overview

This section outlines the methodology used in the water quality impact assessment of the project. The approach included the following key tasks:

Assessment scope:

- Review of potential surface and groundwater impacts of the project.
- Characterisation of water quality discharges, including quality and quantity of all pollutants from the project.
- Documenting details of the stormwater and wastewater management systems.
- Undertaking a site water balance.

Existing environment:

- Identifying the study area relevant to the water quality assessment, including sensitive receiving environments.
- Characterising the existing water quality of Allans Creek and the Inner Harbour based on previous numerical modelling and monitoring programs undertaken in the vicinity of the study area.
- Identifying and classifying existing intake and discharge points within the study area.
- Reviewing the completed and ongoing Pollution Reduction Programs of relevance to the study area.
- Identifying where relevant criteria for receiving waters are being met.
- Identifying where relevant criteria for receiving waters are not being met and what activities are being undertaken to work toward their achievement over time.
- Characterising the nature and extent of any contamination on the site and surrounding area.

Water quality impact assessment:

- Documenting relevant criteria for assessment of potential water quality impacts.
- Comparing expected discharge characteristics and resulting water quality parameters at the edge of the mixing zone and within Allans Creek and the Inner Harbour of Port Kembla to the relevant criteria.
- Where the relevant criteria are not met, describing potential mitigation measures that will limit impacts to water quality and may enable the criteria to be met in time, thereby avoiding or minimising impacts to sensitive receiving environments.
- Describing the proposed erosion and sediment controls during construction.
- Providing recommendations for any required water quality controls for implementation during construction and future operations.

2.2 Legislative and policy context

2.2.1 Secretary's Environmental Assessment Requirements

The SEARs relevant to water quality impacts, together with a reference to where they are addressed in this report, are outlined in Table 2.1. Consideration has also been given to the EPA's advice regarding key water quality issues, which have been addressed throughout the Water Quality Impact Assessment (WQIA).

Table 2.1 SEARs relating to water quality

Requirement	Where addressed in this report
Water Quality	
An assessment of potential surface and groundwater impacts of the project	Section 4, Section 5 and Section 9.1 of the EIS
Characterisation of water quality discharges, including quality and quantity of all pollutants from the project for comparison against relevant water quality criteria and details of proposed water quality controls	Section 4 and Section 5
A detailed site water balance and any water licensing requirements	Section 3.9 and Section 4.4
Details of the stormwater and wastewater management systems and measures to treat, reuse or dispose of water	Section 4 and Section 6
Description of the proposed erosion and sediment controls during construction	Section 6
Characterisation of the nature and extent of any contamination on the site and surrounding area	Section 3.4

2.2.2 Guidelines and policies

The assessment was undertaken in accordance with the SEARs and with reference to the requirements of relevant legislation, policies and/or assessment guidelines, including:

- NSW Marine Water Quality Objectives in NSW (DEC, 2006)
- Storing and Handling Liquids: Environmental Protection (DECC, 2007)
- Managing Urban Stormwater: Soils and construction Volume 1 (Landcom, 2004)
- Australian and New Zealand Guidelines for fresh and marine water quality (ANZG, 2018)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000)
- NSW Environment Protection Authority (EPA) guidance regarding mixing zones (EPA, 2018)

Further details regarding the relevant environmental values, indicators and associated guideline values or criteria for Port Kembla are provided in Section 2.3.

2.3 Guideline assessment criteria

The National Water Quality Management Strategy (NWQMS) provides a national framework for improving water quality in Australia's waterways. The main policy objective of the NWQMS is to achieve sustainable use of the nation's water resources, protecting and enhancing their quality, while maintaining economic and social development.

There are a number of national guideline documents under the NWQMS that aim to provide a consistent approach to the management of significant water quality issues. Those of relevance to the project and this water quality impact assessment are summarised below:

- Management of water quality for natural and semi-natural water resources is guided by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG, 2018 or Water Quality Guidelines).
- Management of groundwater quality is guided by the National Water Quality Management Strategy Guidelines for Groundwater Protection in Australia (AG, 2013).

At a state level, the Marine Water Quality Objectives (WQOs) were adopted by the NSW Government in 2005 and are intended as a guideline tool for strategic planning and development assessment (DEC 2005)¹. The WQO's define the following marine water quality values:

- Aquatic ecosystems i.e. aquatic ecosystem health
- Primary contact recreation i.e. swimming, surfing
- Secondary contact recreation i.e. boating, wading
- Visual amenity i.e. aesthetic qualities of waters
- Aquatic foods i.e. water suitable for growing seafood

In the case of Port Kembla Harbour, the relevant values relate only to Aquatic Ecosystems and Visual Amenity (DECCW, 2006), for which the relevant guideline levels for ambient water quality are presented in Figure 2.1.

Marine Water Quality Objectives	Aquatic ecosystem health To maintain or improve the ecological condition of ocean waters.	Visual amenity To maintain or improve ocean water quality so that it looks clean and is free of surface films and debris.
Examples of indicative guideline levels for environmental (ambient) water quality The indicative guideline levels (indicators and numerical criteria) listed are examples only of some of the relevant water quality guideline levels recommended in the ANZECC & ARMCANZ Guidelines 2000. For a full list, refer to the appropriate tables as referenced in the ANZECC & ARMCANZ Guidelines 2000. These are available at www.deh.gov.au/water/quality/ nwqms/index.html	 Biological Frequency of algal blooms – no change from natural conditions Bioaccumulation of contaminants – no change from natural conditions. Physico-chemical Nutrients Total Nitrogen < 120 µg/L Total Phosphorous < 25 µg/L Turbidity 0.5–10 NTU^¹ Toxicants in coastal waters Metals Copper < 1.3 µg/L Lead < 4.4 µg/L Zinc < 15 µg/L Pesticides Chlorpyrifos < 0.009 µg/L Toxicants in bottom sediments Metals Copper < 65 mg/kg dry weight Lead < 50 mg/kg dry weight Zinc < 200 mg/kg dry weight Mercury < 0.15 mg/kg dry weight Organochlorines Chlordane < 0.5 µg/kg dry weight Total PCBs < 23 µg /kg dry weight 	Indicators to ensure water looks clean and free from pollutants • Surface films and debris Oils and petrochemicals should not be noticeable as a visible film on the water, nor should they be detectable by odour. Waters should be free from floating debris and litter. • Nuisance organisms Macrophytes, phytoplankton scums, filamentous algal mats, blue-green algae, and sewage fungus should not be present in unsightly amounts.

Figure 2.1 Relevant guideline levels for ambient water quality (DEC 2006)

¹ It is noted that the NSW Government is reviewing the NSW Water Quality Objectives across coastal catchments, as a key action under Initiative 1 of the NSW Marine Estate Management Strategy 2018–2028. At the time of assessment no updated information was available.

At the time of publication, the WQO's were intended to be used in conjunction with the supporting information provided by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000), which were superseded by the revised ANZG 2018 Water Quality Guidelines.

It should also be noted that the environmental values and respective numerical indicator values represent objectives for ambient background water quality and are not intended to be applied to point source discharges or mixing zones. Further details are provided in Sections 3.6 and 3.7 regarding the existing water quality conditions and receiving environments of Port Kembla. In summary, Allans Creek and the western portion of the Inner Harbour are considered part of a highly disturbed ecosystem where exceedances of the 95% trigger values for protection of marine waters have been recorded in relation to aluminium, cadmium, copper, lead, zinc, tin and arsenic (refer Section 3.7).

Despite these legacy water quality issues, it is recognised that significant efforts have been made on the part of industry to reduce the level of pollution and improve water quality within Port Kembla. Hence for the purposes of this assessment, with the exception of temperature (which is discussed further after Table 2.2), it is proposed to rely on the WQOs for definition of the relevant values for Port Kembla Harbour (as defined in Figure 2.1) and to rely on the ANZG 2018 Water Quality Guidelines for Default Guideline Values (DGV's) for the Levels of Species Protection (LOSP) summarised in Table 2.1.

Water quality parameter		DGV's (ANZG	2018) ² , ³	NSW water quality objective
Aquatic ecosystems	1			
Biological				
Frequency of algal blooms		Not listed		No change from natural conditions
Bioaccumulation of contaminants	Not listed		No change from natural conditions	
Physico-chemical and Nutrients				
Dissolved oxygen		90-110 % satu	ration	Not listed
рН		8.0-8.4		Not listed
Temperature			erence system*	Not listed
Turbidity		0.5-10 NTU		0.5-10 NTU
Total Nitrogen		— 120 μgN/L — 25 μgP/L		<120 µg/L
Total Phosphorous		1 μg/L		<25 μg/L
Chlorophyll-a				Not listed
Toxicants				
	80% LOSP	90% LOSP	95% LOSP	
Ammonia (NH3)	1700 µg/L	1200 µg/L	910 µg/L	Not listed
Cyanide (CN)	14 µg/L	7 μg/L	4 µg/L	Not listed
Cadmium (Cd)	36 µg/L	14 µg/L	5.5 µg/L	Not listed
Chromium(VI) (Cr6+)	85 µg/L	20 µg/L	4.4 µg/L	Not listed
Copper (Cu)	8 µg/L	3 µg/L	1.3 µg/L	<1.3 µg/L
Lead (Pb)	12 µg/L	6.6 µg/L	4.4 µg/L	<4.4 µg/L
Zinc (Zn)	43 µg/L	23 µg/L	8 µg/L	<15 µg/L
Mercury (Hg) (inorganic)	1.4 µg/L	0.7 µg/L	0.4 µg/L	Not listed
* Refer discussion of site specific tempe	rature criteria belo	W	1	I

Table 2.2 Relevant water quality criteria

² Values, targets and actions in these guidelines are not mandatory, but support a nationally-agreed framework for water quality planning and management.

³ DGVs for groundwater ecosystems have not been developed as part of the 2018 ANZG. It is noted that generally, the Water Quality Guidelines should apply to the quality of both surface water and of groundwater, since the community values which they protect relate to above-ground uses (e.g. irrigation, drinking water, farm animal or fish production and maintenance of aquatic ecosystems). The 2013 AG groundwater guidelines do not provide guideline values for toxicants in groundwaters, but rather provide guidance on how existing DGV's for other community values might be applied, or where new guideline values might need to be derived, in order to inform the setting of appropriate water quality objectives (ANZG, 2018).

Temperature

Whilst the ANZG 2018 have superseded the ANZECC guidelines, the fact sheets and guideline packages from Volume 2 of the ANZECC guidelines have been referenced for guidance in thermal trigger values (yet to be updated for currency in the ANZG, 2018). The ANZECC guidelines state that two approaches may be taken to derive the most appropriate trigger values for unnatural changes in temperature:

- For slightly to moderately disturbed ecosystems or important ecosystems, where appropriate reference system(s) is available, and there are sufficient resources to collect the necessary information for the reference system(s), the trigger values should be determined as follows: hot water discharges should not be permitted to increase the temperature of the aquatic ecosystem above the 80th percentile temperature value obtained from the seasonal distribution of temperature data from the reference system.
- 2. For important waterbodies, and those in very poor condition, appropriate site-specific scientific studies should be undertaken, and the information from these studies should be used together with professional judgement and other relevant information, to derive the trigger values. Where local but higher-quality reference data are used, a less stringent cut off than the 20th or 80th percentile value may be used. The 20th or 80th percentile values, however, should be used as a target for site improvement.

The guidelines recommend a two-step approach to assessment:

- 1. Test the performance indicator (temperature) for the ecosystem against the low risk trigger value for that ecosystem type. The median maximum daily temperature should be used for comparison within slightly to moderately disturbed ecosystems.
- 2. If test values are within the 20–80th percentile range, there is a low risk of adverse biological effects and the only further action required is regular monitoring of the key performance indicators and condition indicators. If after regular monitoring a 'low risk' outcome is consistently obtained, there is scope to refine the guideline trigger value. If the test values are outside the 20–80th percentile range, there is a high risk of adverse biological effects, and management action should occur. This might involve further ecosystem-specific investigation.

Based on long term seawater temperature measurements outside of the port, the ambient 20th percentile, 50th percentile (median) and 80th percentile seawater temperatures are provided in Table 2.3.

Season	Seawater Temperature (°C)			
Season	20 th Percentile	Median	80 th Percentile	
Summer	20.0	21.2	22.4	
Autumn	19.2	20.5	21.8	
Winter	15.6	16.6	17.4	
Spring	16.4	17.5	18.7	

 Table 2.3
 Ambient seawater temperature offshore of Port Kembla (Cardno, 2019)

Adopting the two-step approach to the assessment, as recommended by the ANZECC guidelines, first requires testing of the predicted and measured temperatures at the point of discharge to Allans Creek against the 80th percentile temperatures to assess compliance with the low risk trigger values for slightly to moderately disturbed ecosystems.

Table 2.3 indicates that compliance would require the temperature increase at the edge of the nearfield mixing zone to be less than 0.8 (°C) to 1.3 (°C) depending on the season.

As part of investigations into an alternative salt water cooling system undertaken between 2006 and 2008, UNSW completed a study to assess ecological issues in relation to the proposed system and to identify a more suitable guideline trigger value for temperature impacts to Allans Creek and Port Kembla Harbour (CH2MHILL 2008, NSG 2006). The study concluded that ecologically important changes may occur if temperatures are elevated by more than 3°C. A water temperature trigger value of 3°C was adopted for the earlier assessment and is considered to be of more relevance to Allans Creek and the Inner Harbour than the default guideline value specified in the 2018 Water Quality Guidelines (ANZG, 2018).

Nevertheless, assessment of the proposed discharge stream associated with the project has also been compared to the 80th percentile values as a target for site improvement.

2.4 Existing discharge concentration limits – EPL 6092

The operations associated with the 6BF will take place within one area within the larger PKSW site. EPL 6092 contains individual discharge concentration limits for 14 surface water locations within the PKSW site. Monitoring conditions specified in the EPL include monitoring parameters, locations, frequencies as well as discharge limits relating to the 50th, 90th and 100th percentile concentrations for each discharge point.

The licence discharge points which will receive flows from the 6BF drain are the No. 2 Blower Station Drain (Point 79) and the Ironmaking East Drain (IMED) (Point 89). During normal operation, water received at the IMED is pumped to the No. 2 Blower Station Drain and therefore, there is no discharge at the licenced discharge point, Point 89. During periods of heavy rainfall, the IMED may overflow into the harbour at the licensed discharge point. The EPL also requires sampling at Point 89 if there is a discharge to the harbour during dry weather conditions. The No. 2 Blower Station Drain is sampled every 8 days as required by the EPL.

Pollutant concentration limits of these drains are specified in Table 2.4 and Table 2.5.

Pollutant	Units of Measure	50 percentile concentration limit	90 percentile concentration limit	100 percentile concentration limit	
Ammonia (Dry)	mg/L	n/a	1.5	5	
Ammonia (Wet)	mg/L	n/a	n/a	5	
BOD (Dry)	mg/L	5	10	20	
BOD (Wet)	mg/L	n/a	n/a	20	
Cadmium (Dry)	mg/L	0.01	0.02	0.06	
Cadmium (Wet)	mg/L	n/a	n/a	0.06	
Cyanide (Dry)	mg/L	n/a	0.05	0.3	
Cyanide(Wet)	mg/L	n/a	n/a	0.3	
Filtrable iron (Dry)	mg/L	n/a	0.1	0.3	
Filtrable iron (Wet)	mg/L	n/a	n/a	0.3	
Lead (Dry)	mg/L	n/a	0.05	0.1	
Lead (Wet)	mg/L	n/a	n/a	0.1	
Oil and grease (Dry)	mg/L	n/a	10	20	
Oil and grease (Wet)	mg/L	n/a	/a n/a		
pH (Dry)	рН	n/a n/a		6.5-9.0	
pH (Wet)	рН	n/a	n/a	6.5-9.0	
Temperature (Dry)	degrees Celsius	n/a	35	40	
Temperature (Wet)	degrees Celsius	n/a	n/a	40	
Total iron (Dry)	mg/L	n/a	1	3	
Total iron (Wet)	mg/L	n/a	n/a	50	
Total zinc (Dry)	mg/L	n/a	1	3	
Total zinc (Wet)	mg/L	n/a	n/a	3	
TSS (Dry)	mg/L	n/a 30		50	
TSS (Wet)	mg/L	n/a	n/a	500	

 Table 2.4
 EPL licence limits – Point 79 No. 2 Blower Station Drain

Table 2.5 EPL licence limits – Point 89 Ironmaking	East Drain
--	------------

Pollutant	Units of Measure	50 percentile concentration limit	90 percentile concentration limit	100 percentile concentration limit
Ammonia (Dry)	mg/L	3	5	7
Ammonia (Wet)	mg/L	n/a	n/a	7
Arsenic	µg/L			50
Cadmium (Dry)	mg/L	0.01	0.02	0.05
Cadmium (Wet)	mg/L	n/a	n/a	0.05
Chromium (total)	µg/L			350
Copper	mg/L			1
Cyanide (Dry)	mg/L	0.08	0.15	0.2
Cyanide (Wet)	mg/L	n/a	n/a	0.2
Filtrable iron (Dry)	mg/L	n/a	0.1	0.5
Filtrable iron (Wet)	mg/L	n/a	n/a	0.5
Flouride (Dry)	mg/L			50
Flouride (Wet)	mg/L			50
Lead (Dry)	mg/L	0.05	0.1	0.2
Lead (Wet)	mg/L	n/a	n/a	0.2
Mercury (Dry)	µg/L			3
Mercury (Wet)	µg/L			3
Oil and grease (Dry)	mg/L	n/a	10	20
Oil and grease (Wet)	mg/L	n/a	n/a	20
pH (Dry)	рН	n/a	n/a	6.5-9.0
pH (Wet)	рН	n/a	n/a	6.5-9.0
Selenium	µg/L			20
Temperature (Dry)	degrees Celsius	n/a	40	45
Temperature (Wet)	degrees Celsius	n/a	n/a	45
Total iron (Dry)	mg/L	n/a	3	7
Total iron (Wet)	mg/L	n/a	n/a	20
Total zinc (Dry)	mg/L	n/a	1	3
Total zinc (Wet)	mg/L	n/a	n/a	3
TSS (Dry)	mg/L	n/a	30	100
TSS (Wet)	mg/L	n/a	n/a	200

2.5 EPA advice regarding mixing zones

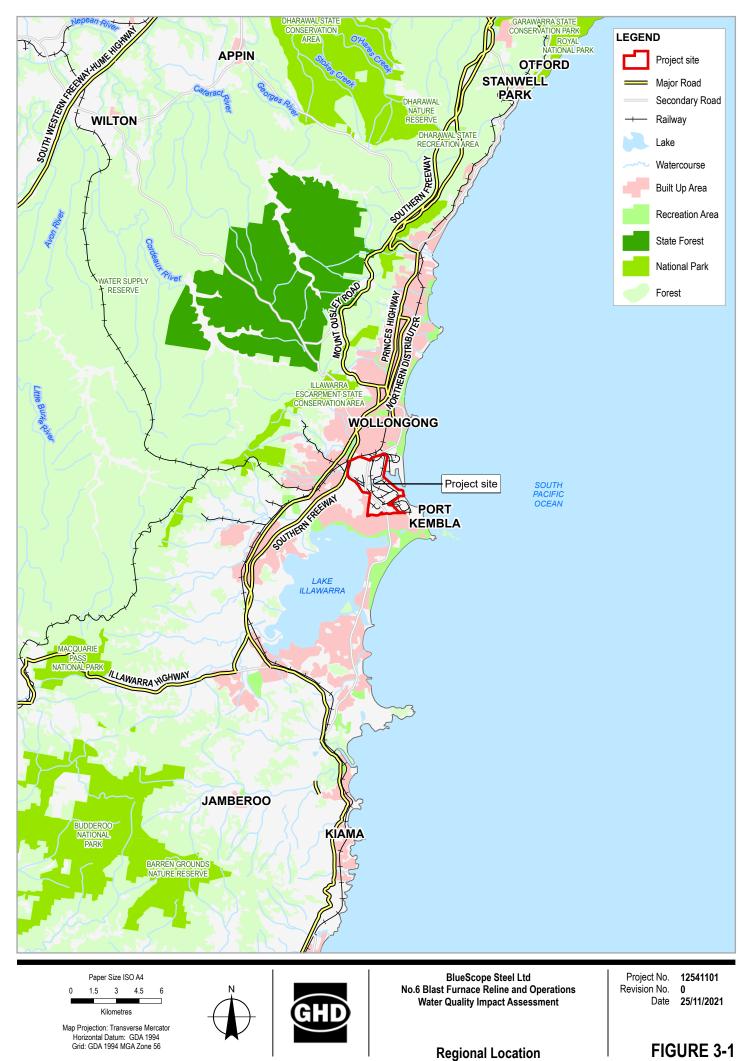
When considering the assessment criteria outlined in Section 2.3, it is important to note the point at which the limits are intended to be applied. Advice on this issue was provided by the EPA in relation to the 2018 EIS for the Port Kembla Gas Terminal, which stated that:

"the EPA's policy is that the WQOs should be met at the edge of the area where initial mixing occurs or "near-field" mixing. 'Near Field' relates to initial mixing where the initial characteristics of momentum flux, buoyancy flux and outfall geometry influence the plume trajectory and mixing. Mixing that occurs through buoyant spreading motion and passive diffusion due to ambient turbulence is referred to as 'Far Field' mixing. Mixing zones should not receive concentrations of pollutants that cause acute toxic impacts meaning that acute impacts should be assessed at end-of -pipe." (EPA, 2018)

When considering mixing zones and the potential impacts within a mixing area, the EPA recommended several principles be adopted, including:

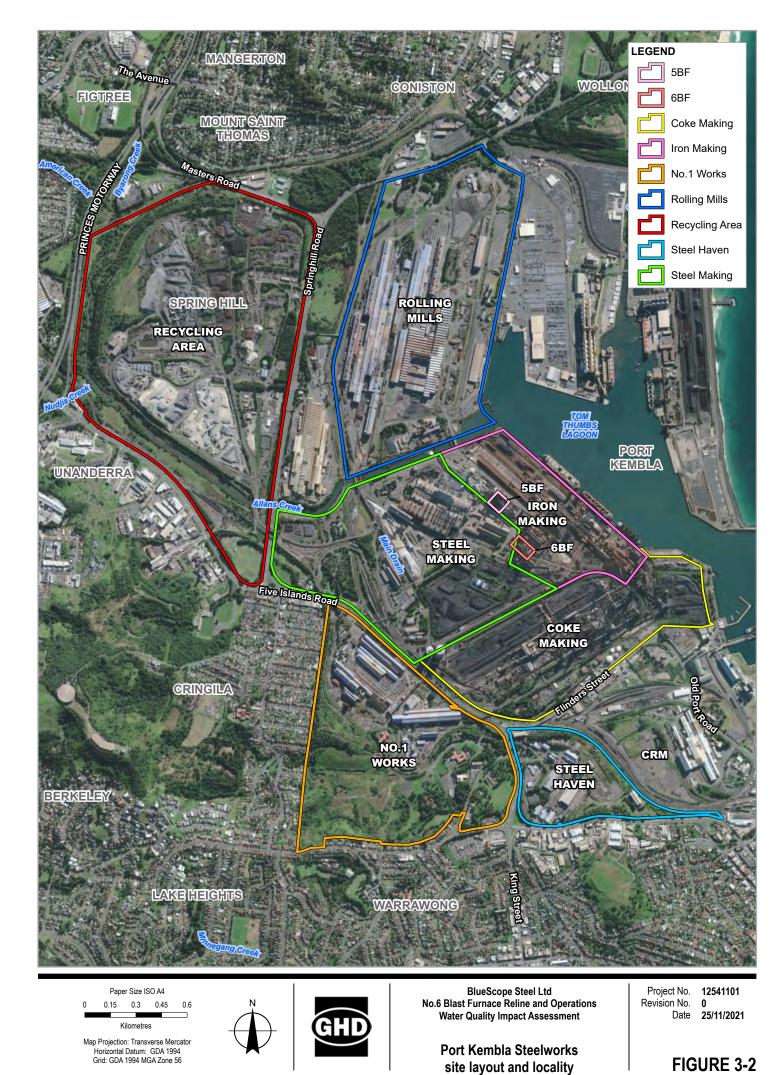
- 1. The area or volume of an individual zone or group of zones should be limited to an area or volume as small as practicable that will not interfere with the designated uses or with the established community of aquatic life of the receiving waters.
- 2. The shape of the mixing zone should be a simple configuration that is easy to locate in the body of water and avoids impingement on biologically important areas.
- 3. Shore hugging plumes should be avoided.
- 4. The mixing zone should avoid impinging on sensitive biological features.
- 5. Impacts within mixing zones should be reversible.
- 6. Mixing zones should not be used for chemicals which bioaccumulate.
- 7. Mixing zones should not be used to manage the biostimulant impacts of nutrients, since the stimulation of algae (e.g. phytoplankton) may occur at considerable distances away from the nutrient source and is mediated by the biological characteristics of the waterbody as a whole.
- 8. Mixing zones should not receive concentrations of pollutants that cause acute toxic impacts. (EPA, 2018).

This advice has been considered in the water quality impact assessment outlined in Section 5.

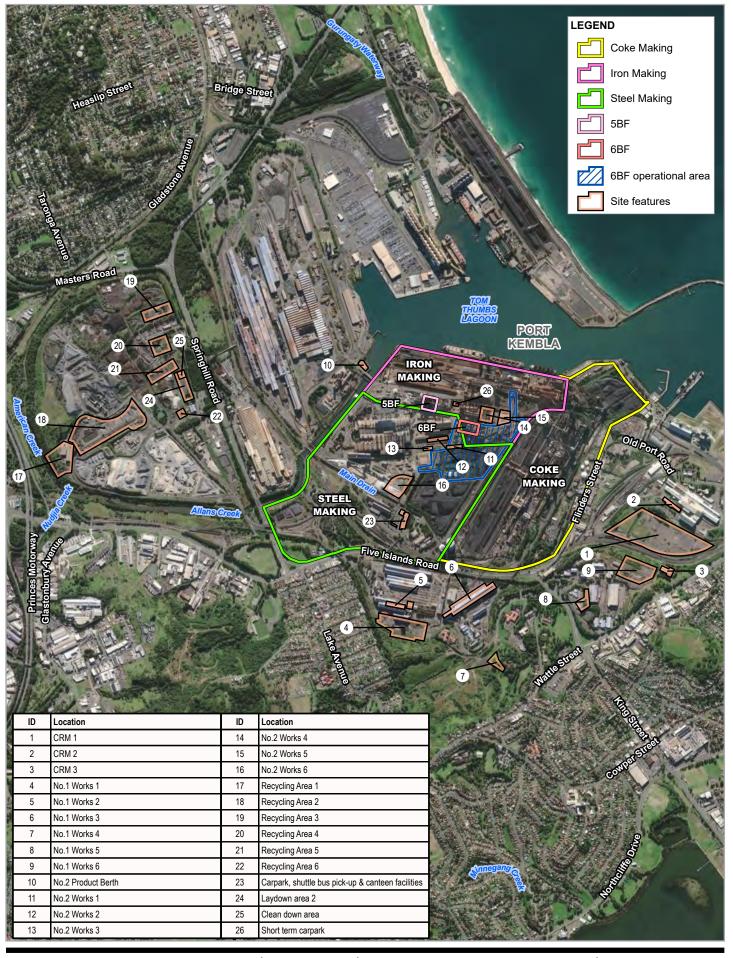

3. Existing environment

3.1 Project location

PKSW is located within an industrial site of approximately 750 hectares in the Wollongong Local Government Area (LGA), approximately 80 kms from Sydney and 2.5 kms from the City of Wollongong. Refer to Figure 3.1.


The PKSW site comprises the No.1 Works, No.2 Works, Steelhaven and the Recycling area as shown in Figure 3.2. The No.2 Works is divided into two sections by Allans Creek. The southern half of the No.2 Works comprises the Cokemaking, Ironmaking and Steelmaking facilities, while the northern half contains the Recycling Area and the Rolling Mills section. All sectors of PKSW are internally linked by road and rail and are currently supplied with electricity, water and gas services.

The land to which this project applies, including all connecting infrastructure and materials handling elements that require upgrades as part of the project, is within the southern section of the No.2 Works, and part of the Ironmaking facilities, which is located within Lot 1 DP 606434. Ancillary construction facilities will also be required and will be located within the wider PKSW site as shown in Figure 3.3. Key project features relating to water quality are presented in Figure 3.4.


G:\22\12541101\GIS\Maps\WQIA_0.aprx\12541101_WQ001_RegionalLocality_0 Print date: 25 Nov 2021 - 13:48

Data source: Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3, 2006. Created by: tmortor

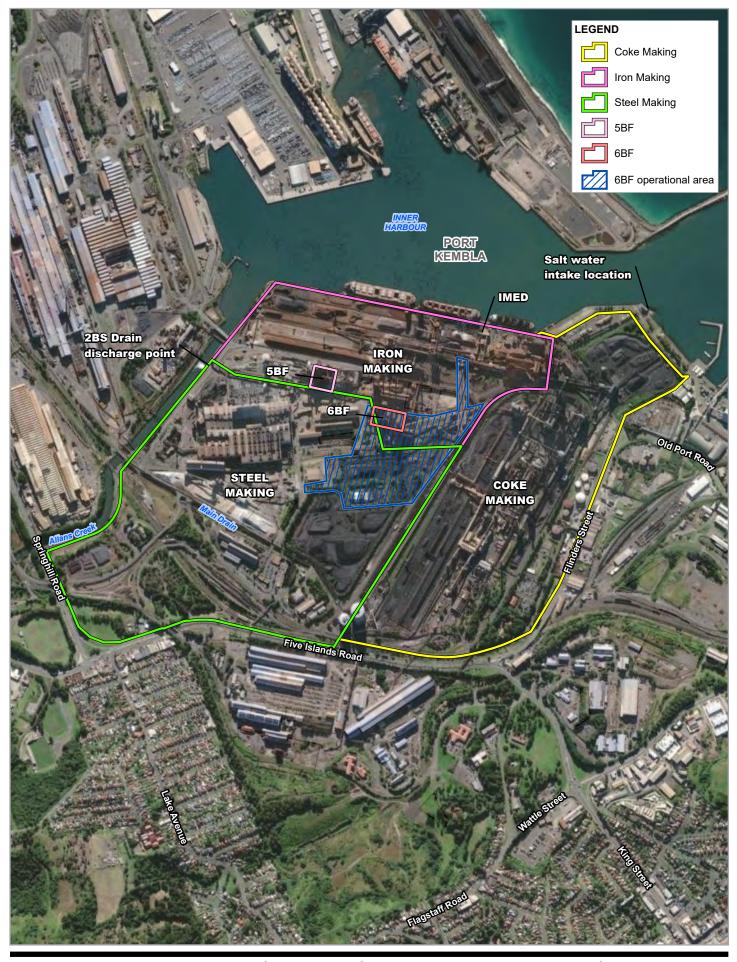
G:\22\12541101\GIS\Maps\WQIA_0.aprx\12541101_WQ002_SiteLayout_0 Print date: 25 Nov 2021 - 13:47

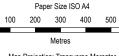
Data source: LPI: DCDB/DTDB, 2017. World Imagery: Maxar Created by: tmorton

Paper Size ISO A4 0.6 0.2 0.4 Kilometres

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

0.8


BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Water Quality Impact Assessment Project No. **12541101** Revision No. **0** Date **25/11/2021**


Key project features

G:\22\12541101\GISIMaps\WQIA_0.aprx\12541101_WQ003_KeyFeatures_0 Print date: 25 Nov 2021 - 13:48

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar Created by: tmorton

FIGURE 3-3

0

600

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Water Quality Impact Assessment

> Key project features relating to water quality

Project No. 12541101 Revision No. 0 Date

25/11/2021

FIGURE 3-4

G:\22\12541101\GIS\Maps\WQIA_0.aprx\12541101_WQ004_KeyFeatures_WQ_0 Print date: 25 Nov 2021 - 13:50

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar. Created by: tmorton

3.2 Land use

The PKSW site is zoned IN3 – Heavy Industrial under *State Environmental Planning Policy (Three Ports) 2013* (Three Ports SEPP). PKSW and the adjacent Springhill Works together comprise the largest site in the Port Kembla industrial area, occupying approximately 750 ha and are mostly built around the western and northern side of Port Kembla's Inner Harbour. The PKSW site is a multi-use industrial area which includes storage, manufacturing, port berths, private internal roads and offices. Access to PKSW is provided by Springhill Road, Five Islands Road, Flinders Street, and Christy Drive, and private internal roads within PKSW.

The port of Port Kembla is located between the Pacific Ocean and the Port Kembla heavy industrial area and is zoned SP1 – Special Activities. The Inner Harbour, specifically developed as an all-weather shipping port, covers approximately 60 ha with around 2,900 m of commercial shipping berths. BlueScope operates five berths in the Inner Harbour that supply materials for PKSW.

More broadly, NSW Ports and the Port Authority of NSW manage the development and operation of the Port. Adjacent berths and trade types are shown in Figure 3.5 and summarised below (NSW Ports, 2021):

- Australian Amalgamated Terminals (AAT) manage Berths 103, 105, 106 and 107 located within the north portion of the Inner Harbour. The terminal is designed as a multi-purpose facility, handling motor vehicles and general cargo.
- Graincorp and Quattro Ports operate grain handling facilities through Berth 104 and Berth 103 respectively, which are located within the northern portion of the Inner Harbour. Berth 104 is a common user berth operated by NSW Ports and includes a bulk liquid facility, which handles a range of liquid products including chemicals and oils.
- Port Kembla Coal Terminal (PKCT) operates a coal exporting facility from Berth 102 located on the eastern shoreline of the Inner Harbour.
- Australian Industrial Energy has signed a long-term lease for Berth 101 and is proposing to develop a gas import terminal on the eastern shoreline of the Inner Harbour.

Map of surrounding port users (modified from NSWPorts, 2020)

3.3 Existing No. 5 Blast Furnace operations and drainage network

Ironmaking at PKSW is conducted via a thermochemical process of reduction of iron ore within the blast furnace. In general, iron ore, coke and other raw materials are charged into the blast furnace for smelting and a mixture of elemental iron (Fe), slag (mineral by-products), and Blast Furnace Gas (BFG) is generated from the blast furnace. Number 5 Blast Furnace (5BF) is the furnace currently in operation at PKSW.

Fine iron ore particles and other materials are first processed in the Sinter Plant to provide a permeable blend of raw materials for the smelting process. Following the smelting process, molten iron is cast via tapholes located near the base of the blast furnace into waiting rail-mounted torpedo ladles. The ladles transport the molten iron to other plants within PKSW for processing into steel.

The major by-products from the blast furnace operation are BFG and slag. Both of these by-products require the use and management of water. The hot gases leaving the top of the blast furnace are cooled and cleaned then piped through the interworks blast furnace gas main to other plants within PKSW for use as an energy source to the maximum practical extent. The molten slag stream is exposed to a continuous stream of high pressure water to generate slag sand, whilst the water is collected, cooled and reused in a closed loop system.

Further details regarding key elements of the existing 5BF operations relating to water quality are provided in Sections 3.3.1 to 3.3.4.

3.3.1 Existing 5BF gas cleaning

Condensate that is generated in the gas main is collected in seal pots. All the BFG condensate is collected and returned to the effluent treatment system via a series of collection tanks and pumps.

A wet scrubber is used to cool and clean the BFG exiting the top of the furnace. The resulting scrubber water reports to an effluent treatment system, where it is treated and cooled so it may be reused for further gas cleaning. A portion of the treated water is 'blowndown' (discharged) at a rate of 30 – 45 m³/hr into the Outlet Channel (as shown in Figure 3.7) where it combines with approximately 26,000 m³/hr of salt water used for cooling in other plant areas and discharges into Allans Creek and the Inner Harbour via the No. 2 Blower Station Drain. Flocculant and coagulant are added to the effluent treatment system to assist with the settling of solids in the clarifier (part of the effluent treatment system) and prevent excessive scaling. The slurry formed in the clarifier is sent via pipework for dewatering at the sinter plant, with recovered water returned to the effluent treatment system and the remaining solids transported to the PKSW Recycling Area.

During abnormal furnace operation, the chemical composition of the water may vary; in this circumstance, the blowdown water from the effluent treatment system is diverted to contingency storage to prevent release to the environment; it is then stored until such time as the quality of the water is confirmed to be acceptable for discharge in accordance with EPL 6092.

3.3.2 Existing 5BF cooling systems

The furnace cooling systems are all a fully closed loop design with heat exchangers. The closed loop design is a safety feature of the blast furnace allowing high accuracy leak detection and has the added benefit of minimising water loss. An evaporative cooling tower provides the heat sink for the closed loop cooling systems at 5BF. The cooling tower requires fresh water to replenish water lost through evaporation, and chemical treatment to comply with statutory requirements. A blowdown stream is recycled through the effluent treatment system.

Salt water sourced from the Outer Harbour is used for once-through cooling of the heat exchangers at the 5BF effluent treatment system and is subsequently discharged to Allans Creek and the Inner Harbour via No. 2 Blower Station Drain. Stormwater drains at 5BF discharge directly to the No. 2 Blower Station Drain or to the No.5 Blast Furnace Drain, both of which report to the Inner Harbour via Allans Creek.

A catchment map is presented in Figure 3.7 and schematic drawing showing inputs to the No. 2 Blower Station Drain, including from 5BF, is shown in Figure 3.8.

3.3.3 Existing 5BF slag granulation

Slag produced by the blast furnace is either formed into rock or granulated slag for sale as construction materials. Granulated slag is formed by subjecting the molten slag stream to a continuous stream of high pressure water. The water used for granulation is collected, cooled and reused in a closed loop system.

3.3.4 Existing 5BF stormwater drainage

Stormwater drains at 5BF discharge directly to the No.2 Blower Station Drain or to the No.5 Blast Furnace Drain, both of which report to the Inner Harbour via Allans Creek. EPL 6092 contains individual discharge concentration limits for 14 surface water locations within the PKSW site, 12 of which relate to water quality within the drainage network. The location of the water quality monitoring points identified in the licence are shown in Figure 3.6. Monitoring conditions specified in EPL 6092 include monitoring parameters, locations, frequencies as well as discharge limits relating to the 50th, 90th and 100th percentile concentrations for each discharge point as described in Section 5.

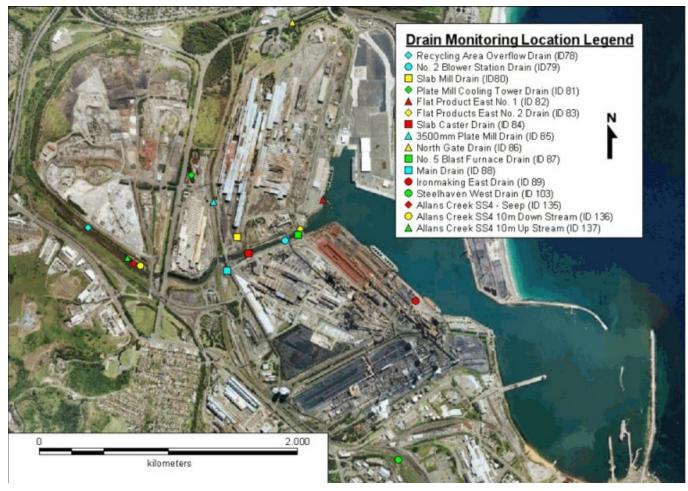


Figure 3.6 Water quality monitoring locations (including EPL identification numbers)

Cokemaking Catchment Area
Ore Preparation Catchment Area
Blower Station Catchment Area
5BF Catchment Area
BOS/ASMS Catchment Area

Figure 3.7 Drain catchment map

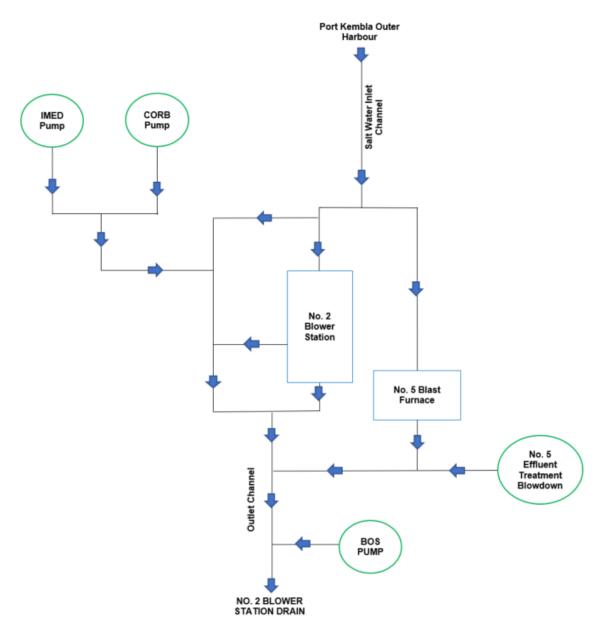


Figure 3.8 Schematic drawing of current 2BS Drain inputs

3.4 Contamination overview

A search of contaminated land records of notices and records of sites notified to the Environment Protection Authority (EPA) was conducted on 24 March 2021. The PKSW site is listed as a contaminated site by the EPA. The site has had four notices issued to it, the last being in March 2018, which was a notification to cease the Voluntary Management Plan for the site on the basis that regulation of the site under the *Contaminated Land Management Act 1997* (CLM Act) is no longer warranted. Ongoing management of site contamination occurs under EPL 6092.

Previous investigations undertaken at the project site (Egis, 2001; GHD, 2004; GHD, 2009; JBS&G, 2016) have identified potentially contaminated areas and Contaminants of Potential Concern (COPC) within the project site. The 6BF area was identified as a moderate contamination risk for heavy metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX), polyaromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs).

JBS&G (2016) found areas of hydrocarbon contamination in soils around the Sinter Plant and Cokemaking area, approximately 250 metres to the east and south of the project site, respectively. Elevated levels of heavy metals, benzene, ammonia and fluoride were also found in soils in these areas.

Elevated concentrations of heavy metals, TPH, PAHs, VOCs, cyanide, ammonia, nitrate, nitrogen and fluoride have been found within groundwater across the PKSW site (JBS&G, 2016; Senversa, 2019). Additionally, the hydrocarbon contamination at the Sinter Plant, Cokemaking and Gas Processing area has resulted in associated groundwater impacts, with a light non-aqueous phase liquid (LNAPL) plume identified in each of these areas (JBS&G, 2016; Senversa, 2019). BlueScope undertakes regular monitoring and remediation of this known contamination and provides annual reporting to the EPA.

Further discussion regarding levels of contaminants within groundwater and surface waters is provided in Section 3.4 and Section 3.5 and Section 3.6.

3.5 Groundwater

A Conceptual Site Model of groundwater at PKSW was developed in 2004 and refined in 2009 (GHD, 2009). This Conceptual Site Model was used as the basis for development of later targeted groundwater investigations (JBS&G 2016). The site's aquifer system can be summarised as comprising two primary aquifers overlying bedrock:

- A combined fill / shallow estuarine aquifer (the estuarine component of which comprises mostly sands and silts), underlain by;
- A deeper estuarine aquifer (predominantly comprising estuarine clays and muds) (JBS&G 2016).

Groundwater recharge predominantly occurs from rainfall infiltration and infiltration of water used for operational purposes, including dust suppression water (used primarily on raw materials stockpiles) and drainage waters. Groundwater recharge may also occur via the deeper (bedrock) aquifers (GHD, 2009).

Groundwater flow at the site generally trends in an easterly direction toward the inner harbour. However, topography, subsurface geology, and unlined surface water drainage channels result in localised variations to this trend, particularly along the perimeter of the site and adjacent to Allans Creek. The central portions of the site, characterized by extensive deposits of graded fill and deeper clay deposits, exhibit much flatter and more uniform hydraulic gradients (GHD, 2004).

BlueScope undertakes a groundwater monitoring program in line with condition E3.1 of EPL 6092 *Contamination Monitoring and Assessment Program.* This condition requires BlueScope to assess groundwater monitoring results against relevant criteria, assess for changes against historical results and evaluate the effectiveness of the monitoring well network. Wells which contain COPC are monitored annually while other wells are monitored less frequently. Monitoring is undertaken to inform assessment of the following:

- The nature and extent of groundwater contamination across PKSW.
- The direction of groundwater movement.
- The potential risks posed by the contamination to sensitive receiving environments.
- Changes in groundwater contaminant concentration over time.
- Surface water contaminant concentrations within Allans Creek to assess the potential for groundwater contamination to impact adjacent waterways.

Targeted groundwater investigations were undertaken in the vicinity of 6BF during 2016. These investigations defined COPC within PKSW groundwater as heavy metals, TPH/BTEX, PAHs, VOCs, OCPs, phenols, PCB's, ammonia, benzene, cyanide, fluoride. Within the BF6 area, COPC were limited to heavy metals, TPH/BTEX, PAHs, VOCs (JBS&G 2016).

Two wells, G24 and NT-MW09, are located within the 6BF project area to the east and west of the slag handling area. Testing in 2016 revealed exceedances of groundwater assessment criteria for manganese, cyanide, ammonia and nitrogen (JBS&G 2016).

Locations of groundwater monitoring wells are presented in Figure 3.9.

Figure 3.9 Groundwater sampling locations (modified from JBS&G, 2016)

3.6 Receiving environment

The PKSW site is generally flat and resides upon a base of artificial fill, including dredged sand and mud, rocks and local soil materials. The site is generally sealed, with small areas of exposed soil. Soils on site are classified as disturbed terrain, have a low probability of acid sulphate soils, and are generally susceptible to erosion, subsidence and lack permeability. The PKSW site is listed as a contaminated site on the EPA's register of contaminated sites, with contamination managed and regulated under licence conditions attached to BlueScope's EPL 6092. The site drains into two creeks, Main Drain and Allans Creek, which run into Tom Thumb Lagoon and Port Kembla Inner Harbour.

Allans Creek is a heavily modified waterway measuring approximately 30 m to 35 m in width with less than two metres of water depth at lowest astronomical tide in the vicinity of PKSW (Australian Hydrographic Service Chart AUS194). Allans Creek is the predominant source of freshwater inflow into Port Kembla Harbour and is subject to elevated temperature industrial discharges. Previous numerical modelling undertaken on behalf of BlueScope indicated that cooling water processes and recirculation are primarily controlled by harbour flushing, with notable differences at each level in the water column. The modelling revealed that wind and tidal influences play a significant role in the rate at which cooling waters discharged to Allans Creek are conveyed to the Inner Harbour (Cardno, 2006).

As a result, water temperatures within the Inner Harbour are generally one to two degrees warmer than sea temperatures beyond the entrance to the harbour.

Detailed studies into the ecology of Allans Creek and the Inner Harbour were undertaken as part of BlueScope's investigations into a once-through seawater cooling system (NSG, 2006). Key findings were summarised as follows (CH2M HILL, 2008):

- The Inner Harbour of Port Kembla is indicative of a stressful environment.
- Many species present in the Outer Harbour are not found within the Inner Harbour.
- Sessile invertebrate assemblages of Port Kembla demonstrated smaller numbers and varieties of sponges and ascidians than in slightly to moderately disturbed systems.
- Species more often associated with tropical waters are found in the Inner Harbour, possibly due to the warm cooling water.
- Fish assemblages resemble other estuaries within NSW.

A follow up study was completed in June 2012 as part of PRP 146: Assessment of the ecological condition of Port Kembla (UNSW, 2012). The objective of the study was to describe ecological communities and contaminant concentrations at multiple study locations in Port Kembla for comparison with study locations from reference estuaries and creeks. Key findings of the ecological health report cards for Port Kembla and Allans Creek are summarised in Table 3.1 and Table 3.2 respectively.

Table 3.1 Summary of Port Kembla ecological health report card findings (modified from UNSW, 2012)

Ecological community	Summary of historical results		
Benthic larval fish	Communities are different, but no evidence of reduced ecological condition		
Benthic and pelagic adult fish	Communities do not differ in composition or diversity measures		
Planktonic larval fish	Communities may differ and evidence of reduced ecological condition		
Epibiota	Communities are different, but no evidence of reduced ecological condition		
Infauna	Communities may differ and evidence of improved ecological condition		
Phytoplankton and microphytobenthos	Communities may differ and evidence of reduced ecological condition		

 Table 3.2
 Summary of Allans Creek ecological health report card findings (modified from UNSW, 2012)

Ecological community	Summary of historical results
Epibiota	Communities are different, but no evidence of reduced ecological condition
Infauna	Communities do not differ in composition or diversity measures
Phytoplankton and microphytobenthos	Communities may differ and evidence of reduced ecological condition

The project site drains into the IMED which is pumped to the No. 2 Blower Station Drain and discharged to Allans Creek, before draining into the Inner Harbour. Allans Creek is classed as Good Freshwater Fish Community Status and Allans Creek and the Inner Harbour (former areas of Tom Thumb Lagoon) are key fish habitats (DPI, 2016). As a result, both are considered sensitive receiving environments and consideration has been given to strategies to avoid or minimise impacts to these waterways.

3.7 Water quality within Port Kembla

Water quality within Allans Creek and the Inner and Outer Harbours of Port Kembla has been historically impacted by urban and industrial discharges as well as ongoing port activities. These past activities led to contamination of marine sediments, groundwater and harbour waters.

Water quality monitoring studies have been previously undertaken to define ambient water quality within the port and to monitor water quality parameters during previous dredging campaigns. Key water quality monitoring programs undertaken within the Inner Harbour and Outer Harbour of Port Kembla since 2002 are summarised below:

- Monitoring and Assessing the Water and Sediment Quality of Port Kembla Harbour According to the ANZECC & ARMCANZ (2000) Guidelines undertaken by M. Phillips (2002).
- Port Kembla Harbour Water Quality Monitoring Program undertaken by the Port Kembla Harbour Environment Group⁴ between 2002 and 2005.
- Berth 107 Dredging Water Quality Monitoring Program undertaken by Cleary Bros on behalf of Port Kembla Port Corporation between 2006 and 2008.
- Outer Harbour Tug Berth Dredging Water Quality Monitoring Program undertaken on behalf of Port Kembla Port Corporation in 2011.
- Outer Harbour Stage 1A Reclamation Water Quality Monitoring Program (including baseline and impact monitoring) undertaken on behalf of Port Kembla Port Corporation between 2011 and 2012.
- Maintenance Dredging Water Quality Monitoring Program undertaken by ENRS on behalf of NSW Ports in late 2014.
- Port Kembla Berth 103 Stage 2 Dredging and Spoil Disposal turbidity monitoring undertaken by Boskalis Australia 2015.
- AIE Port Kembla Gas Terminal Construction Water Quality Monitoring Program under EPL21529 June 2021 September 2021 (ongoing at the time of issue of this report)

In many instances the historical laboratory Limits of Reporting (LOR) adopted during the previous studies listed above were greater than the assessment criteria, meaning that it was not possible to assess whether contaminant concentrations were above or below the current relevant criteria (GHD, 2018a). Consequently, the results of detailed analysis of the full data set may be misleading and would be considered of relatively little value. Nevertheless, it is possible to summarise the key issues relating to existing water quality within the port through review of these previous investigations which are summarised in Table 3.3.

The 2002-2005 monitoring program undertaken by the Port Kembla Harbour Environment Group is considered the most comprehensive study of ambient water quality conditions within the broader harbour. The program aimed to establish benchmarks to determine trends and future improvements in water quality and assess whether contaminant concentrations exceed the ANZECC / ARMCANZ Guidelines (2000). The program identified monitoring locations within the Inner and Outer Harbours of Port Kembla which have been subsequently adopted by a number of programs and are presented below in Figure 3.10.

Results of the 2002 - 2005 sampling were compared to relevant trigger values for the following analytes:

- Metals (Al, Cr, Mn, Fe, Ni, Cu, Zn, Sn, Pb, Cd, As, Se)
- Total Suspended Solids (TSS)
- Cyanide
- Ammonia
- Phenols

The most recent water quality monitoring data collected by AIE under EPL21529 between June and September 2021, shows that whilst background concentrations of aluminium, copper, lead and zinc have been recorded in excess of relevant DGV's in some instances, no exceedances have been recorded in relation to a number of traditional problematic contaminants such as cadmium, tin and arsenic.

⁴ The Port Kembla Harbour Environment Group (PKHEG) was formed in 1998 from the previous Port Kembla Harbour Catchment Management Committee as a forum for port stakeholders and community to work collaboratively towards a sustainable and healthy waterway and harbourside environment (NSW Ports, 2020).

Figure 3.10 Monitoring locations within the broader port

Table 3.3 Historical water quality (GHD, 2018a)

Parameter	Summary of historical results
Contaminants	 Water samples collected under ambient conditions during the 2002-2005 monitoring program undertaken by the Port Kembla Harbour Environment Group identified concentrations of aluminium, cadmium, copper, lead, zinc, tin and arsenic in excess of the 95% trigger values for protection of marine waters. Concentrations of all other analytes were below the adopted trigger values. Elevated levels of adverse water quality parameters were generally found in the vicinity of creeks and waterways that drain industrial and stockpile areas such as the entrance to Allans Creek (Site 1), Gurangaty Waterway (Site 5), near No. 1 Products Berth (Site 3), the Cut (Site 7) and Darcy Road Drain (Site 15).
Suspended Solids / Turbidity	Total Suspended Solids concentrations are known to be influenced by shipping movements and freshwater flood events. Long term data collected during the 2002-2005 monitoring program undertaken by the Port Kembla Harbour Environment Group measured average TSS concentrations of 5.9mg/L and 3.2mg/L within the Inner and Outer Harbours respectively. TSS concentrations within the Inner Harbour were shown to vary between 1.0mg/L and 17.9mg/L. TSS concentrations within the Outer Harbour were shown to vary between 0.5mg/L and 11.8mg/L.
	Previous dredging campaigns (Berth 103) established a relationship between Nephelometric Turbidity Units (NTU) and TSS of 1 NTU = 2mg/L TSS. It is critical to note that the relationship between NTU and TSS is highly dependent on the material properties of the sediments in suspension.
рН	Previous monitoring campaigns have recorded pH levels within the Inner and Outer Harbour ranging between 7.6 and 8.1, and in some instances below the recommended ANZECC criteria for harbour waters (8.0-8.5). Previous investigations concluded that pH levels are lower in the Inner Harbour than the Outer Harbour, indicating pH levels within the Inner Harbour are likely influenced by freshwater discharges from existing waterways.
Temperature	Water temperatures within Port Kembla are generally higher than those measured offshore due to tidal flushing patterns and existing industrial discharges to the Inner Harbour. As a result, water temperatures within the Inner Harbour are generally one to two degrees warmer than sea temperatures beyond the entrance to the harbour. The Outer Harbour benefits from greater tidal flushing and is generally less than 0.25 degrees warmer than sea temperatures beyond the entrance to the harbour.
Salinity	Total Dissolved Solids (TDS) concentrations assessed during the 2014 maintenance dredging campaign ranged from 31.15g/L to 35.38g/L. Concentrations have been shown to vary with depth indicating density stratification within the water column. Concentrations are also known to be influenced by freshwater flood events.

3.8 PKSW water quality Pollution Reduction Programs

BlueScope has completed 77 water related Pollution Reduction Programs (PRPs) since its initial engagement with the EPA in 1976. Key water programs completed by BlueScope relevant to the project include the following:

- PRP 54 Blast Furnace Gas Cleaning Effluent
- PRP 96 Toxicity Testing of No. 2 Blower Station Drain Water
- PRP 146 Port Kembla Inner Harbour Flora and Fauna Study
- PRP 147 Investigate Stormwater First Flush Impact
- PRP 175 (Pollution Study) Diversion of Iron Ore Road Drain
- PRP 176 Ironmaking East Drain Drainage Diversion Project (Environmental Improvement Program)

Ongoing monitoring programs and PRPs relating to water quality risks associated with current and future blast furnace operation are summarised below:

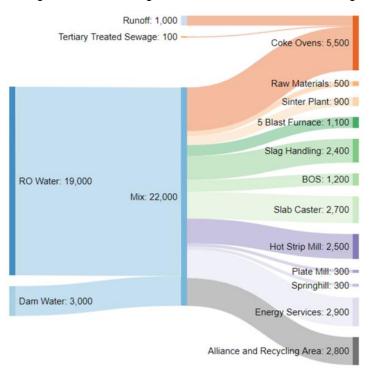
PRP 181 – Seal Pot System Risk Assessment

• The aim of this PRP is to assess the environmental risk and the feasibility of mitigation works for seal pots across PKSW, and to implement a works program to install mitigation works at the premises.

– PRP 182 – Wastewater Assessment Program for Number 2 Blower Station (2BS) Drain

- The aim of this PRP is to investigate and assess the pollutant discharges to the 2BS drain by identifying sources, quantifying pollutants, assessing against relevant, contemporary environmental criteria.
- PRP 183 Blast Furnace Gas Condensate Toxicity Assessment
 - The aim of this PRP is to develop and implement a methodology to characterise the blast furnace gas condensate produced under a range of operating scenarios and assess the toxicity of the gas condensate.

In addition, an investigation into online treatment of blast furnace process water is currently underway at 5BF. Learnings from this investigation will be applied to 6BF operation.


PKSW operates under a Water Stewardship Plan (Plan) which sets out the catchment and site challenges at the PKSW site. The purpose of this Plan is to define key targets in relation to water management which will be reviewed regularly both internally and externally with key stakeholders. The Plan has been developed using the International Water Stewardship Standard as a basis and in collaboration with various stakeholder groups. As a Water Steward, BlueScope is committed to sustainable water management for the PKSW site, in addition to contributing to efforts within the catchment and region. The Plan identifies the site and catchment risks, key stakeholders and water-related environmental and social adverse impacts.

3.9 Existing site water balance

PKSW sources industrial and domestic water from Sydney Water, which is Australia's largest water utility provider and owned by the NSW Government. All water supplied by Sydney Water is from appropriately authorised sources. Approximately 600 m³/d of potable water is used at PKSW.

PKSW uses industrial water in the steel manufacturing process, which is comprised of both recycled water and unfiltered Avon Dam water. Recycled water comprises over 85% of the current industrial water mixture and is sourced from the Wollongong Water Recycling Plant. The dual recycled / dam water supply provides the reliability required for the steel manufacturing process, and Sydney Water is able to adjust supply volumes to reflect PKSW's site needs. Domestic water is a less significant water input to PKSW, comprising less than 3% of the total industrial and domestic water consumption and is a minor component of the overall domestic water reticulation network across the Illawarra region.

Approximately 26,000 m³/h of seawater from the Outer Harbour is used at PKSW for salt water cooling. This water is returned to the Inner Harbour after use.

A diagram of the existing site water balance is shown in Figure 3.11.

Figure 3.11 Existing site water balance at PKSW

4. Project description

4.1 Project Summary

To prepare 6BF to become operational again, major maintenance works are required as part of a reline process (the project).

The operation of 6BF following completion of reline activities, commissioning and ramp up will be generally the same as existing operations at 5BF. Specific locations of certain activities within the PKSW site will change due to the transfer of operations to 6BF. However, changes to the quantity or characteristics of water outputs from the blast furnace will be minimal.

Water uses and discharges from the blast furnace will be consistent with the quantity and quality of those at 5BF. Minor changes to cooling water discharges are expected due to the alternative cooling system associated with 6BF (refer Section 5.3). The stormwater drainage system proposed for the project will enable the capture and reuse of stormwater and containment of any spills, providing an improvement over the current stormwater management capabilities.

Table 4.1 provides a summary of the key elements of the project. Key features of the project are shown in Figure 3.3. Further details regarding the construction, commissioning, operations and decommissioning phases of the project are described in Sections 4.2 to 4.5.

Project element	Summary
6BF operational area and construction footprint location	Lot 1 DP 606434
Construction	Major construction work will be required within the blast furnace and surrounding facilities, and will involve removing the remaining burden materials, refractory bricks and blocks and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.
Access	The majority of the construction traffic will access the site via the major roads that service the Port Kembla industrial area, including the Princes Motorway and Princes Highway, Shellharbour Road, Springhill Road, Five Islands Road and Masters Road. No changes to existing access arrangements are proposed.
Ancillary construction facilities	Various locations within the PKSW site within Lot 1 DP 606434, Lot 1 DP 606432, Lot 1 DP 595307 and Lot 1 DP 606430.
Ironmaking components and systems	 Raw materials handling Sinter Plant PCI Plant Blast furnace Stockhouse and charging system Blast furnace vessel Cooling system Casthouses Hot blast system Off gas system Slag handling
Commissioning	 Commissioning involves the following: All services brought back into live condition Various parts of plant re-heated Pressure and leak tests conducted Cooling systems filled and flushed Furnace dried out and charged with kindling and burden material Gas system purged and furnace 'blown in' Furnace progressively heated until regular casting of iron and slag commences Full production reached within one to two months

Table 4.1 Project summary

Project element	Summary		
Operations	Operation of 6BF will be generally the same as existing operations utilised at 5BF (24-hour operation), including:		
	- Processing and transport of raw materials (iron ore, coal, coke, fluxes).		
	 Production of sinter (agglomeration of iron ore, coke and limestone dust) for use within the blast furnace. 		
	 Production of approximately 2.7 Mtpa of iron from 6BF. 		
	 Processing of approximately 0.88 Mtpa of blast furnace slag for use as construction product. 		
Construction work hours	Where practical, and subject to the final construction program, construction will be carried out during the following construction hours:		
	 Monday to Friday: 7.00 am to 6.00 pm 		
	 Saturday: 7.00 am to 6.00 pm 		
	 Sundays and public holidays: no work 		
	A number of construction activities will be scheduled to be undertaken as night works.		
	Final construction phase will require 24 hour construction (estimated to be a period of 5 months). Further, 24 hour construction may be required for an extended period if 6BF is required online earlier than 2026.		
Construction duration	Approximately 3 years		
Operational duration	Approximately 20 years		

4.2 Construction overview

The reline and transition to operation of 6BF will be completed over a period of approximately three years which, assuming a construction start in 2023, would see construction completed in 2026. The actual construction start and completion dates will depend on the operational performance of the 5BF facility and its ability to complete its planned campaign life.

Construction will commence once all necessary approvals are obtained. Detailed construction planning, including timing, staging and work sequencing, will be confirmed once construction contractors have been engaged.

The construction information described in this chapter is preliminary and is based on the current stage of the design. It provides an indicative construction method that retains flexibility for the successful contractor to refine and optimise aspects of the approach. The construction methodology will be refined as the design progresses, and once the construction contractor is engaged. A final construction methodology and program will be developed by the construction contractor based on the conditions of approval and the mitigation and management measures provided in this document.

Major construction work will be required within the blast furnace and surrounding facilities and will involve:

- Removal of the remaining burden materials
- Removal of the iron skull
- Removal of worn carbon block refractories in the hearth
- Removal of worn refractories in the remainder of the vessel
- Demolition of other equipment including:
 - Cooling staves which protect the blast furnace shell
 - Hot blast main refractory lining, including the expansion joints
 - Clarifier tank and associated equipment where required
- Repairs to the blast furnace shell where required
- Installation of a new clarifier tank and associated equipment
- Installation of the new hearth, sidewall refractories and staves
- Repair/replacement of tuyeres, tapholes and instrumentation

- Repair, maintenance and/or upgrade of ancillary equipment including:
 - Furnace cooling systems
 - Hot blast system including the stoves
 - Gas system, with addition of a Top Gas Recovery Turbine (TRT)
 - Furnace top, including the charging equipment, bleeder valves and outrigger crane
 - Casthouse floors and associated equipment
 - Stockhouse (raw materials feed system)
 - Automation and power systems
 - Services
- Construction of a new primary ferrous feed system in the Raw Materials Handling area
- Civil works for the new slag handling area
- Installation of a new slag granulation system
- Commissioning and ramp up of 6BF operations

The overall construction program is anticipated to be around 3 years. An indicative construction timeline showing the duration of key activities is provided below in Table 4.2.

Table 4.2Indicative works schedule

Project stage	Activities	Approximate duration
1	 Progress with refurbishment activities that do not require long-lead items. Early works commence for enabling activities including cranes, lifts, casthouse roof replacement, drainage, construction facilities. 	24 to 30 months
2	 Construction activities including demolition, civils, stockhouse, slag handling, hot blast system, gas system, cooling system, wreck out of furnace, furnace top. Control system and automation upgrade. 	24 months
3	 Construction activities including relining of furnace initiated with twelve months advance notice of end of 5BF operations. Pre-commissioning and commissioning of 6BF. 	12 months
4	 Managed transition of operations from 5BF to 6BF with ramp-down of 5BF followed by ramp-up production of 6BF. 5BF decommissioned and made safe on ceasing operation. 	6 – 8 weeks

4.2.1 Construction areas

Construction areas generally fall within two categories:

- Construction activities in the immediate vicinity of 6BF.
- Additional construction of ancillary facilities across the wider PKSW site comprising a mix of indoor and outdoor areas.

The delivery of materials and equipment to the work sites will be staged as required with minimal storage available in the area immediately adjacent to 6BF. Indicative laydown areas are shown on Figure 3.2.

The identified construction support facilities, car parks and laydown areas are on areas of the PKSW site that have been historically used for similar activities including during previous reline events and have existing stormwater controls. A summary of proposed laydown areas is provided in Table 4.3.

Table 4.3 Ancillary facilities

Location	Activity	Size (m ²)	Indoor/Outdoor
No.1 Works 1	Storage	28,500	Outdoor
No.1 Works 2	Storage	5,000	Indoor
No.1 Works 3	Storage	36,500	20,000 indoor
			16,500 outdoor
No.1 Works 4	Storage	6,400	Outdoor
No.1 Works 5	Storage	4,000	500 indoor
			3,500 outdoor
No.1 Works 6	Storage	17,000	Outdoor
CRM 1	Storage	80,000	Outdoor
CRM2	Storage	3,000	Indoor
CRM3	Storage	2,800	Indoor
No.2 Works 1	Construction	1,000	Outdoor
No.2 Works 2	Construction	3,000	Outdoor
No.2 Works 3	Construction	1,500	Outdoor
No.2 Works 4	Storage	3,000	Outdoor
No.2 Works 5	Storage	7,000	Outdoor
No.2 Works 6	Storage	7,000	Outdoor
No.2 Products Berth	Storage	2,500	Outdoor
Recycling Area 1	Storage / cleaning	14,000	3,000 indoor
			11,000 outdoor
Recycling Area 2	Processing	88,000	Outdoor
Recycling Area 3	Processing	25,000	Outdoor
Recycling Area 4	Storage / Processing	11,000	Outdoor
Recycling Area 5	Storage / Processing	20,000	Outdoor
Recycling Area 6	Storage	4,500	Outdoor
Springhill Electrical	Storage	3,000	Indoor

4.3 Commissioning overview

Prior to operation, the project will undergo a period of commissioning which is a once off process that is necessary to allow operation of the blast furnace. It is anticipated the commissioning process will take several months to complete, after which the furnace will be gradually uprated over a period of approximately 6 weeks until full production is achieved.

The commissioning process is outlined as follows:

- All services brought back into live condition
- Various parts of plant reheated
- Pressure and leak tests conducted
- Cooling systems filled and flushed.

The furnace proper will be dried out using hot blast at limited temperatures, then charged with kindling (comprising firewood/railway sleepers and coke) and filled with a mix of burden material (coke and iron ore).

The gas systems will be purged ready for use and the furnace will be 'blown in'. This involves the introduction of hot blast air through the tuyeres, with gas initially discharged until its composition is satisfactory for internal use, at which time the gas is then diverted into the gas cleaning system.

The furnace will be progressively heated until regular casting of iron and slag commences, although the iron quality is not usable initially, and it will take several days to produce useable iron which can be converted to steel. The furnace will then be uprated to target production over the following weeks, reaching full production within one or two months.

4.4 Operational overview

Following the completion of reline activities, commissioning and ramp up, operation of 6BF will be the same as existing operations utilised at 5BF. Specific locations of certain activities within the PKSW site will be relocated due to the transfer of operations to 6BF. Changes to the quantity or characteristics of water outputs from the blast furnace will be minimal. Minor changes to cooling water discharges are expected due to the alternative cooling system associated with 6BF, and an improvement in stormwater management compared to existing operations will be realised.

The hot gases leaving the top of the blast furnace will be cooled and cleaned then piped through the gas main to other plants within PKSW for use as an energy source to the maximum practical extent. Condensate that is generated in the gas main will be collected in seal pots. All the condensate will be collected from the seal pots and returned to the effluent treatment system via a series of collection tanks and pumps. The design of the BFG seal pots proposed for the 6BF area are 'no-blow' seal pots which will reduce the risk of gas condensate overflows when compared to traditional seal pots.

4.4.1 Future site water balance

PKSW will continue to source industrial and domestic water from Sydney Water, which is Australia's largest water utility provider and owned by the NSW Government. All water supplied by Sydney Water is from appropriately authorised sources. A diagram of the future site water balance is shown in Figure 4.1.

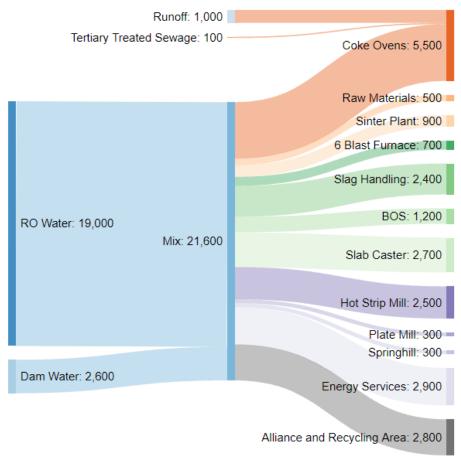


Figure 4.1 Future site water balance at PKSW

4.4.2 Gas cleaning

Consistent with current 5BF operation, the BFG exiting the top of the 6BF will be cooled and cleaned utilising a wet scrubber. The clean gas will then be piped through the gas main to other plants within PKSW for continued use as an energy source to the maximum practical extent. The effluent from the scrubber will be cooled and cleaned for reuse in the gas cleaning process. Blowdown water from the effluent treatment system will be discharged at a rate of approximately 30 – 45 m³/h into the Outlet Channel where it will combine with approximately 26,000 m³/h of salt water before discharging to Allans Creek and the Inner Harbour via the No. 2 Blower Station Drain. Flocculant and coagulant that will be added to the effluent treatment system to assist with settling of solids comply with statutory requirements (contained in AS/NZS 3666.1:2011) and assist in preventing excessive scale build up. Specific products used in the effluent treatment system are described in Section 5.3.1. The slurry formed in the effluent treatment to the effluent treatment system will be sent via pipework to dewatering at the Sinter Plant, with recovered water returned to the effluent treatment system and the remaining slurry taken to the PKSW Recycling Area.

During abnormal furnace operation, the chemical composition of the water may vary in which case, the blowdown water from the effluent treatment system will be diverted to contingency storage to prevent release to the environment and stored until such time as the quality of the water is confirmed to be acceptable for discharge in accordance with EPL 6092.

4.4.3 Cooling systems

The 6BF furnace cooling systems are all a fully closed loop design with heat exchangers. Once through salt water is used as the heat sink for the 6BF closed loop cooling systems on the secondary cooling or cold side of the heat exchangers. This differs from the evaporative cooling tower currently utilised at 5BF.

The closed loop design is a safety feature of the blast furnace allowing high accuracy leak detection and has the added benefit of minimising water loss. The additional salt water required will result in an increased volume of salt cooling water discharge (approximately 10%) compared to current operations, with a minor temperature increase predicted at the No. 2 Blower Station Drain discharge point.

Due to the potential for temperature increases in discharges to Allans Creek, evaporative and air-cooling towers were considered as part of the project. It was determined that an air cooling tower was unfeasible due to the unreliability of maintaining the temperature required for cooling supply in hot weather, and high water usage required for operation of an air to water cooling tower. An evaporative cooling tower is currently utilised at 5BF. Evaporative cooling towers require fresh water to replenish water lost through evaporation and are more energy intensive than the cooling system proposed for 6BF. It is therefore proposed that a once through salt water cooling system is used for 6BF, as it does not require regular freshwater make-up for its operation and is less energy intensive than an evaporative tower.

4.4.4 Slag granulation

Slag produced by the blast furnace is either formed into rock or granulated slag for sale as construction material. Granulated slag is formed by subjecting the molten slag stream to a continuous stream of high pressure water. The water used for granulation is collected, cooled and reused in a closed loop system.

4.4.5 Stormwater drainage

The project site has established stormwater drainage consisting of a series of sumps and collection tanks which capture the 'first flush' of rainfall events and any potential spills. These sumps are capable of pumping back to the effluent treatment system should further treatment be required. In a rain event, a "first flush" of stormwater (10mm in a day) is collected in sumps and tanks in the stormwater drainage system. Following the first flush and when sumps reach capacity, stormwater drains to IMED and is subsequently pumped to the No. 2 Blower Station Drain for release to Allans Creek. During major rainfall events, the IMED weir can overtop leading to discharge to the Inner Harbour at licence discharge Point 89.

As part of the project, the slag handling area will be prepared with hardstand graded to new internal drains and will include a truck wheel wash and a large collection tank for water recycling. All drains in the area will flow into either a new slag pit settling pond or the granulator settling pond. The new slag pit settling pond will capture all slag handling surface drainage (slag pit, adjacent slag pit roads and slag haulage truck wash areas) and will provide additional capacity to capture first flush during rain events. During normal operations, collected water will be recycled as make-up water to the granulator or as slag pit sprays. In a rain event, the first flush will be collected in the new slag pit settling pond; this settling pond will then overflow into a drain which flows into the plant stormwater drain before draining to IMED and will be subsequently pumped to the No. 2 Blower Station Drain for release to Allans Creek. A simplified block flow diagram showing the 6BF drainage is shown in Figure 5.1.

The No. 2 Blower Station Drain and Allans Creek have been selected as the proposed discharge locations following consideration of the following:

- Utilising existing infrastructure minimises impacts during the construction phase. In particular, this approach
 reduces the need to excavate, treat and dispose of materials on site, thereby minimising the risk of mobilising
 any existing contamination within soils and groundwater.
- Allans Creek and the western portion of the Inner Harbour have been subject to the effects of warmer than ambient industrial discharges for decades and are considered part of a highly disturbed ecosystem (NSG, 2006). The ecology of Allans Creek and the Inner Harbour are well understood following previous detailed studies which indicated that the receiving environment exhibits key differences to other reference environments partly as a result of these historical discharges (NSG, 2006), (CH2M HILL, 2008), (UNSW, 2012).
- Selecting the No. 2 Blower Station Drain and Allans Creek as the ongoing discharge location provides the greatest separation distance from higher value ecosystems within the Outer Harbour and areas beyond port limits, allowing for greater mixing within the Harbour.
- The water discharges from existing blast furnace operations are currently released at the No. 2 Blower Station Drain. As the quality of the water of the proposed project will be similar to that of existing conditions, there will be no changes to the waterways as a result of the project.

A simplified diagram of the inputs to the No.2 Blower Station Drain proposed by the project is presented in Figure 4.2.

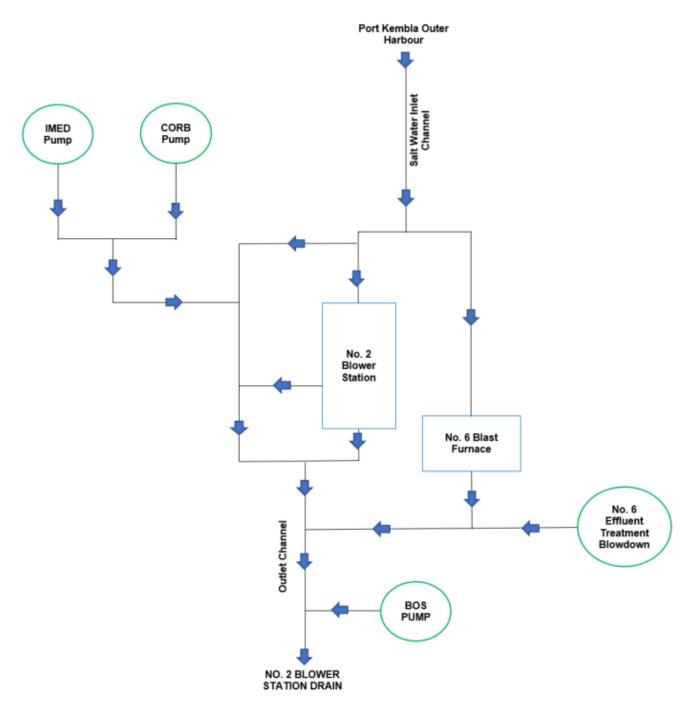


Figure 4.2 Schematic drawing of current 2BS Drain inputs

4.5 Decommissioning overview

A campaign is the period of time (measured in years) during which the furnace operates before needing to be relined. The target campaign duration for 6BF will be 20 years after which time furnace conditions would dictate relining or decommissioning requirements.

5. Water quality impact assessment

5.1 **Project Construction WQIA**

5.1.1 Construction impacts to surface water quality

Potential risks to water quality during the construction phase are well understood given the experience gained during the successful delivery of the three previous reline projects at PKSW. Specific risks include:

- Release of poor quality stormwater into drains and waterways where it is impacted by excavation works and other construction activities. This may include elevated TSS, reduced DO, pH impacts and the presence of organic matter and other debris.
- Mobilisation of existing contamination within soils.

All construction activities are proposed to take place in established areas. As mentioned in Section 4.2, the proposed laydown areas and carparks are existing infrastructure on the site with existing water management controls in place.

Similarly, the 6BF, its Stockhouse, and roadways within PKSW have existing stormwater drainage systems. The 6BF yard area is sealed and the drainage system includes a series of sumps designed to contain the 'first flush' of rainfall events and spills (refer to Section 4.4).

A site-specific Soil and Water Management Plan (SWMP) will be developed and implemented prior to construction in accordance with the *Managing Urban Stormwater: Soils & Construction, vol. 1* (Landcom 2004). This plan will outline the established controls that will be in place for the duration of construction works, as well as any targeted controls specific to the project. For example, bunding and storage requirements for chemical management will be in accordance with the relevant EPA requirements, Australian Standards and manufacturers' requirements.

5.1.2 Construction impacts to groundwater

The project will require some, excavation and ground disturbance, including for the slag handling civils and roads, slag granulator foundations, new Highline Switchroom foundations, foundations for the Waste Gas Heat Recovery system, clarifier foundations, TRT foundations, replacement of rail line ballast and rail, Main Control Building foundations, and Primary Ferrous Feed Conveyor foundations (in RMH). These areas will be within the footprint of the 6BF area shown on Figure 3.3 and will be confirmed during detailed design.

Vehicle movements may also disturb the ground, however, as the majority of the site is currently sealed, disturbance is expected to be minimal. Soil disturbance associated with the project has limited potential to cause localised soil erosion. The erosion risk is relatively low as the site is flat, and predominantly sealed with concrete or bitumen and the level of disturbance is expected to be minor.

Excavation or disturbance to natural material below the level of fill (approximately 5-8 metres below existing ground level) may be required, however the location and extent of excavation will be determined during detailed design once additional geotechnical site investigations have been completed.

The potential groundwater contaminants that may be encountered or mobilised by excavation works are well understood through BlueScope's detailed and ongoing groundwater monitoring program. Following confirmation of the excavation requirements, an excavation and groundwater management plan (or similar) will be prepared outlining specific measures to be adopted during any excavation and dewatering activities required. It is therefore expected that any impacts to groundwater quality will be able to be readily managed during the construction phase. The implementation of a site specific SWMP will include measures to prevent spills which have the potential to result in groundwater impacts.

5.2 Project commissioning WQIA

5.2.1 Commissioning impacts to surface water quality

During commissioning, cooling water systems will be filled and flushed with industrial water in a controlled manner to drain. There is potential for foaming to occur within the gas system during start up due to the use of kindling and initial fill, which may require discharge into storage basins. Site containment measures will be developed during the detailed design phase to ensure that any overflows due to foaming are able to be contained on site.

During charging, purging and heating of the furnace, as much exhaust gas as possible will be directed through the gas cleaning systems. Similar to 5BF, the dust will be removed from the waste gas by way of a wet scrubber and the resulting scrubber water treated and recycled in the effluent system as described in Section 4.4.2. It is possible that the volume and chemical composition of the blowdown water generated during the commissioning phase will vary from that associated with full scale operations. A commissioning Water Quality Management Plan (WQMP) (or similar) will be developed during detailed design to assess the likely composition of effluent treatment plant water, including the potential for foaming. Where required, monitoring programs and corrective measures, such as the use of antifoam, will be developed to ensure that discharges to No.2 Blower Station drain and Allans Creek are in accordance with EPL 6092.

Commissioning of the granulator will be undertaken using industrial water within sealed hardstand areas in the vicinity of 6BF where drainage systems will be in place. Any potential impacts to surface water will be monitored and managed through either the commissioning WQMP or SWMP, which will be prepared following completion of detailed design.

5.2.2 Commissioning impacts to groundwater

Commissioning of the granulator will be undertaken using industrial water within sealed and hardstand areas in the vicinity of 6BF where drainage systems will be in place. Any potential impacts to groundwater recharge will be monitored and managed through either the commissioning WQMP or SWMP, which will be prepared following completion of detailed design.

5.3 Project operation WQIA

5.3.1 Operational impacts to surface water quality

Water uses and discharges from 6BF will be consistent with the quantity and quality of that which is currently discharged from 5BF, with minor changes to cooling water discharges expected due to the alternative cooling system associated with the project. A simplified block flow diagram for 6BF is presented in Figure 5.1. Discharges with potential impacts have been assessed in Sections 5.3.1.1 to 5.3.1.3 and an assessment of the resulting discharges against the relevant assessment criteria is presented in Section 5.3.3.

5.3.1.1 Blowdown

The effluent treatment system proposed for 6BF is consistent with the effluent treatment system used for existing operations and the discharge location will remain as the 2BS drain which discharges to Allans Creek.

The rate of future 6BF blowdown discharge is expected to be approximately $30 - 45 \text{ m}^3/\text{h}$, which is in accordance with existing discharge rates associated with 5BF operations. This rate represents a very small component (< 0.2%) of the broader flow rate within No. 2 Blower Station drain of approximately 26,000 m³/h.

Flocculant and coagulant will be added to the effluent treatment system to assist with settling of solids, in compliance with statutory requirements (contained in AS/NZS 3666.1:2011) and prevent excessive scale build up. Specific products are assessed in Table 5.1.

Table 5.1 Assessment of products used within the effluent treatment system

Product name and manufacturer	Use, dosing and expected discharge concentration	Potential impacts to water quality
CAT-FLOC 8103 PLUS NALCO Water	 Water clarification aid (coagulant) Dosing rate: 1.5 mg/L Discharge concentration: 0.0026mg/L 	 Summary of ecological information (Nalco, 2020): No known ecotoxicological effects. Lowest reported NOEC Ceriodaphnia dubia: 1.25 mg/L. Poorly biodegradable. Not expected to bioaccumulate. Manufacturer's assessment of potential environmental hazard is: Low. WQIA conclusion: No significant impacts to water quality expected at proposed discharge concentration.
HI-TEX 82220 NALCO Water	 Anionic flocculant Dosing rate: 1.5 mg/L Discharge concentration: 0.0026mg/L 	 Summary of ecological information (Nalco, 2017): Considered harmful to aquatic life if released to waterways in sufficient concentrations Lowest reported LC50 / EC50: > 1,000 mg/L Poorly biodegradable but rapidly eliminated from the aquatic environment by adsorption onto organic particulate matter and sediment. Not expected to bioaccumulate. Manufacturer's assessment of potential environmental hazard is: Low. WQIA conclusion: No significant impacts to water quality expected at proposed discharge concentration.
ACTI-BROM™ 7342 NALCO Water	 Biocide precursor, biodispersant 0.25 - 0.3 mg/L bromine based on a dosing rate of 0.6 - 0.8 mg/l and ~40% actives. Discharge concentration: 0.0014mg/L 	 Summary of ecological information (Nalco, 2021a): Considered harmful to aquatic life with long lasting effects if released to waterways in sufficient concentrations. Lowest reported NOEC Lepomis macrochirus: 1,000 mg/L. Lowest reported LC50 Daphnia magna: 0.038 mg/L Inorganic substances for which a biodegradation value is not applicable. Not expected to persist in the environment. Not expected to bioaccumulate. Manufacturer's assessment of potential environmental hazard is: Low. WQIA conclusion: No significant impacts to water quality expected at proposed discharge concentration.
NALCO® 1392 NALCO Water	 Scale inhibitor Dosing rate 0.8 – 1.3 mg/L Discharge concentration: 0.0023mg/L 	 Summary of ecological information (Nalco, 2021b): No known ecotoxicological effects. Lowest reported LC50 Green Algae: 20 mg/L. Inherently biodegradable. Not expected to bioaccumulate. Manufacturer's assessment of potential environmental hazard is: Low. WQIA conclusion: No significant impacts to water quality expected at proposed discharge concentration.

Product name and manufacturer	Use, dosing and expected discharge concentration	Potential impacts to water quality			
Sodium hypochlorite Solution (10-15% available chlorine) Ixom Operations Pty Ltd	 Sanitising agent, biocide 0.5 mg/L chlorine based on a dosing rate of 4mg/L with ~12.5% available chlorine Discharge concentration 0.0069mg/L 	 Summary of ecological information (IXOM,2019): Considered very toxic to aquatic life with long lasting effects if released to waterways in sufficient concentrations Lowest reported 96hr LC50 (fish): 0.065 mg/L (sodium hypochlorite) Biodegradable Does not bioaccumulate. Acute Aquatic Toxicity – Category 1 Chronic Aquatic Toxicity – Category 1 WQIA conclusion: No significant impacts to water quality expected at proposed discharge concentration. 			

Notes: Expected discharge concentrations based on conservative assumptions of maximum discharge of 45 m³/hr from blowdown and no loss of product during processing into 2BS drain flow of 26,000 m³/hr. In reality, the majority of sodium hypochlorite, ACTI-BROM[™] and NALCO[®] 1392 will be consumed in the process and the majority of CAT-FLOC 8103 PLUS and HI-TEX 82220 will bind to slurry solids and settle out in the filter cake.

The concentrations of pollutants in future water discharges are therefore expected to be comparable with existing discharges, and no adverse impacts are anticipated in Allans Creek or the Inner Harbour as a result of the project when compared to existing operations.

A detailed assessment of the key discharge characteristics against relevant water quality criteria is provided in Section 5.3.3.

5.3.1.2 Cooling water

The quality of the water discharging from 6BF will be consistent with the existing discharge from 5BF, except for temperature, which will be slightly elevated due to the salt water heat exchanger cooling system proposed for 6BF (refer Section 4.4 regarding operational overview). It is predicted that this will result in an increase of approximately $0.5 - 1^{\circ}$ C at the licence discharge point, No. 2 Blower Station drain (Point 79).

Cooling water discharges will increase by approximately 3,000m³/h, which represents an increase of around 10% over current operations associated with 5BF.

An assessment of the expected thermal discharge characteristics against relevant water quality criteria is provided in Section 5.3.3.

5.3.1.3 Gas condensate

BFG condensate from 6BF is expected to be of a similar composition to that associated with 5BF operations. There will be no change to Coke Ovens Gas (COG)⁵ condensate as a result of the project. The 'no-blow' design of the BFG seal pots proposed for the 6BF area will reduce the risk of gas condensate overflows when compared to traditional seal pot design.

All gas condensate collection tanks will be fitted with remote level monitoring and alarming to reduce the risk of overflows. As occurs with existing operations, the BFG condensate will be collected in tanks and pumped to the effluent treatment system and COG condensate will be collected and trucked for processing at the Cokemaking facility.

⁵ COG is gas generated from cokemaking processes and is used as a fuel at the blast furnace. As such, there is a COG main with seal pots in the blast furnace yard from which COG condensate is collected.

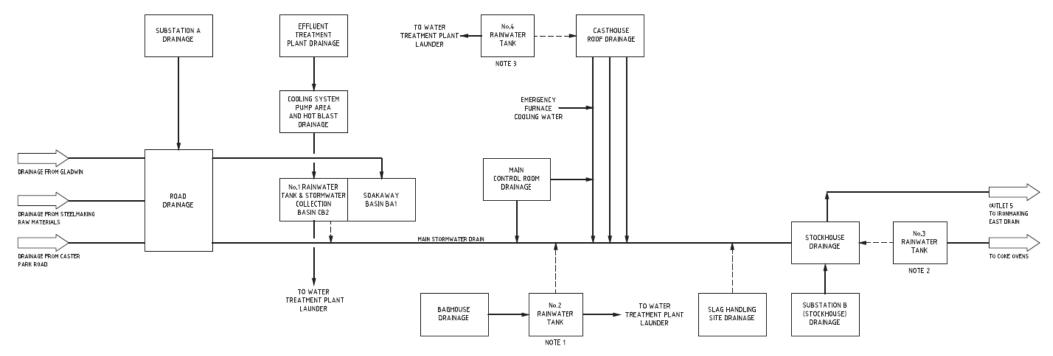


Figure 5.1 Simplified No. 6 Blast Furnace Block Flow Diagram RevB

5.3.2 Operational impacts to groundwater

Potential impacts to groundwater during the operational phase relate to the quantity and quality of groundwater recharge from infiltration of rainfall and water used for the operational purposes described in Section 4.4.

The 6BF site will include a significant amount of drainage infrastructure to ensure that water from rainfall and potential spills can be effectively captured and/or appropriately drained from the site. This drainage is an improvement in stormwater management compared to existing operations.

Given the extensive drainage controls, potential impacts to groundwater quality are expected to be adequately monitored and managed through ongoing groundwater monitoring under condition E3.1 of EPL 6092, the PKSW Water Stewardship Plan and the continued implementation of BlueScope's ongoing ISO 14001 certified Environmental Management System and associated processes.⁶

5.3.3 Assessment against relevant water quality criteria

An assessment of the key operational impacts described in Section 5.3.1 has been undertaken against the relevant assessment criteria relating to temperature (refer Section 5.3.3.1) and contaminants (refer Section 5.3.3.3) expected to be released to Allans Creek and the Inner Harbour.

5.3.3.1 Temperature – Assessment against water quality criteria

As discussed in Section 5.3.1, the quality of the water discharging from 6BF will be consistent with the existing discharge from 5BF with the exception of temperature which will be slightly elevated due to the salt water heat exchanger cooling system proposed for 6BF. With an increase in cooling water discharge of approximately 10% from 6BF compared to the existing discharge, it is predicted that this will result in an increase of approximately 0.5 – 1°C at the licence discharge point, No. 2 Blower Station drain (EPL 6092 Point 79).

Whilst the cooling system proposed for 6BF offers the benefits of reduced energy use and water use in comparison to the existing cooling system at 5BF, it is necessary to assess the increased discharge temperature against the relevant water quality criteria.

As noted in Section 2.5, the EPA's policy is that the WQOs should be met at the edge of the area where initial mixing or "near-field" mixing occurs, (in this context, 'near field' relates to initial mixing where the initial characteristics of momentum flux, buoyancy flux and outfall geometry influence the plume trajectory and mixing). Mixing that occurs through buoyant spreading motion and passive diffusion due to ambient turbulence is referred to as 'far field' mixing. Mixing zones should not receive concentrations of pollutants that cause acute toxic impacts meaning that acute impacts should be assessed at the point of release (EPA, 2018).

Adopting the two-step approach to the assessment recommended by the Water Quality Guidelines first requires comparison of the future temperatures at the point of discharge to Allans Creek to the 80th percentile temperatures of the reference system as a target for improvement. Table 2.3 indicates that compliance would require the temperature increase at the edge of the nearfield mixing zone to be less than 0.8 (°C) to 1.3 (°C) above ambient temperatures of the reference system depending on the season.

Given the multiple discharges to Allans Creek with temperature differentials of approximately six to seven degrees Celsius, it is considered highly unlikely that the existing or proposed discharge streams comply with the low risk 80th percentile trigger values for slightly to moderately disturbed ecosystems at the edge of the nearfield mixing zone. Previous modelling results (refer Section 5.3.3.2) predict that average heat loads associated with PKSW operations during summer would result in exceedances of the 80th percentile trigger values at a surface output point in the Inner Harbour located approximately 250 m from the entrance to Allans Creek.

⁶ ISO 14001 is the international standard that specifies requirements for an effective environmental management system (EMS).

Based on these results, both the existing and proposed discharge streams exceed the default assessment criteria relating to slightly, to moderately, disturbed ecosystems. Allans Creek and the Inner Harbour have, however, been subject to the effects of warmer than ambient industrial discharges for decades and are considered part of a highly disturbed ecosystem (NSG, 2006). Given the history of the PKSW site, it is considered appropriate to rely on site-specific scientific studies, together with professional judgement and other relevant information, to derive site-specific trigger values in accordance with the approach adopted by previous assessments completed on behalf of BlueScope (CH2MHILL, 2008).

The Water Quality Guidelines note that where local but higher-quality reference data are used, a less stringent cut off than the 20th or 80th percentile value may be used. The 20th or 80th percentile values, however, should be used as a target for site improvement.

In this regard, the predicted increase in temperature at the point of discharge from No. 2 Blower Station (2BS) drain into Allans Creek will comply with the temperature limits specified under Clause L3.5 of EPL 6092 as described in Section 2.4. Similarly, the predicted increase in temperature at the point of discharge into Allans Creek will comply with the site-specific temperature criteria (an increase of less than 3°C) developed during the 2006 studies discussed in Section 3.6.

Nevertheless, in the interests of site improvement as recommended for assessment under the Water Quality Guidelines, consideration has been given to the potential mitigation options for secondary cooling systems at the 6BF as summarised in Section 6.3.

5.3.3.2 Numerical modelling of cooling water discharge

Historical investigations

BlueScope has previously undertaken detailed numerical modelling of cooling water discharges to the Inner Harbour as part of proposed upgrade projects. Between 2006 and 2008, Cardno Lawson Treloar issued a series of reports documenting the findings of numerical cooling water studies into the proposed salt water cooling of the then-proposed Steelworks Co-Generation Plant (SCP) (Cardno, 2006a, 2006b, 2008).

The modelling in 2006 – 2008 was undertaken using a combination of near and far-field models (CORMIX and Delft 3D respectively) and was calibrated against earlier records of measured temperature data (operational data and field data collected using ADCP's within Allans Creek and the Inner Harbour). The model has since been used by other proponents to assess the potential water quality impacts associated with the discharge of thermal plumes and their chemical constituents to Port Kembla Harbour (Cardno, 2019). On account of the recent use of the model by other major projects, the modelling approach and software used in the 2006 and 2008 BlueScope studies can be considered an acceptable approach for the current assessment. Since the earlier modelling was completed, no projects have been constructed or approved that would significantly alter ambient temperatures within Port Kembla.⁷

The modelling completed between 2006 and 2008 considered a variety of operating scenarios relating to typical and maximum heat loads during summer and winter conditions to account for seasonal variability. Importantly, all scenarios involved the operation of two blast furnaces (5BF and 6BF), which represents a worst-case scenario when compared to the proposed operations following completion of the 6BF reline project. It is also important to note that the Cogeneration Plant Project (for which the modelling was completed) was approved (Application Number: MP08_0132-Mod-1) but was not progressed; meaning that the previously proposed additional heat load was not applied to Allans Creek and the Inner Harbour. The flow and temperature data used for the modelling assessment is provided in Table 5.2 and Table 5.3.

⁷ The proposed warming water discharge associated with the AIE Gas Import Terminal will partially offset BlueScope's cooling water discharge, however it would not be appropriate to include these benefits in the current assessment. It is also noted that the proposed AIP power station will discharge cooling water to the open coast beyond the Coal Loader Seawall, thus minimising the potential for any cumulative impacts to the Inner and Outer Harbours of Port Kembla.

Table 5.2 Modelled drain flows – Existing summer conditions (Cardno, 2006)

Modelled Drain Flows - Existing Summer Conditions					
Model	Drain	Average Condition		Peak Condition	
Source No		Flow (m ³ /s)	ΔT (°C)	Flow (m ³ /s)	ΔT (°C)
1	Main Drain	1.174	7.1	1.431	9.5
2	No.2 Blower Station	7.953	6.44	8.233	8.5
3	Iron Making East	0.208	4.05	0.232	7.5
4	3500mm Plate Mill Drain	0.395	2.84	0.43	3.5
5	Slab Mill Drain	0.013	31.41*	0.013	32.68*
6	No. 1 Flat Products East Drain	0.112	4.64	0.112	10.5
7	Allans Creek Flow	0.17	22.5*	0.17	22.5*
8	North Gate Drain	0.077	28.06*	0.13	30.22*

* presented as absolute temperature rather than excess

Table 5.3	Modelled drain flows –	Existing winter	conditions	(Cardno '	20061
I able J.S	would	EXISTING WITTER	conunions	(Caruno, A	2000)

Modelled Drain Flows - Existing Winter Conditions					
Model Source No	Drain	Average Condition		Peak Condition	
		Flow (m ³ /s)	Δ Τ(°C)	Flow (m ³ /s)	Δ T(°C)
1	Main Drain	1.517	6.28	2.993	6.2
2	No.2 Blower Station	8.211	7.11	8.413	13.2
3	Iron Making East	0.100	3.06	0.127	4.2
4	3500mm Plate Mill Drain	0.408	2.41	0.405	4.21
5	Slab Mill Drain	0.016	21.37*	0.081	22.0*
6	No. 1 Flat Products East Drain	0.196	4.35	0.189	9.21
7	Allans Creek Flow	0.170	16.80*	0.170	16.8*
8	North Gate Drain	0.102	17.98*	0.172	17.0*

* presented as absolute temperature rather than excess

The 2008 modelling exercise assessed a new discharge point to Allans Creek with a temperature differential (Δ T) of 10.29°C and a discharge rate of 8.682 m³/s. The previously assessed increased heat load is significantly higher than the predicted increase associated with the current project of approximately 0.5 – 1°C. Nevertheless, the following general observations regarding the previously predicted mixing zone behaviours are of relevance to the current project (Cardno, 2008):

- The previously proposed discharge point to Allans Creek resulted in an average mid-depth temperature increase near the discharge point in Allans Creek of approximately 3°C, indicating a rapid drop in temperature increases upon discharge.
- The initial mixing zone may extend between 30 m to 40 m from the discharge point in Allans Creek, indicating a limited area where the initial characteristics of momentum flux, buoyancy flux and outfall geometry influence the plume trajectory and mixing.
- Within the Inner Harbour, resulting average temperatures were generally less than 1.5°C for the surface layers and less than 0.5°C in the mid to bottom layers. Within the Outer Harbour, resulting average temperatures were generally less than 0.5°C for the surface layers and less than 0.2°C in the mid to bottom layers. Inner and Outer Harbour temperature increases indicate that far field mixing behaviours continue throughout the broader Port through buoyant spreading motion and passive diffusion due to ambient turbulence.

Whilst the previously assessed increased heat load was significantly higher than the predicted increase associated with the current project, Figure 5.2 provides an indication of the mixing behaviours and extent of the previously predicted thermal plume within the surface, mid-depth and bottom layers of the water column for the previously assessed peak summer load scenario.

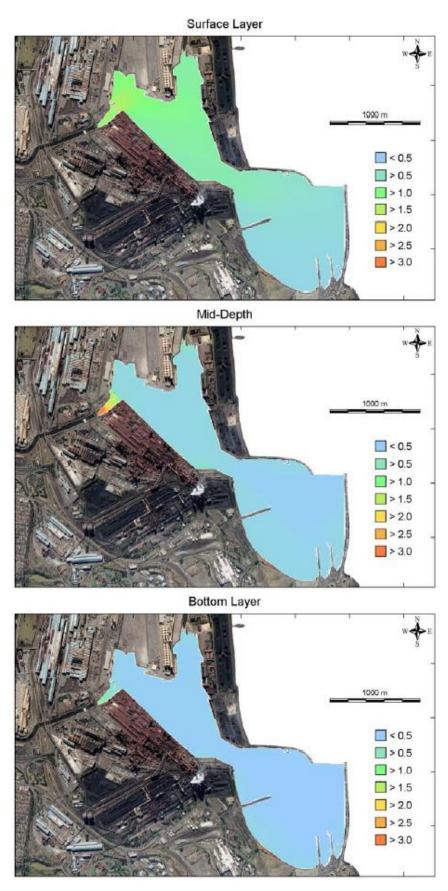


Figure 5.2 Average change in water temperature from the previously proposed peak summer load conditions associated with the Cogeneration Project (Cardno, 2008)

Resulting 50th percentile temperatures from the surface, mid-depth and bottom layers of the model were compared to summer and winter 80th percentile trigger values in accordance with the WQO's (DEC, 2006). Key findings of the 2008 salt water cooling assessment (CH2MHILL, 2008) are summarised below:

- Discharges generally exceed trigger values under summer and winter conditions at all locations within Allans Creek and at some locations within the Inner Harbour.
- The extent of the mixing zone was predicted to be within 40 m of the discharge point.
- No major losses of biota from the Inner Harbour or Allans Creek were anticipated as a result of the thermal discharges.
- It was considered unlikely that the predicted temperature increases would cause a significant increase in the
 effects (toxic or bioaccumulation) of the heavy metals or PAHs at the entrance to Allans Creek or the Inner
 Harbour.
- The expected temperature changes were considered unlikely to influence potential for invasion of marine pest species.
- Plankton blooms were considered unlikely to occur as a result of the predicted temperature increases.
- Temperature impacts are noticeably different at each level within the water column.
- The highest absolute temperatures occur in the surface layers but the largest impacts to temperature may
 occur at the surface, mid-water column or near the seabed.
- Behaviour of the discharge plume is dominated by the stage of tide and wind conditions.
- Tidal influences result in previously discharged cooling water being transported backwards and forwards through the discharge points.

Current monitoring data and predications

Temperature data from 2BS drain discharge point is collected every 8 days by BlueScope as required by monitoring conditions contained in EPL 6092. Continuous flow data at the 2BS drain discharge point is also measured in accordance with condition M8 of EPL 6092. Table 5.4 displays the average and maximum summer and winter results collected at this discharge point using data collected between 2016 and 2021, and includes the predicted temperature conditions as a result of the project. A comparison of the existing and predicted temperatures at the discharge point with values used for previous modelling demonstrate that the anticipated minor increase in temperature is similar to the modelled data. As no significant impacts to marine life were found in the previous modelling study, no significant impacts are anticipated due to the proposed discharges from operation of 6BF.

Condition	Existing Flow (m ³ /s)	Existing ΔT°C	Predicted Flow (m ³ /s)	Predicted ΔT°C
Summer Average	7.291	6.5	7.314	7.0
Summer Maximum	9.090	7.2	9.170	8.2
Winter Average	7.242	6.1	7.322	6.6
Winter Maximum	9.385	6.7	9.465	7.7

 Table 5.4
 Measured and predicted temperature conditions at the 2BS drain discharge point

5.3.3.3 Contaminants - Assessment against water quality criteria

An assessment of the future discharge to Allans Creek and the Inner Harbour has been undertaken on the basis that the 6BF discharge contribution to the 2BS drain will be the same as that associated with 5BF.

Data acquired from licence monitoring and load based licencing requirements at the 2BS drain at the point of discharge to Allans Creek (EPL 6092 Point 79) has been used to inform this assessment. Licence testing is undertaken every 8 days, while samples for load based licencing requirements are collected per 'The Protocol' (Load Based Licencing, June 2009) using NATA accredited laboratories.

Results of the assessment are presented in Table 5.5 and Table 5.6. The data has been compared against the ANZG (2018) Default Value Guidelines (DGVs) for marine waters at the 80%, 90% and 95% LOSP.

Only data from the period 2016 – 2021 has been used due to the following operational changes made prior to 2016:

- 2009 Recirculating clarified water system installed at 5BF
- 2009 Seal pot condensate containment system installed at 5BF
- 2011 6BF ceases operation
- 2016 Ironmaking East Drain diverted to the 2BS drain
- 2016 Coke Ovens Recovery Basin overflows diverted from the Main Drain (Point 78) to the 2BS drain

 Table 5.5
 No. 2 Blower Station Drain data assessment summary (2016 – 2021)

Parameter	80% LOSP	90% LOSP	95% LOSP
Ammonia	✓	✓	✓
Anthracene	✓	✓	✓
Arsenic (AsIII)*	✓	✓	✓
Arsenic (AsV)*	✓	✓	✓
Benzo(a)pyrene	✓	✓	✓
Cadmium	✓	✓	✓
Chromium (CrIII)	✓	✓	✓
Chromium (CrVI)	✓	✓	✓
Copper	۲	۲	۲
Cyanide	✓	×	۲
Fluoranthene	✓	✓	✓
Lead	۲	۲	۲
Mercury (inorganic)	✓	✓	✓
Naphthalene	✓	✓	✓
Phenanthrene	✓	✓	✓
Selenium (total)*	✓	✓	✓
Zinc	۲	۲	۲

Notes:

✓ Complies with assessment criteria

× - Does not comply with the assessment criteria

 \odot - Limit of Reporting is not sufficiently low to assess compliance

*Freshwater value has been used in absence of a marine water value

 Table 5.6
 No. 2 Blower Station Drain data assessment against DGV (2016 – 2021)

Parameter / units	No.	Min	Av.	Max.	100%	80%	90%	95%
	samples	value	value	value	EPL	LOSP	LOSP	LOSP
Ammonia (Nitrogen) (µg/l)	253	<60	<60	310	5000	1700	1200	910
Anthracene (µg/l)	4	<0.05	<0.05	<0.05		7	1.5	0.4
Arsenic* (µg/l)	23	<10	<10	<10		140	42	13
Benzo(a)pyrene (µg/l)	4	<0.05	<0.05	<0.05		0.7	0.4	0.2
BOD (mg/l)	1	<2	<2	<2	20			
Cadmium (µg/l)	24	<5	<5	<5	60	36	14	5.5
Chromium (Total) (µg/l)	24	<10	<10	<10		85	20	4.4
Copper (µg/l)	24	<10	<10	<10		8	3	1.3
Cyanide (Total) (µg/l)	253	<5	<5	11.3	300	14	7	4
Flouranthene (µg/l)	4	<0.05	<0.05	0.06		2	1.7	1.4

Parameter / units	No. samples	Min value	Av. value	Max. value	100% EPL	80% LOSP	90% LOSP	95% LOSP
Filtrable Iron (mg/l)	253	< 0.01	<0.01	0.16	0.3			
Fluoride (mg/l)	5	<0.1	0.68	1.40				
Hexavalent Chromium (mg/l)	21	<0.001	<0.001	<0.001				
Lead (µg/l)	24	<20	<20	<20	100	12	6.6	4.4
Mercury (µg/l)	26	<0.20	<0.20	0.27		1.4	0.7	0.4
Naphthalene (µg/l)	4	<0.05	<0.05	0.15		120	90	70
Oil and Grease (mg/l)	253	<5	<5	<5	50			
Phenanthrene (µg/l)	4	<0.05	<0.05	0.1		8	4	2
Selenium* (µg/l)	23	<10	<10	<10		34	18	11
Total Iron (mg/l)	253	0.06	0.19	1.4				
TSS (mg/l)	253	<2	10.28	29	500			
Zinc (Total) (µg/l)	253	<50	<50	520	3000	21	12	8

*Notes:

- Freshwater DGV's for As(V), Se

- Where individual readings were below LOR, a value of zero has been adopted in calculating average values

Where all readings were below LOR, average value has been reported as <LOR

From examination of the above data, it is apparent that relatively few exceedances of the 95% LOSP DGV's occur during operations, with the exception of cyanide. The cyanide concentrations detected were all compliant with EPL 6092 concentration limits. The laboratory Limit of Reporting (LOR) for copper, lead and zinc is not sufficiently low to assess compliance against the DGVs.

Cyanide is present in the blowdown water discharged from the blast furnace effluent treatment system. Investigations are currently underway at 5BF to determine additional, online treatment solutions to reduce the concentration of cyanide in the blowdown water before it is discharged to the 2BS drain. Solutions identified through the investigations will be implemented at 5BF. Learnings and solutions for cyanide treatment at the 5BF will be applied to future operation of the 6BF.

The existing data set does not include several of the DGVs and, as already highlighted, in some cases the LOR is not sufficiently low to compare against DGVs. A project, PRP 182, is currently underway to address the identified gaps in data when comparing the analytes measured at the 2BS drain against the list specified in the ANZG (2018) DGVs. For this program, BlueScope is undertaking extensive sampling to identify and quantify all sources of pollutants entering, and ultimately discharging from the 2BS drain to Allans Creek, including from the blast furnace effluent treatment system. PRP 182 includes assessment of the potential impact of discharges on the environmental values of the receiving waters with reference to the relevant criteria relating to levels of aquatic ecosystem protection defined in ANZG (2018).

The findings of this ongoing program will provide critical inputs to the assessment and ongoing management of the potential water quality impacts of discharges to Allans Creek.

5.4 Project rundown and decommissioning WQIA

The target campaign duration for 6BF will be 20 years after which time furnace conditions will dictate relining or decommissioning requirements.

The risks to water quality associated with the rundown and decommissioning are well understood by BlueScope given the experience gained during the successful delivery of the three previous reline projects. During decommissioning, rundown water is captured, treated and tested prior to discharge to ensure compliance with EPL 6092.

As a result, risks to water quality associated with the rundown and decommissioning phase are able to be effectively managed through a rundown and decommissioning strategy (or similar) which will be developed at a future date, in consultation with the EPA as described in Section 6.4.

6. Mitigation measures

6.1 Mitigation measures during construction

BlueScope has committed to developing and implementing a Construction Environmental Management Plan (CEMP) to manage potential impacts during the construction phase. To manage impacts to water quality during the construction phase, it is recommended that the CEMP include a site specific SWMP outlining site management requirements, specific controls, environmental inspection requirements, roles and responsibilities, health and safety, incident management and emergency response including arrangements for managing wet weather events. The SWMP will include an Erosion and Sediment Control Plan (ESCP) which will be prepared in accordance with the *Blue Book -Managing Urban Stormwater: Soils and Construction* (4th edition, Landcom, 2004).

6.2 Mitigation measures during commissioning

A commissioning Water Quality Management Plan (WQMP) (or similar) will be developed following investigations during detailed design to assess the likely composition of initial flushing water, the potential for foaming, the characteristics of the start-up blowdown water and commissioning of the granulator. Where required monitoring programs and corrective measures will be developed to ensure that discharges to groundwater, No.2 Blower Station Drain and Allans Creek are in accordance with EPL 6092. The commissioning WQMP may be a standalone document or may form part of the SWMP.

6.3 Mitigation measures during operation

BlueScope has completed approximately 77 water-related PRPs and continues to work closely with the EPA to address issues associated with historical discharges and identify opportunities for ongoing improvement, including monitoring changes, retention or revision of concentration limits, load limits for specific pollutants, or changes to discharge locations. The following sections detail the water discharge and water use mitigation measures that will minimise the risk of surface water or groundwater contamination during operation of the project.

6.3.1 Process and discharge controls

The type of water discharges from 6BF will be consistent with the quantity and quality currently discharged from 5BF. The only direct discharge to the 2BS drain will be from the effluent treatment system as described in Section 5.3.1.1. All other discharges will be directed to IMED a secondary containment basin, which will then be pumped to the 2BS drain. In the event of a spill to drain, the IMED pumps can be turned off, ensuring the spill is captured and does not leave the site.

The slag handling area will include hardstand surfaces graded to internal drains in the area so surface water will flow into either the new slag pit settling pond or the granulator settling pond. Collected water from the water sprays in the area will be recycled as make-up water to the granulator or as slag pit sprays. In a rain event, the first flush will be collected in the new slag pit settling pond, which will flow into the plant stormwater drain before draining to IMED and subsequently be pumped to 2BS for release to Allans Creek.

The effluent treatment system will be above ground and bunded underneath to capture any flows. Any spillage will be captured and directed back into the effluent treatment system. Additional paving between the effluent treatment system and the road on the east side of the plant will cover the unsealed area.

COG and BFG condensate will be managed with the controls that have previously been identified as part of PRP181-Seal Pot Risk Assessment. 'No-blow' seal pots will be installed for BFG seal pots which will reduce the risk of gas condensate overflows, and collection tanks will be bunded and level detection with alarming installed to avoid over fill events.

The effluent treatment system will discharge cleaned and treated water to 2BS, however if the water quality is variable, this will be directed to contingency storage for further treatment and reassessment.

6.3.2 Stormwater

Drainage from 6BF area is directed to IMED which is a basin with a capacity of 7,556 kL that under dry weather conditions, does not flow directly to the harbour and is instead pumped to 2BS drain. In major rainfall events when the capacity of the basin is exceeded, the water overflows directly to the harbour over a weir at licensed discharge point, Point 89.

In a rain event a "first flush" of stormwater from process areas is collected in sumps and tanks in the drainage system. The proposed slag pit settling pond is designed to provide additional capacity to capture the first flush from rainfall events. The 6BF site has established stormwater drainage consisting of a series of sumps and collection tanks which capture first flush events and potential spills. Following the first flush and when sumps reach capacity, stormwater drains to IMED and is subsequently pumped to the No. 2 Blower Station Drain for release to Allans Creek. These rainwater sumps local to the blast furnace have the capability to pump back to the effluent treatment system.

There will be roof protection over the main chemical bunding to prevent excessive rainwater entering bunded areas.

Cokemaking Catchment Area
Ore Preparation/6BF Catchment Area
Blower Station Catchment Area
5BF Catchment Area
BOS/ASMS Catchment Area

Figure 6.1

Drain catchment map following changes made by the project

6.3.3 Discharge locations

The two licenced discharge locations that service the 6BF catchment area (refer Figure 3.6) are Point 79: 2BS drain and Point 88: IMED.

Blowdown from the effluent treatment system will be directly discharged to 2BS drain, which flows to Allans Creek. All other discharges, including stormwater will flow to IMED when rainwater collection sumps have filled.

2BS and IMED drains are currently monitored in compliance with EPL 6092. Water quality indicators (cyanide, ammonia, metals) are included in existing tests.

Further discussion regarding the reasons for selecting the proposed discharge locations is provided in Section 4.4.5.

6.3.4 Water use

Water uses associated with 6BF will be slightly different to those associated with the existing 5BF operations. Less fresh water will be required due to the use of a once through salt water cooling system instead of an evaporative cooling tower. This will result in approximately 10% additional salt water requirements at 6BF compared to 5BF as discussed in Section 5.3.1.2. The industrial and drinking (domestic) water supplier will continue to be Sydney Water. The water use and re-use processes will be as follows:

- The water used for granulation will be collected, cooled and reused in a closed loop system. Some water loss
 will occur due to moisture retained in the granulated slag.
- Slag handling water used to cool the slag pits will be reused. Some water loss will occur due to evaporation.
- Water from gas cleaning will be reused for further gas cleaning.
- The furnace cooling system will be a closed loop cooling system.
- Rainwater tanks will collect drainage from the site and can pump collected water back to the effluent treatment system.
- Heat exchanger cooling from salt water sourced from and returned to Port Kembla Outer Harbour.

Overall, the proposed cooling system will offer reduced water use and does not require a water licence from Water NSW.

6.3.5 Wastewater management

All process wastewater within the 6BF area will be either captured or treated and then discharged as summarised below:

- Blowdown water from the effluent treatment system is discharged to the 2BS drain following the treatment process.
- Contingency storage for all discharges will be used when water quality is variable.
- Collection of blast furnace gas seal pot water and return to the effluent treatment system.
- Collection of COG seal pot water with pick up by truck.⁸
- Seal pot tanks will have bunds installed and level detection with alarming on collection tanks to avoid over fill events.
- Online treatment for cyanide is currently under investigation at 5BF. Learnings will be applied to 6BF.

⁸ COG is gas generated from cokemaking processes and is used as a fuel at the blast furnace. As such, there is a COG main with seal pots in the blast furnace yard from which COG condensate is collected.

6.3.6 Spill management

There are a number of spill mitigation measures that will be implemented during the project for ongoing operational benefit. These include:

- EPA compliant bunding of all hazardous chemicals.
- Spill kits readily available.
- High risk process areas sealed.
- All runoff, including spills, from the gas cleaning and effluent treatment plants will be collected and returned to the water treatment plant during normal operation.
- Spill containment and additional paving between effluent treatment system and road on the east side of the plant.
- No-blow seal pots installed on blast furnace gas mains reducing the chance of make-up water being left on for extended periods of time.
- Level detection and alarming on gas condensate collection tanks.
- Seal pot tanks will have bunds installed and level detection with alarming on collection tanks to avoid over-fill events.
- Above ground effluent treatment system clarifier with bunding underneath to capture any overflows.

6.3.7 Ongoing monitoring programs

Monitoring programs have been developed and refined based on previous modelling and measured data collected to date. These are described in Section 3.7 and summarised in Table 6.1.

Area	Monitoring Programs
Surface waters	EPL 6092 contains individual discharge concentration limits for 14 surface water locations within the Port Kembla Steelworks site, 12 of which relate to water quality within the drainage network. Monitoring conditions specified in the EPL include monitoring parameters, locations, frequencies as well as discharge limits relating to the 50, 90 and 100 percentile concentrations for each discharge point.
	The No. 2 Blower Station drain (Point 79) is sampled every 8 days for an agreed suite of contaminants. As the quality of the discharges from 6BF won't be any different to 5BF, it is anticipated the suite of contaminants will remain the same. The Ironmaking East Drain is sampled for a similar suite of contaminants on a daily basis during dry weather discharge events.
	BlueScope undertakes a groundwater monitoring program in line with condition E3.1 of EPL 6092, Contamination Monitoring and Assessment Program. This condition requires BlueScope to assess groundwater monitoring results against relevant criteria, assess for changes against historical results and evaluate the effectiveness of the monitoring well network. Wells which contain COPC are monitored annually while other wells are monitored less often. Monitoring is undertaken to inform assessment of the following:
Groundwater	 The nature and extent of groundwater contamination utilising existing monitoring wells nominated by BlueScope.
	 The direction of groundwater movement.
	- The potential risks posed by the contamination, where present, to off-site ecological receptors.
	 Key changes (trends) in groundwater contaminant concentration.
	- The presence of surface water contamination in Allans Creek at prescribed sample locations.

 Table 6.1
 Summary of ongoing monitoring programs

BlueScope is undertaking extensive sampling under PRP182 to identify and quantify all sources of pollutants entering, and ultimately discharging from the 2BS drain to Allans Creek, including from the blast furnace effluent treatment system. The program includes assessment of the potential impact of discharges on the environmental values of the receiving waters with reference to the relevant criteria relating to levels of aquatic ecosystem protection defined in ANZG (2018). The findings of these ongoing programs, particularly PRP 182, will provide critical inputs to the assessment of the potential water quality impacts of discharges to Allans Creek.

6.4 Mitigation measures during decommissioning

Based on the experience gained during previous rundown and relining projects, drains used during typical operations would be delinked from the 6BF area during the rundown and decommissioning phase. This approach allows BlueScope to capture, test and treat all rundown effluent waters to ensure compliance with EPL 6092.

A rundown and decommissioning strategy (or similar) will be developed at a future date, in consultation with the EPA. The strategy will describe the water dosage and treatment processes during the rundown phase and management measures that will be implemented during decommissioning to ensure that water quality in the 2BS drain meets EPL conditions throughout the rundown process.

7. Evaluation and conclusion

This water quality impact assessment (WQIA) report has been prepared on behalf of BlueScope to support the EIS for the project and responds to the SEARs relating to surface and groundwater quality. It describes the existing ambient and background water quality and assesses the potential impacts to water quality associated with the construction, operational and decommissioning phases of the project with respect to the following guidelines:

- NSW Marine WQO's in NSW (DEC, 2006)
- Storing and Handling Liquids: Environmental Protection (DECC, 2007)
- Managing Urban Stormwater: Soils and construction Volume 2 (DECC, 2008)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2018)

Recommended mitigation and management measures were identified in response to the impact assessment findings.

7.1 Impacts from the project during construction

Potential risks to water quality during the construction phase relate to the potential release of poor quality stormwater into drains and waterways and the risk of mobilising existing contamination within soils and groundwater. These risks will be managed through the existing stormwater drainage network that will enable capture of stormwater prior to release to the environment.

All construction activities are proposed to take place in established areas with existing water management controls in place.

As a result, potential impacts to surface and groundwater quality during the construction phase are expected to be readily manageable through development and implementation of a site specific SWMP in accordance with the *Managing Urban Stormwater: Soils & Construction, vol. 1* (Landcom 2004).

7.2 Impacts from the project during commissioning

Potential risks to water quality during the commissioning phase relate to management of water used in initial flushing of cooling systems, management of potential foaming during start-up of the gas system, commissioning of the granulator and the potential for variable volume and chemical composition of blowdown waters during initial charging, purging and heating of the furnace.

These risks are well understood by BlueScope given the experience gained during the successful delivery of the three previous reline projects at PKSW and are proposed to be managed via the existing drainage network and site capture and containment measures, adequate storage basins, comprehensive monitoring and controlled discharge.

Subject to the development and implementation of a detailed commissioning WQMP or SWMP, these risks are expected to be able to be managed such that there are no adverse impacts to surface and groundwater quality during the commissioning phase except in accordance with EPL 6092 issued by the EPA.

Noting BlueScope's commitment to sustainable water management for the site, industrial water is proposed to be used for initial flushing of cooling systems and commissioning of the granulator. As a result, water proposed to be used during the commissioning phase will be sourced from an appropriately authorised and reliable supply.

7.3 Impacts of the project during operation

Returning 6BF to service and ceasing 5BF operations is expected to result in minor differences to BlueScope's future water uses and discharges. In particular, minor changes to cooling water discharges are expected due to the alternative cooling system associated with 6BF and locations of certain activities within the PKSW site will change due to the transfer of operations to 6BF.

Consideration has been given to potential impacts to water quality resulting from the project, including potential impacts to sensitive receiving environments as well as proposed improvements over existing operations.

Potential impacts to Allans Creek and the Inner Harbour relate to the temperature and chemical composition of discharges to 2BS drain. Recent monitoring data collected between 2016 and 2021 indicates that relatively few exceedances of the 95% LOSP DGV's occur during operations, with the exception of cyanide which nevertheless remains compliant with EPL 6092 concentration limits).

As part of BlueScope's ongoing commitment to improvement and efforts to comply with the NSW WQO's and ANZG guidelines, PRP 182 is currently underway to address the identified gaps in data when comparing the analytes measured at 2BS drain against the list specified in the ANZG (2018) DGVs. PRP 182 involves extensive sampling to identify and quantify all sources of pollutants entering, and ultimately discharging from the 2BS drain to Allans Creek, including from the blast furnace effluent treatment system.

Similarly, investigations are currently underway at 5BF to determine online, additional treatment solutions to reduce the concentration of cyanide in the blowdown water before it is discharged to the 2BS drain. Solutions identified through the investigations will be implemented at 5BF. Learnings and solutions for additional, online treatment at 5BF will be applied to future operation of 6BF.

The findings of these ongoing investigations will provide critical inputs to the assessment and ongoing management of the potential water quality impacts of discharges to Allans Creek and the Inner Harbour.

In relation to the temperature of future discharges to Allans Creek, the salt water heat exchanger cooling system proposed for 6BF requires an increased rate of salt water intake of approximately 3,000m³/h, which represents an increase of around 10% over current operations associated with 5BF. Whilst the cooling system proposed for 6BF offers the benefits of reduced energy use, reduced water use, and reduced chemical treatment requirements in comparison to the existing cooling system at 5BF, it is predicted to result in an increase of approximately 0.5 - 1°C at the licence discharge point, No. 2 Blower Station drain (ID79).

Based on previous numerical modelling and water quality monitoring results, neither the existing or proposed discharge streams are expected to comply with the assessment criteria for slightly to moderately disturbed ecosystems. Allans Creek and the Inner Harbour have, however, been subject to the effects of warmer than ambient industrial discharges for decades and are considered part of a highly disturbed ecosystem (NSG, 2006). Given the history of the site, it is considered appropriate to rely on site-specific scientific studies, together with professional judgement and other relevant information, to derive site-specific trigger values.

In this regard, the predicted increase in temperature at the point of discharge from the 2BS drain into Allans Creek will comply with the temperature limits specified under Clause L3.5 of EPL 6092. Similarly, the predicted increase in temperature at the point of discharge into Allans Creek will comply with the site-specific temperature criteria (an increase of less than 3°C) developed during detailed studies into the ecology of Allans Creek and the Inner Harbour.

The risk of negative impacts to groundwater during operations is considered low on account of BlueScope's ongoing groundwater monitoring program and the recent and proposed improvements to capture and containment measures.

As part of an ongoing commitment to sustainability, BlueScope has completed approximately 77 water-related PRPs and continues to work closely with the EPA to identify opportunities for further improvement. As part of the current project, BlueScope has committed to delivering an extensive list of mitigation measures relating to water discharge and water use that will minimise the risk of surface water or groundwater contamination during operation of the project. These include improvements relating to:

- Process and discharge controls
- Stormwater
- Discharge locations
- Water use
- Wastewater management
- Spill management

Noting BlueScope's commitment to sustainable water management for the site, 6BF operations will continue to use industrial water in the steel manufacturing process; comprised of both recycled water from the Wollongong Water Recycling Plant (over 85% of the current industrial water mixture) and unfiltered Avon Dam water.

In addition, the stormwater drainage system proposed for the project will enable the capture and reuse of stormwater, providing improved water cycle management over the current stormwater management capabilities. As a result, water use during the operation of the project will be sourced from an appropriately authorised and reliable supply.

Subject to BlueScope's implementation of the proposed mitigation measures and ongoing efforts to characterise and reduce pollutants introduced to the water cycle, 6BF operations are expected to maintain compliance with EPL 6092 issued by the EPA such that there are no adverse impacts to surface and groundwater quality.

7.4 Impacts from the project during decommissioning

6BF is expected to operate for 20 years after which time furnace conditions would dictate relining or decommissioning requirements. Potential impacts to surface and groundwater quality during the decommissioning phase are expected to be readily manageable through development and implementation of a rundown and decommissioning strategy (or similar).

7.5 Final conclusion

Based on the investigations and assessment undertaken by GHD and the conclusions drawn in this WQIA report, it is considered that, subject to the recommended mitigation measures being applied, the proposed project will not result in any material adverse impacts to water quality, when compared to the current operations of 5BF. Amongst other positive effects, the project will result in reduced water use, improved energy efficiency and improved water capture capability thereby minimising the risk of adverse water quality impacts.

8. References

AIE (2021). Port Kembla Energy Terminal - Environmental Monitoring Data accessed online 25/11/2021, https://ausindenergy.com/environmental-information/

ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council/ Agriculture and Resource Management Council of Australia and New Zealand

ANZG. (2018). Australian and New Zealand guidelines for fresh and marine water quality

BHP (1993). Geotechnical Investigation: No.6 Blast Furnace Development, BHP Steel, 1993.

BlueScope Steel Limited (2021) Environmental Protection Licence (EPL) 6092 in accordance with the Protection of the Environment Operations Act 1997

Cardno Lawson Treloar (2006a), BlueScope Steel Co-generation Plant Proposed Salt Water Cooling, prepared for CH2MHILL August 2006

Cardno Lawson Treloar (2006b), Numerical Modelling of Cooling Water Field – Plankton Fatality and Flushing Issues, prepared for CH2MHILL September 2006

Cardno Lawson Treloar (2008), BlueScope Steel Co-generation Plant Proposed Salt Water Cooling – Addendum Report, prepared for CH2MHILL April 2008

Cardno (2019) Port Kembla Re-Gasification Project - Updated Hydrodynamic Plume Modelling, Prepared for AIE November 2019

CH2MHILL (2008) Application for Modification of Wollongong City Council Development Consent DA767/01A, Prepared for BlueScope Steel Limited, May 2008

DEC (2005). NSW Marine Water Quality Objectives in NSW, Department of Environment and Conservation, published December 2005

DECCW (2006) Illawarra Water Quality and River Flow Objectives, published 1 May 2006, accessed online November 2021, https://www.environment.nsw.gov.au/ieo/LakeIllawarra/report-02.htm

DMR (1986a) Geology of the Wollongong and Port Hacking 1:100 000 Sheets, Geological Survey of New South Wales, Department of Mineral Resources, 1986

DMR (1986b) Geology of the Wollongong and Port Hacking 1:100 000 Sheets, Geological Survey of New South Wales, Department of Mineral Resources, 1986

DLWC Registered Groundwater Borelog - GW0101268Egis (2001). Preliminary Site Investigation, Port Kembla Steelworks, Egis Consulting Australia, June 2001

DPI (2016) Riches, M., Gilligan, D., Danaher, K. and Pursey, J. Fish Communities and Threatened Species Distributions of NSW. Published by the Department of Primary Industries.

EPA (2018). Port Kembla Gas Terminal – EPA Comments on Environmental Impact Statement dated 14th December 2018

GHD (2004). Blue Scope Steel Port Kembla No.2 Steelworks Investigation of Site Contamination - Stage 2, July 2004

GHD (2009). Port Kembla No. 2 Steelworks - Stage 3 Contamination Assessment, February 2009

IXOM (2019) Safety Data Sheet – Sodium hypochlorite solution (10-15% available chlorine), IXOM Operations Pty Ltd issue data 18/09/2019

JBS&G (2016). Site Investigation BlueScope, No.2 Works 50386/No 2 R01 - Rev 2, prepared for BlueScope by JBS&G 08, August 2016

Landcom (2004). Managing Urban Stormwater: Soils and construction - Volume 1 4th edition, Landcom, March 2004, ISBN 0-97520-3037

NSG (2006). Ecological issues in relation to BlueScope Steel SCP proposed salt water cooling, prepared for CH2M Hill, August 2006

Nalco (2017). Safety Data Sheet – HI-TEX 82220, NALCO Water dated 30.05.2017

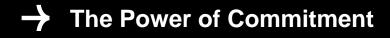
Nalco (2020). Safety Data Sheet - CAT-FLOC 8103 PLUS, NALCO Water dated 24.12.2020

Nalco (2021a). Safety Data Sheet – ACTI-BROM™ 7342, NALCO Water dated 21.01.2021

Nalco (2021b). Safety Data Sheet - NALCO® 1392, NALCO Water dated 14.02.2021

NSW Ports (2020). Port Kembla Harbour Environment Group Terms of Reference, https://www.nswports.com.au/file-download/download/public/1593

Phillips (2002). Monitoring and Assessing the Water and Sediment Quality of Port Kembla Harbour According to the ANZECC & ARMCANZ (2000) Guidelines undertaken by M. Phillips (2002)


NSW Ports (2021). Locations Port Kembla Overview, accessed online https://www.nswports.com.au/port-kembla October 2021

Senversa (2020) Recommendations from Groundwater Monitoring Event – June 2020, BlueScope Steelworks Complex, Five Islands Road, Port Kembla, NSW, Letter dated 17th December 2020

UNSW (2012). PRP 146: Assessment of the ecological condition of Port Kembla, prepared by University of New South Wales for BlueScope Steel, June 2012

ghd.com

Appendix I Traffic impact assessment

Blast Furnace No. 6 Reline Project

Traffic Impact Assessment

BlueScope Steel (AIS) Pty Ltd

7 March 2022

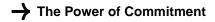
→ The Power of Commitment

GHD Pty Ltd ABN 39 008 488 373

133 Castlereagh Street, Level 15

Sydney, NSW 2000, Australia

T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com


Printed date	7/03/2022 12:35:00 PM
Last saved date	7 March 2022 12:35 PM
File name	https://projectsportal.ghd.com/sites/pp01_01/bluescopebfeis/ProjectDocs/Appendix XX - Traffic Impact Assessment/12541101-REP_BlueScope TIA_Rev_C.docx
Author	Yrish Estoce
Project manager	Simon Murphy
Client name	BlueScope Steel (AIS) Pty Ltd
Project name	BlueScope Steelwork Blast Furnace 6 Reline Project
Document title	Blast Furnace No. 6 Reline Project Traffic Impact Assessment
Revision version	Rev 1
12541101	12541101

Document status

Status	Revision	Author	Reviewer		Approved for issue			
Code			Name	Signature	Name	Signature	Date	
S4	0	Yrish Estoce	O. Peel	On file	K Rosen		22/10/2021	
S4	1	Yrish Estoce	O. Peel	On file	K Rosen	Kullow	07/03/2022	

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction		1			
	1.1	Backgrou	und and project overview	1			
	1.2	-	of this report	1			
	1.3	Limitatior	•	1			
2.	Legislative and policy context						
	-	2.1 State Environmental Planning Policy (Infrastructure) 2007					
	2.2		traffic generating developments	3			
	2.3		y's Environmental Assessment Requirements	3			
3.		odology		4			
••	3.1		h to assessment	4			
	0.1		Intersection assessment criteria	4			
			Midblock assessment criteria	4			
4.	Existi	ng environ	iment	6			
	4.1	Project a		6			
	4.2	Existing I	road network characteristics	10			
		•	Road hierarchy	10			
			Road classification	10			
			Functional hierarchy	10			
			Road characteristics	12			
			Springhill Road	12			
			Five Islands Road (B65) Cringila Car Park Road	13 14			
			Loop Road	15			
			Emily Road	15			
			BlueScope Access Road	16			
			Flagstaff Road	17			
	4.0		Old Port Road	18			
	4.3	Traffic vo		19			
			Intersection traffic counts Functional classification	19 22			
			Mid-block capacity analysis	22			
			Historical traffic growth trends	25			
	4.4		crash data review	25			
	4.5	Public ar	nd active transport	28			
		4.5.1	Train services and bus services	28			
		4.5.2	Walking and cycling	29			
5.	Cons	31					
	5.1	Construc	32				
	5.2	Workforc	ce de la constante de la const	32			
			Workforce	32			
		5.2.2	Working hours	32			
	5.3	Construc	ction equipment	33			
	5.4	Traffic ge	eneration	33			
	5.5	Construc	ction vehicle access routes	35			

6.	Traffi	c impact	assessment	38	
	6.1	Constr	ruction impacts	38	
		6.1.1	Traffic impacts	38	
		6.1.2	Intersection performance	42	
		6.1.3	Heavy vehicle approved routes	44	
		6.1.4	Car parking	44	
		6.1.5	Public transport	44	
		6.1.6	Transport infrastructure	44	
		6.1.7	Active transport - Pedestrians and bicycle riders	44	
		6.1.8	Safe Intersection Sight Distance (SISD) analysis	44	
		6.1.9	Rail	47	
	6.2	Opera	tional impacts	48	
		6.2.1	Traffic impacts	48	
		6.2.2	Car parking	48	
		6.2.3	Public transport	48	
		6.2.4	Pedestrians and bicycle riders	48	
7.	Reco	49			
	7.1	Constr	49		
	7.2	Traffic	49		
8.	Conc	Conclusion			
	8.1	8.1 Overview			
	8.2	Key fir	ndings	51	
	8.3	Final c	51		

Table index

Table 2.1	Traffic and transport SEARs	3
Table 3.1	Level of Service Criteria for intersections	4
Table 3.2	Typical mid-block capacity for urban roads with interrupted flow	5
Table 4.1	Springhill Road key features	13
Table 4.2	Five Islands Road key features	14
Table 4.3	Cringila Car Park Road key features	15
Table 4.4	Loop Road key features	15
Table 4.5	Emily Road key features	16
Table 4.6	BlueScope Access Road key features	17
Table 4.7	Flagstaff Road key features	18
Table 4.8	Old Port Road key features	19
Table 4.9	Traffic Data Comparison	21
Table 4.10	Functional classification of roads	22
Table 4.11	Midblock volume / capacity analysis – AM peak hour	23
Table 4.12	Midblock volume / capacity analysis – PM peak hour	24
Table 4.13	Average weekday traffic volumes (24 hours) – Five Islands Road, east of	
	Springhill Road	25
Table 4.14	Number of recorded crashes by road section (2015-2019)	27
Table 4.15	Bus services	29
Table 5.1	Construction staging	32
Table 5.2	Indicative construction equipment	33

Table 5.3	Traffic generation – two-way traffic	34
Table 5.4	Construction access routes to each construction site	36
Table 6.1	Increase in construction traffic generation – daily traffic	38
Table 6.2	Peak hour (AM and PM) construction traffic generation on the surrounding road	
	network	39
Table 6.3	Peak construction midblock volume / capacity – AM peak hour	40
Table 6.4	Peak construction midblock volume / capacity analysis – PM peak hour	41
Table 6.5	SIDRA modelling results – 2021 surveyed traffic volumes (without construction	
	traffic)	43
Table 6.6	SIDRA modelling results – During construction (with construction traffic)	43
Table 6.7	Safe intersection sight distance (SISD) and corresponding minimum crest	
	vertical curve size for sealed roads (S <l)< td=""><td>45</td></l)<>	45

Figure index

Figure 4.1	Regional location	7
Figure 4.2	Key project features	8
Figure 4.3	Site layout and locality	9
Figure 4.4	Road classification within study area	11
Figure 4.5	Springhill Road, viewed westwards from BlueScope North Gate	12
Figure 4.6	Five Islands Road, viewed eastwards towards Springhill Road	13
Figure 4.7	Cringila Car Park Road, viewed northwards towards Loop Road	14
Figure 4.8	Emily Road, viewed westwards towards Loop Road	16
Figure 4.9	BlueScope Access Road, viewed southwards	17
Figure 4.10	Flagstaff Road, viewed eastwards from Five Islands Road	18
Figure 4.11	Old Port Road, viewed southwards from Flinders Street	19
Figure 4.12	Loop Road and Cringila Car Park intersection and Five Islands Road and	
	Cringila Car Park Road intersection traffic volume	20
Figure 4.13	Five Islands Road and Emily Road intersections traffic volume	20
Figure 4.14	Springhill Road and BlueScope Access Road intersection traffic volume	21
Figure 4.15	Flagstaff Road and Five Islands Road intersection traffic volume	21
Figure 4.16	Crash locations (2015-2019) – Five Islands Road within approximately 100	
	metres from Emily Road	26
Figure 4.17	Crash locations (2015-2019) – Five Islands Road within approximately 100	00
F ' (()	metres from Flagstaff Road	26
Figure 4.18	Crash locations (2015-2019) – Springhill Road within approximately 100 metres	27
Figure 4.19	from BlueScope Access Road	27
Figure 4.19	Train stations and bus stops locations Existing bicycle network	20 30
0		30 34
Figure 5.1 Figure 5.2	Indicative pick-up and drop-off points Construction Traffic Routes	34 35
Figure 5.2 Figure 5.3	Internal Traffic Routes	35 37
•		-37 -46
Figure 6.1	Approach Sight Distance from Five Islands Road	40 47
Figure 6.2	Emily Road viewed form Five Islands Road	47 47
Figure 6.3	Emily Road viewed form Five Islands Road (site visit)	47

Appendices

- Appendix A Traffic Survey Data
- Appendix B SIDRA Results Summary
- Appendix C Slag handling area pavement upgrade

Terms and abbreviations

Abbreviation	Description
AADT	Average annual daily traffic
AS	Australian Standard
AS/NZS	Australian and New Zealand Standard
BF	Blast Furnace
BF-BOF	Blast Furnace – Basic Oxygen Furnace
BlueScope	BlueScope Steel (AIS) Pty Ltd
CSSI	Critical State Significant Infrastructure
СТМР	Construction transport management plan
DPIE	Department of Planning, Industry and Environment
EB	East bound
EIS	Environmental Impact Statement
EP&A	Environmental Planning and Assessment Act 1979
FTE	Full time equivalent
GHD	GHD Pty Ltd
HV	Heavy vehicle
km	Kilometres
LGA	Local Government Area
LoS	Level of service
LV	Light vehicle
m	Metres
mm	Millimetres
NB	North bound
NSW	New South Wales
OSOM	Oversize Overmass
PCU	Passenger Car Units
pc/h	Passenger cars per hour
PKSW	Port Kembla Steelworks
SB	South bound
SRD SEPP	State Environmental Planning Policy (State and Regional Development) 2011
VCR	Volume Capacity Ratio
TAG	Transport Access Guide
TfNSW	Transport for New South Wales
TIA	Traffic Impact Assessment
WB	West bound

1. Introduction

1.1 Background and project overview

BlueScope Steel (AIS) Pty Ltd (BlueScope) is one of Australia's leading manufacturers and is a global leader in finished and semi-finished steel products. BlueScope's Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. In order to prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

The project has been declared critical state significant infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP). This Traffic Impact Assessment has been prepared to support the preparation of an Environmental Impact Statement (EIS) under the EP&A Act for the project. The EIS has in turn been prepared to support the application for project approval, to be determined by the NSW Minister for Planning and Public Spaces.

1.2 Purpose of this report

GHD Pty Ltd (GHD) has been commissioned by BlueScope to prepare a traffic impact assessment (TIA). This report will support the preparation of an Environmental Impact Statement (EIS) under the EP&A Act for the project.

This report addresses the relevant criteria in the NSW Secretary's Environmental Assessment Requirements (SEARs) for the project issued in July 2021 (as outlined in Section 3.1) and assesses the potential traffic and transport related impacts associated with the construction and operation of the project.

The purpose of this report is to document the results of the TIA which include:

- Describing the existing traffic and transport environment around the PKSW.
- Reviewing of the existing road and transport conditions, traffic volumes and crash data.
- Reviewing of the construction works of the project and its access arrangements.
- Assessing the potential impacts of the project construction works and the performance of key intersections during construction.
- Determining suitable mitigation measures to minimise the impacts.

1.3 Limitations

The preparation of this TIA relied on the following data sources or was limited by the following:

- Site inspections undertaken at the surrounding road network in September 2021.
- Intersection traffic counts commissioned by GHD were undertaken in September 2021 during a weekday AM and PM peak period at the following intersections.
 - Cringila Car Park Road / Five Islands Road intersection (left in, left out only).
 - Loop Road / Cringila Car Park Road intersection.
 - Five Islands Road / Emily Road (Entry) intersection.
 - Five Islands Road / Emily Road (Exit) intersection.
 - Springhill Road / BlueScope Access Road signalised intersection.
 - Five Islands Road / Flagstaff Road intersection (left in, left out only).

- PKSW gate entries from 2019 provided by BlueScope.
- Traffic data from Port Kembla Gas Terminal Traffic Impact Assessment Report prepared by GHD in 2018.

The following assumptions have been made in the preparation of this TIA:

- Assumptions in regard to construction traffic generation and distribution for the project as provided by BlueScope as detailed in Section 5.
- Construction of the project is expected to occur in 2023, with construction expected to occur over a three-year period.
- Analysis of historical traffic growth trends at roads within the study area identified that traffic has generally declined over the last five years, pre-COVID-19 pandemic.
- The traffic volumes surveyed in September 2021 were factored using 2019 gate entries data to reflect regular operations and traffic conditions pre-pandemic in order to assess the assessment of operational traffic impacts.

This report has been prepared by GHD for BlueScope Steel (AIS) Pty Ltd and may only be used and relied on by BlueScope Steel (AIS) Pty Ltd for the purpose agreed between GHD and BlueScope Steel (AIS) Pty Ltd as set out in section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than BlueScope Steel (AIS) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

2. Legislative and policy context

2.1 State Environmental Planning Policy (Infrastructure) 2007

Pursuant to Schedule 3 of *State Environmental Planning Policy (Infrastructure) 2007* (ISEPP) the project is considered to be traffic generating development to be referred to Transport for NSW (TfNSW). Clause 104 of ISEPP specifies that a consent authority must give written notice to TfNSW of an application for traffic generating development before granting development consent and consider any response provided by TfNSW. The project has been declared CSSI so development consent is not required. Regardless, TfNSW have been consulted with in the preparation of the SEARs (refer Section 2.3) and their comments addressed in the preparation of this TIA. A separate briefing note was also sent to TfNSW but no response was received prior to the finalisation of this report.

2.2 Guide to traffic generating developments

This TIA has been undertaken with reference to the *Guide to Traffic Generating Developments* (Roads and Maritime Services, 2002) (the Guide). The Guide provides a process and methodology to undertake the TIA. The traffic operation assessment process outlined in the Guide identifies the operating characteristics which need to be compared with agreed performance criteria.

The Guide states that existing daily traffic volumes on roads adjacent to a proposed development should be compared with estimated daily traffic volumes. This enables the functions of roads in the overall hierarchy of roads to be reviewed in the context of the proposed development. This TIA has been prepared based on this approach

The assessment criteria adopted for this report are outlined in Section 3.

2.3 Secretary's Environmental Assessment Requirements

The SEARs relevant to traffic impacts, together with a reference to where they are addressed in this report, are outlined in Table 2.1.

Requirement	Where addressed in this report
Include a traffic impact assessment addressing construction and operational traffic impacts of the project, details of traffic types and volumes, access roads and haul routes	Sections 5 and 6
An assessment of the predicted impacts of project traffic on road safety and capacity, including consideration of cumulative traffic and the need for any road upgrades or infrastructure works to support the project	Sections 6.1 and 6.2. No infrastructure upgrades are proposed as part of this project.
Details of internal road layouts and vehicle movement plans to demonstrate that all vehicle sizes can be safely accommodated on site	Section 6.1. Note that the existing internal road network has been previously approved, designed and constructed in accordance with relevant standards.

Table 2.1	Traffic and transport SEARs
	manie and dansport of Arts

3. Methodology

3.1 Approach to assessment

This section outlines the method and evaluation criteria used in the traffic assessment of the project. This report focuses on the ultimate peak construction traffic generation scenario for each road impacted by the project and the overall effect on the higher order road network. To assess these impacts reference is made to:

- The assessment of intersection performance impacts as outlined in Section 3.1.1.
- The assessment mid-block performance impacts as outlined in Section 3.1.2.

Traffic generation associated with the operation of the project will be significantly lower than during the peak construction period. Traffic impacts will therefore be reduced during the operational period compared to the construction period.

Other factors considered include potential impacts to car parking, public transport, active transport and safety. The project will not impact on any rail networks external to the PKSW site.

3.1.1 Intersection assessment criteria

The performance of the existing road network is largely dependent on the operating performance of key intersections, which are critical capacity control points on the road network. The SIDRA 8 intersection modelling software was used to assess the proposed peak hour operating performance of intersections on the surrounding road network.

The criteria for evaluating the operational performance of intersections is provided by the *Guide to Traffic Generating Developments* (Roads and Maritime Services, 2002) and reproduced in Table 3.1. The criteria for evaluating the operational performance of intersections is based on a qualitative measure (i.e. Level of Service), which is applied to each band of average vehicle delay.

Level of Service (LoS)	Average Delay per Vehicle (seconds/veh)	Traffic Signals, Roundabouts	Give Way & Stop Signs
A	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control modes	
F	> 70	Over Capacity Unstable operation	Over Capacity Unstable operation

 Table 3.1
 Level of Service Criteria for intersections

Source: Guide to Traffic Generating Developments (Roads and Maritime Services 2002)

3.1.2 Midblock assessment criteria

According to Austroads Guide to Traffic Management, Part 3: Traffic Studies and Analysis, Section 5.2.1, the oneway mid-block capacity of an urban arterial road with interrupted flow varies depending on the type of lane. The typical mid-block capacity for urban roads with interrupted flow is outlined in Table 3.2. An interrupted flow facility road is one in which traffic flow conditions are subject to the influence of fixed elements such as traffic signals, stop signs, give-way signs, roundabouts or other controls which cause traffic to stop periodically, irrespective of the total amount of traffic; examples include urban streets, unsignalised and signalised intersections.

Table 3.2 Typical mid-block capacity for urban roads with interrupted flow

Type of lane	One-way mid-block capacity (pc/h)	
Median or inner lane		
Divided Road	1000	
Undivided Road		
Middle lane (of a 3 lane carriageway)	900	
Divided road	900	
Undivided road	1000	
Kerb lane		
Adjacent to parking lane	900	
Occasional parked vehicles	600	
Clearway conditions	900	

Source: Table 5.1 in Austroads Guide to Traffic Management Part 3: Traffic Studies and Analysis Note: pc/h = passenger cars per hour

However, Austroads Guide to Traffic Management Part 3 – Traffic Studies and Analysis (Section 5.2.1) outlines that:

Peak period mid-block traffic volumes may increase to 1200 to 1400 pc/h/lane on any approach road when the following conditions exist or can be implemented:

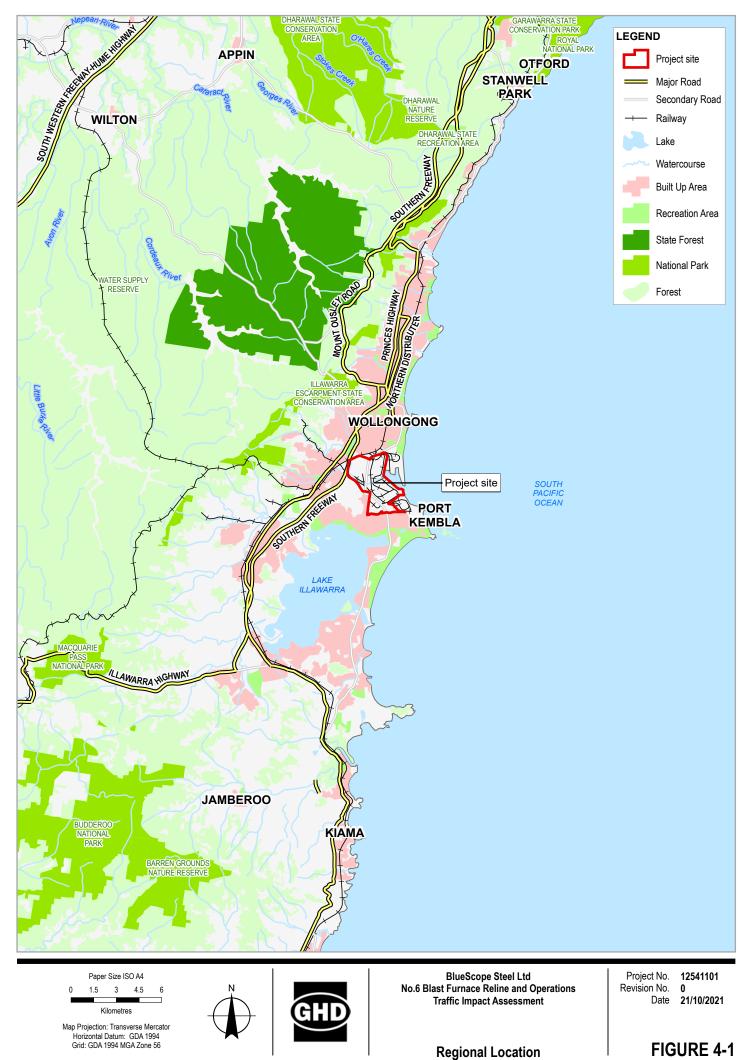
- Adequate flaring at major upstream intersections.
- Uninterrupted flow from a wider carriageway upstream of an intersection approach and flowing at capacity.
- Control or absence of crossing or entering traffic at minor intersections by major road priority controls.
- Control or absence of parking.
- Control or absence of right turns by banning turning at difficult intersections
- High volume flows of traffic from upstream intersections during more than one phase of a signal cycle.
- Good co-ordination of traffic signals along the route.

For the purposes of this assessment:

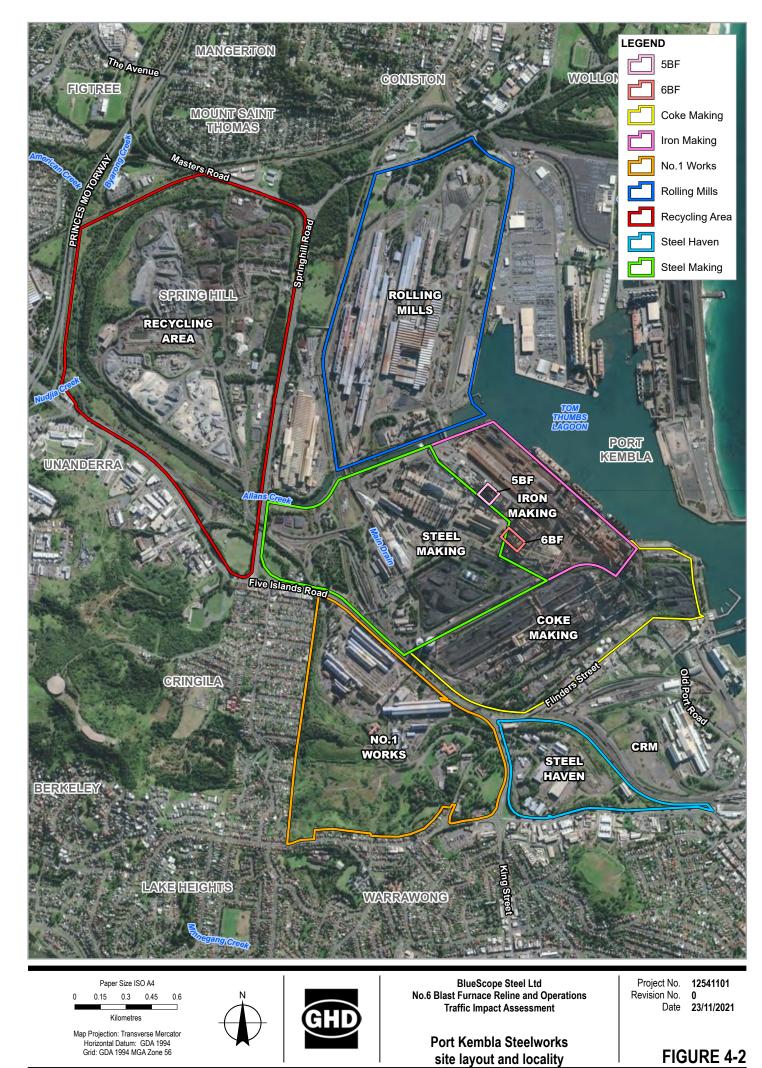
- A one-way mid-block capacity of 1,200 pc/h/lane has been adopted for arterial roads in the study area, including for Springhill Road and Five Islands Road.
- A one-way mid-block capacity of 900 pc/h/lane has been adopted for other roads in the study area, including Cringila Car Park Road, Loop Road, Emily Road, BlueScope Access Road, Flagstaff Road, and Old Port Road.

This is in keeping with the Austroads special conditions, which are reflective on the existing conditions for roads in the road network surrounding PKSW. This capacity is used to assess the Volume Capacity Ratio (VCR) of a particular road.

The VCR is a measure of the level of congestion on a road given the traffic volume and road capacity. When the VCR reaches 1, this indicates that the road is operating at 100 percent capacity.

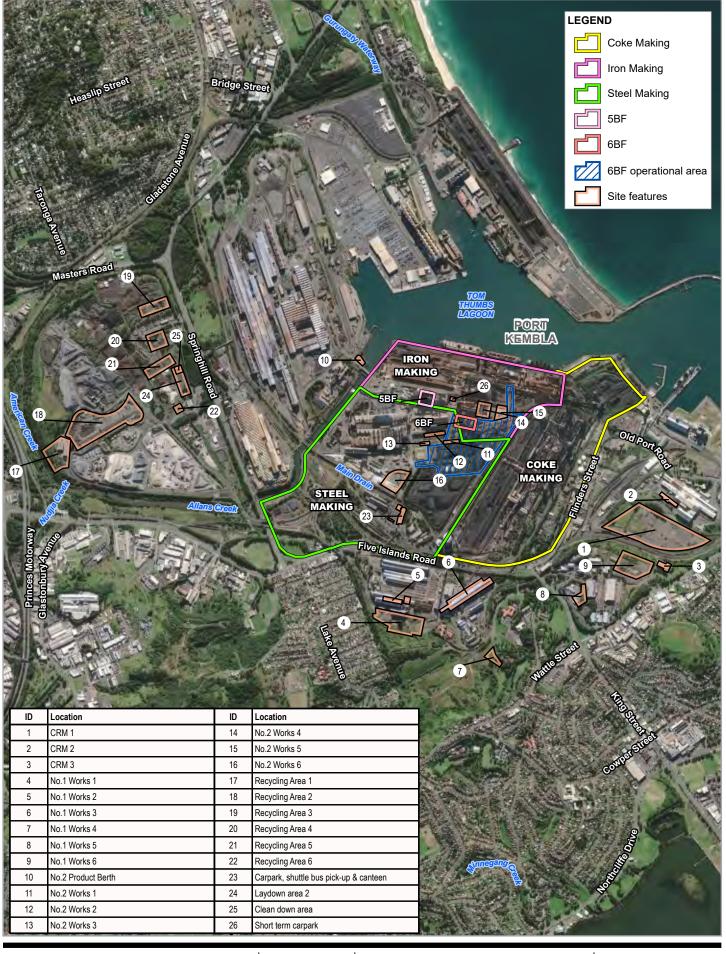

4. Existing environment

4.1 Project area


PKSW is located within an industrial site of approximately 750 hectares in the Wollongong Local Government Area (LGA), approximately 80 kilometres from Sydney and 2.5 kilometres from the City of Wollongong. Refer to Figure 4.1.

The PKSW site comprises the No.1 Works, No.2 Works, Steelhaven and the Recycling area. The No.2 Works is divided into two sections by Allans Creek. The southern half of the No.2 Works comprises the cokemaking, ironmaking and steelmaking facilities, while the northern half contains the Recycling Area and the packaging products section. All sectors of PKSW are internally linked by road and rail and are currently supplied with electricity, water and gas services.

The land to which this project applies, including all connecting infrastructure and materials handling elements that require upgrades as part of the project, is within the southern section of the No.2 Works, and part of the ironmaking facilities, which is located within Lot 1 DP 606434. Ancillary construction facilities will also be required and will be located within the wider PKSW site as shown in Figure 4.2.



G:l22l12541101\GISIMapsi12541101_TrafficImpactAssessment_0.aprx\12541101_TIA001_RegionalLocality_0 Print date: 22 Oct 2021 - 09:08 Data source: Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3, 2006. Created by: tmortor

\lghdnetlghd\AU\Newcastle\Projects\22\12541101\GIS\Maps\TrafficImpactAssessment_0.aprx\12541101_TIA002_SiteLayout_0
Print date: 23 Nov 2021 - 13:12

Data source: LPI: DCDB/DTDB, 2017. World Imagery: Maxar Created by: tmortor

Paper Size ISO A4 0 0.15 0.3 0.45 0.6 Kilometres

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Traffic Impact Assessment Project No. **12541101** Revision No. **0** Date **21/10/2021**

Key project features

G:l22l12541101\GIS\Maps\12541101_TrafficImpactAssessment_0.aprx\12541101_TIA003_KeyFeatures_0 Print date: 22 Oct 2021 - 09:08 FIGURE 4-3

4.2 Existing road network characteristics

This section provides an understanding of the existing road network surrounding the site.

4.2.1 Road hierarchy

Roads within NSW are categorised in the following two ways:

- By classification (ownership).
- By the function that they perform.

Classification and function definitions are described in the following sections.

Road classification

Roads are classified (as defined by the *Roads Act 1993*) based on their importance to the movement of people and goods within NSW (as a primary means of communication). The classification of a road allows TfNSW to exercise authority of all or part of the road. Classified roads include Main Roads, State Highways, Tourist Roads, Secondary Roads, Tollways, Freeways and Transitways.

For management purposes, TfNSW has three administrative classes of roads. These are:

- State Roads Major arterial links throughout NSW and within major urban areas. They are the principal traffic carrying roads and are fully controlled by TfNSW with maintenance fully funded by TfNSW. State Roads include all Tollways, Freeways and Transitways; and all or part of a Main Road, Tourist Road or State Highway.
- Regional Roads Roads of secondary importance between State Roads and Local Roads which, together with State Roads provide the main connections to and between smaller towns and perform a sub arterial function in major urban areas. Regional roads are the responsibility of councils for maintenance funding, though TfNSW funds some maintenance based on traffic and infrastructure. Traffic management on Regional Roads is controlled under delegation by local government. Regional Roads may be all or part of a Main Road, Secondary Road, Tourist Road or State Highway; or other roads as determined by TfNSW.
- Local Roads The remainder of roads are council-controlled roads. Local Roads are the responsibility of local councils for maintenance funding. TfNSW may fund some maintenance and improvements based on specific programs (e.g. urban bus routes, road safety programs). Traffic management on Local Roads is controlled under the delegation by local government.

Functional hierarchy

Functional road classification involves the relative balance of the mobility and access functions. TfNSW define four levels in a typical functional road hierarchy, ranking from high mobility and low accessibility, to high accessibility and low mobility. These road classes are:

- Arterial Roads generally controlled by TfNSW, typically no limit in flow and designed to carry vehicles long distances between regional centres.
- Sub-Arterial Roads can be managed by either TfNSW or local council. Typically, their operating capacity ranges between 5,000 and 20,000 vehicles per day, and their aim is to carry traffic between specific areas in a sub region, or provide connectivity from arterial road routes (regional links).
- Collector Roads provide connectivity between local roads and the arterial road network, and typically carry between 2,000 and 10,000 vehicles per day.
- Local Roads provide direct access to properties and the collector road system, and typically carry less than 2,000 vehicles per day.

A map of the key roads within the study area and their respective classifications is presented in Figure 4.5. The key roads are discussed further in the following sections.

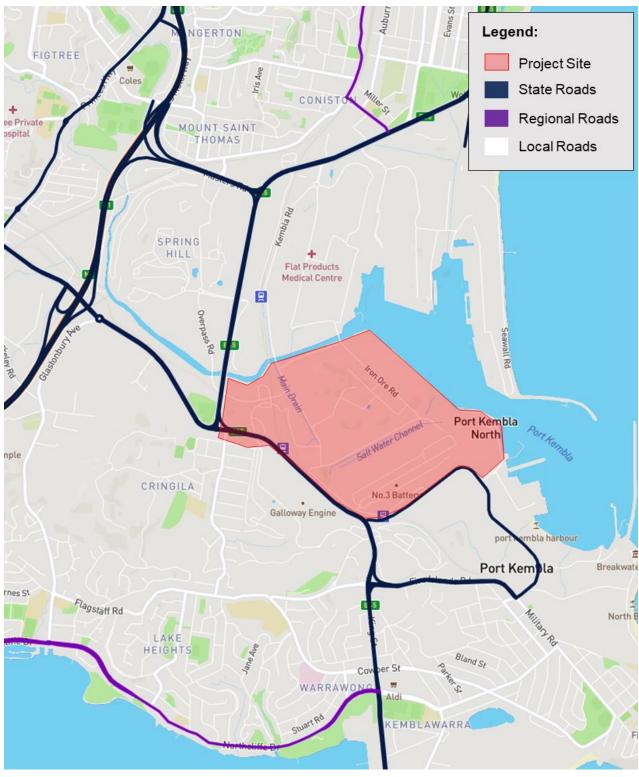


 Figure 4.4
 Road classification within study area

 Source: NSW Road Network Classifications, TfNSW, modified by GHD

4.2.2 Road characteristics

Springhill Road

Springhill Road (typical carriageway shown in Figure 4.5) is a state arterial road and forms part of the B65, which connects Wollongong Central Business District and Port Kembla. It runs in an approximately northeast to southwest alignment between Corrimal Street and the signal-controlled intersection with Masters Road. To the south of Masters Road, Springhill Road runs in an approximate north to south alignment and forms the northern approach to a signal-controlled intersection with Five Islands Road.

Springhill Road provides access to mainly industrial and port related land uses, including access roads to PKSW, which are accessed via signal-controlled intersections.

Springhill Road has the following key features outlined in Table 4.1.

 Figure 4.5
 Springhill Road, viewed westwards from BlueScope North Gate

 Image Source: Google Street View

Table 4.1Springhill Road key features

Feature	Description		
Carriageway	Sealed dual carriageway with a raised centre median, with three traffic lanes in each direction.	CONSIGN Key Map Project Site Key Road	
Parking	Parking and stopping is restricted.	understand V	
Speed Limit	80 km/h, which changes to 60 km/h to the north of Port Kembla Road.	Source: Google maps, modified by GHD	
Pedestrian Facilities	 Footpaths are available: Shared path along the southern side of the road to the east of Masters Road and along the eastern side of the road to the south of Masters Road. Along the northern side of the road between Bridge Street and Tom Thumb Road. Signal controlled pedestrian crossings are provided at all signal controlled intersections. 		
Bicycle Facilities	 Shared paths are available: Along the southern side of the road to the east of Masters Road and along the eastern side of the road to the south of Masers Road. Along the western side of the road between Boral Asphalt access and Five Islands Road. 		
Public Transport	Bus stops are located on both sides, with bus routes: 37, 51, 53, 57, 65 operating from these stops.		

Five Islands Road (B65)

Five Islands Road (typical carriageway shown in Figure 4.6) is a state road, which forms part of the B65 between Wollongong and Port Kembla. It forms a signal-controlled intersection with Springhill Road and Flinders Street and provides a connection between the Princes Motorway and Port Kembla. It provides access to the PKSW via Cringila Car Park Road, Emily Road and Flagstaff Road.

Five Islands Road has the following key features outlined in Table 4.2.

 Figure 4.6
 Five Islands Road, viewed eastwards towards Springhill Road

 Image Source: Google Street View

Table 4.2Five Islands Road key features

Feature	Description		
Carriageway	Sealed dual carriageway with a raised centre median, with three traffic lanes in each direction.	N Wey Map Project Site Key Road	
Parking	Parking and stopping are restricted throughout the alignment.		
Speed Limit	80 km/h.	SPRIAD	
Pedestrian Facilities	 Footpaths are provided on both sides of the road at the following locations: Between Springhill Road and Wattle Street. Between Spring Road and the railway line overpass. 	They are a second and a second	
Bicycle Facilities	A shared path is provided along the northern side of the road between Springhill Road and Flinders Street.	Source: Google maps, modified by GHD	
Public Transport	Cringila Station is located on the northern side of Five Islands Road. Two bus stops are located approximately 45 metres to the south of Cringila Railway Station, with bus routes 27SC, 51 and 53 operating from these bus stops.		

Cringila Car Park Road

Cringila Car Park Road (typical carriageway shown in Figure 4.7) is a 250-metre local road, providing access to PKSW from Five Islands Road. It connects Five Islands Road in the south to Loop Road in the northwest and provides access to the project site car park.

Cringila Car Park Road has the following key features outlined in Table 4.3.

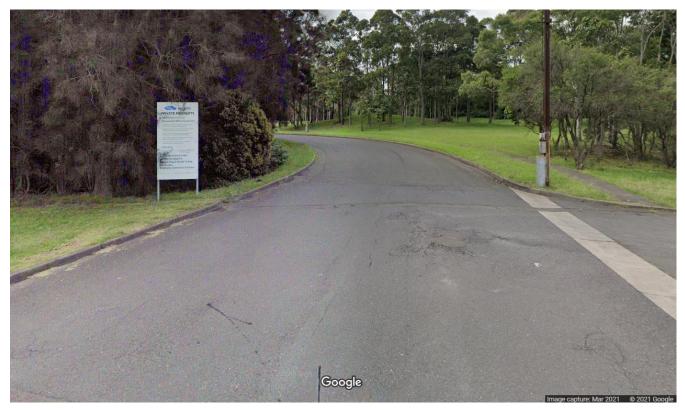


 Figure 4.7
 Cringila Car Park Road, viewed northwards towards Loop Road

 Image Source: Google Street View

Table 4.3 Cringila Car Park Road key features

Feature	Description	
Carriageway	Sealed single carriageway with one lane in each direction. Divided by a 30-metre long median at the north- western end before the intersection with Loop Road.	Normal Control
Parking	There are no restrictions for parking and stopping throughout the alignment.	the state of the s
Speed Limit	40 km/h	Manager Barrier Stranger Barrier Barri
Pedestrian Facilities	A shared path is provided along the eastern side of the road between Five Islands Road and Cringila	Company of the line of the lin
Bicycle Facilities	Car Park.	Source: Google maps, modified by GHD
Public Transport	There are no public transport facilities or services alc	ong this road.

Loop Road

Loop Road is a local private road, providing a connection between Emily Road to the south and Central Road to the northeast.

Loop Road has the following key features outlined in Table 4.4.

Feature	Description	
Carriageway	Sealed single carriageway with one lane in each direction.	Key Map Project Site
Parking	There are no restrictions for parking and stopping throughout the alignment.	Fire blands By
Speed Limit	40 km/h	Norman and Strangency of Stran
Pedestrian Facilities	A shared path is provided along the southern side of the road between Cringila Car Park and Central	A mention of the second
Bicycle Facilities	Road.	Torque gr
Public Transport	There are no public transport facilities or services along this road.	Source: Google maps, modified by GHD

Table 4.4Loop Road key features

Emily Road

Emily Road (typical carriageway shown in Figure 4.8) is a short (approximately 120 metres) split, local private road, providing access to PKSW from Five Islands Road. It has two separate one-way roads from Five Islands Road that converge into a single carriageway at around 40 metres from Emily Road.

Emily Road has the key features outlined in Table 4.5.

 Figure 4.8
 Emily Road, viewed westwards towards Loop Road

 Image Source: Google Street View

Feature	Description
Carriageway	Sealed carriageway with one lane in each direction.
Parking	No posted restrictions for parking and stopping throughout the alignment, however the available lane width prevents vehicles from parking at least 3 m away from the double barrier road centre line and would thereby encroach the through traffic movement.
Speed Limit	40 km/h speed limit.
Pedestrian Facilities	There are no pedestrian facilities available on this road.
Bicycle Facilities	There are no bicycle facilities available on this road.
Public Transport	There are no public transport facilities or services along this road.

BlueScope Access Road

BlueScope Access Road or PKS North Gate entrance (shown in Figure 4.9) is an approximately 180-metre local private road, which serves as one of the primary accesses to PKSW from Springhill Road. The BlueScope Access Road is the primary access for visitors accessing the PKSW via the BlueScope Steel Visitors Centre. It forms a signalised intersection with Springhill Road and is accessed from the northeast via a slip lane. It forms a roundabout intersection with Kembla Road, Hot Strip Road and Illawarra Road at its southern end.

BlueScope Access Road has the following key features as outlined in Table 4.6.

Figure 4.9 BlueScope Access Road, viewed	l southwards
--	--------------

Image Source: Google Street View

Feature	Description	
Carriageway	Sealed carriageway, generally divided by a single barrier line. Varying traffic lanes (two to three) are provided in each direction.	Key Map Project Site Key Road
Parking	Parking and stopping are restricted throughout the alignment. Provides access to the North Gate car park and visitor parking. Security boom gate restricts access to the wider PKSW site.	SPRING HILL Demonstration Demo
Speed Limit	50 km/h default urban speed limit.	
Pedestrian Facilities	Shared paths are provided on both sides of the road.	North CENDLE
Bicycle Facilities	There are no bicycle facilities available on this road.	Source: Cooole maps, modified by CHD
Public Transport	There are no public transport facilities available on this road.	Source: Google maps, modified by GHD

Table 4.6 BlueScope Access Road key features

Flagstaff Road

Flagstaff Road is a local road (typical carriageway shown in Figure 4.10) that runs in an approximately east-west alignment from Five Islands Road to Berkeley Road. It provides access from Five Islands Road to PKSW in the south.

Flagstaff Road has the following key features as outlined in Table 4.7.

Figure 4.10 Flagstaff Road, viewed eastwards from Five Islands Road

Image Source: Google Street View

Table 4.7	Flagstaff Road key features
-----------	-----------------------------

Feature	Description	
Carriageway	Single sealed carriageway with one lane in each direction.	ta di anticia di antic
Parking	Parking is not restricted however stopping is prohibited throughout the alignment within the PKSW premises.	Marcing Structures The Structure Statement Sta
Speed Limit	40 km/h speed limit.	Drank gr ropen ag
Pedestrian Facilities	There are no pedestrian facilities available on this road within the PKSW premises.	Manna na tana na
Bicycle Facilities	There are no bicycle facilities available on this road within the PKSW premises.	Reparts - Repart
Public Transport	There are no public transport facilities available on this road within the PKSW premises.	Source: Google maps, modified by GHD

Old Port Road

Old Port Road (shown in Figure 4.11) is classified as a state road and provides access to industrial and port related land uses within the southern part of Port Kembla. At its southern end it forms a roundabout intersection with Foreshore Road and further to the south becomes Darcy Road. At its southern end, Darcy Road forms the minor approach to a priority "Stop" controlled intersection with Five Islands Road and Military Road.

Old Port Road has the following key features as outlined in Figure 4.8.

Figure 4.11 Old Port Road, viewed southwards from Flinders Street

Image Source: Google Street View

Table 4.8 Old Port Road key features

Feature	Description	
Carriageway	Single sealed carriageway with one lane in each direction.	N Fut Products Medical Centre Fut Project Site Froject Site For Project Site For Project Site
Parking	Unrestricted parking.	Key Road
Speed Limit	60 km/h speed limit.	see to be a second to
Pedestrian Facilities	A shared path is provided along the eastern side of the road to the north of Foreshore Road.	No 4 Bast Forner
Bicycle Facilities	A shared path is provided along the eastern side of the road to the north of Foreshore Road.	North North
Public Transport	Port Kembla Station is located to the west of Old Port Road, south of the intersection with Foreshore Road.	Galorery Engine Colorery Engin
	One bus stop is located adjacent to the Port Kembla Station. Bus routes 34, 43 and 65 operate from this bus stop.	Five Mands Rd
		Source: Google maps, modified by GHD

4.3 Traffic volumes

4.3.1 Intersection traffic counts

GHD engaged Matrix Traffic and Transport Data Pty Ltd to undertake intersection traffic turning counts on Tuesday, 7 September 2021. The surveys were undertaken during the following time periods:

- Weekday AM peak (four hours): 5:00 am to 9:00 am.
- Weekday PM peak (two hours): 4:00 pm to 6:00 pm.

The intersection turning count surveys were undertaken at the following intersections:

- Cringila Car Park Road / Five Islands Road intersection (left in, left out only).
- Loop Road / Cringila Car Park Road intersection.

- Five Islands Road / Emily Road (Entry) intersection.
- Five Islands Road / Emily Road (Exit) intersection.
- Springhill Road / BlueScope Access Road signalised intersection.
- Five Islands Road / Flagstaff Road intersection (left in, left out only).

Analysis of the traffic survey data identified the following observed weekday AM and PM network peak hours:

- Weekday AM peak hour, between 7:45 am and 8:45 am.
- Weekday PM peak hour, between 4:00 pm and 5:00 pm.

A summary of the surveyed AM and PM peak hour traffic volumes for the above network peak hours is presented in Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.15 below. The full set of traffic count data is attached at Appendix A.

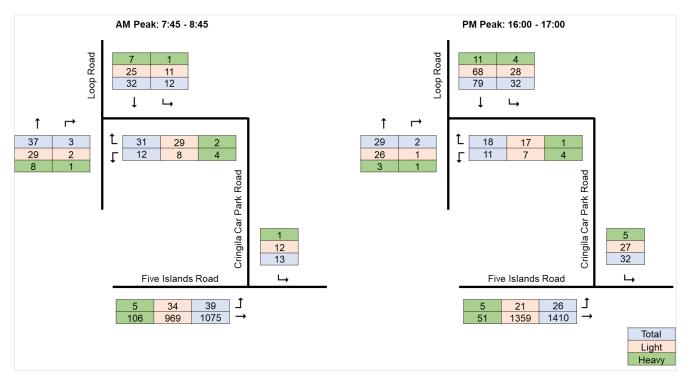


Figure 4.12 Loop Road and Cringila Car Park intersection and Five Islands Road and Cringila Car Park Road intersection traffic volume

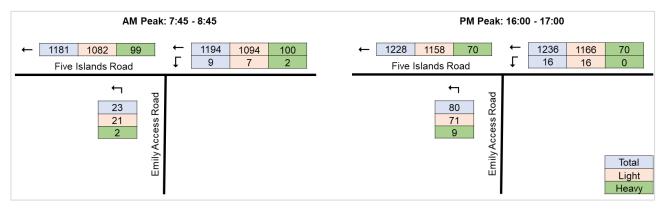


Figure 4.13 Five Islands Road and Emily Road intersections traffic volume

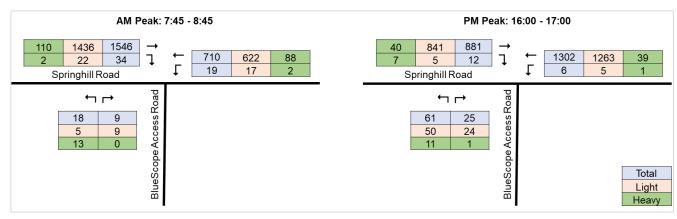


Figure 4.14 Springhill Road and BlueScope Access Road intersection traffic volume

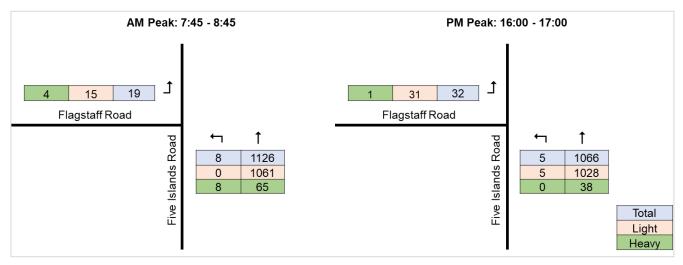


Figure 4.15 Flagstaff Road and Five Islands Road intersection traffic volume

It should be noted, however, that these traffic data do not reflect normal traffic conditions since the survey was undertaken during the lockdown period due to the COVID-19 pandemic, where only essential workers were able to travel to work. Access to the site was also restricted to one person per car. To quantify the effects of the pandemic in the road network and PKSW operations, the September 2021 traffic survey data has been compared with average gate entries / exits from the site recorded between 9 to 13 of September 2019 (using gate data provided by BlueScope) and with the traffic data from GHD's Port Kembla Gas Terminal TIA Report prepared in November 2018. Table 4.9 presents the difference between the data sets.

Location	Direction	Average 2019 Gate Entries / 2018 Traffic Survey		2021 Traffic Survey		% Difference	
		AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak
Loop Road Gate	Entry	90	39	67	71	-26%	82%
	Exit	54	145	50	106	-7%	-27%
North Gate	Entry	68	21	47	68	-31%	224%
	Exit	34	97	25	55	-26%	-43%
Five Islands Road	NB/EB	2,186	1,838	1,114	1,436	-49%	-22%
(northwest of Flinders Street)	SB/WB	1,598	2,222	1,203	1,252	-25%	-44%
Springhill Road (southwest of Port Kembla Road)	NB/WB	1,366	649	1,555	906	14%	40%
	SB/EB	547	756	729	1,308	33%	73%

Table 4.9 Traffic Data Comparison

Analysis of the 2021 surveyed traffic volumes, compared to the historical pre COVID-19 pandemic data indicates:

- The number of vehicles entering the site via Loop Road has decreased by almost 30 per cent in the AM peak and increased by around 80 per cent in the PM peak.
- The number of vehicles departing via Loop Road has decreased by almost 10 per cent in the AM peak and by around 30 per cent in the PM peak.
- The number of vehicles entering via the North Gate has decreased by almost 30 per cent in the AM Peak but increased by more than 200 per cent in the PM peak.
- The number of vehicles departing via the North Gate has decreased by almost 30 per cent in the AM Peak and around 40 per cent in the PM peak.
- The number of eastbound vehicles passing through Springhill Road (southwest of Port Kembla Road) has increased by around 15 per cent in the AM peak and around 40 per cent in the PM peak.
- The number of westbound vehicles passing through Springhill Road (southwest of Port Kembla Road) has increased by around 30 per cent in the AM peak and around 70 per cent in the PM peak.
- The number of westbound vehicles passing through Five Islands Road (northwest of Flinders Street) has also decreased by almost 50 per cent in the AM peak and around 20 per cent in the PM peak.
- The number of eastbound vehicles passing through Five Islands Road (northwest of Flinders Street) has also decreased by around 20 per cent in the AM peak and 40 per cent in the PM peak.

To reflect the pre-pandemic traffic conditions for the subsequent analysis, 2021 surveyed traffic data were factored up utilising the 2018 surveyed traffic data and 2019 gate data provided by BlueScope except for the North Gate entries during the PM peak. The 2021 traffic survey data was utilised for this location to avoid reducing the traffic demands, to provide the most conservative assessment.

4.3.2 Functional classification

The classification of roads within the existing road network can be used as an indication of the functional role each road plays with respect to the volume of traffic they should appropriately carry. TfNSW has developed a set of road hierarchy classifications detailed in Table 4.10, which indicate typical nominal average annual daily traffic (AADT) volumes for various classes of roads.

Location	Traffic Volume (veh/d*)	Peak Hour Volume (veh/h*)	
Motorway/Freeway	>15,000	>5,600	
Arterial Road	>15,000	1,500 – 5,600	
Sub-Arterial Road	5,000 - 20,000	500 – 2,000	
Collector Road	2,000 - 10,000	200 – 1,000	
Local Road	<2,000	0 – 200	

 Table 4.10
 Functional classification of roads

Source: TfNSW, Road Design Guide and AMCORD

*Note veh/d = vehicles per day, veh/h = vehicles per hour

Based upon the survey results presented above, the peak hour traffic volumes generally fall within the criteria provided in Table 4.10 for the relevant classification.

4.3.3 Mid-block capacity analysis

For the purposes of this assessment, a one-way mid-block capacity of 1,200 pc/h/lane has been adopted for the arterial roads, including Springhill Road and Five Islands Road, which is in keeping with the Austroads special conditions, which are reflective of the existing conditions. For Cringila Car Park Road, Loop Road, Emily Road, BlueScope Access Road, Flagstaff Road and Old Port Road, a one-way mid-block capacity of 900 pc/h/lane has been adopted.

Table 4.11 and Table 4.12 provide the VCR results for the existing AM and PM peak hours respectively. The following Passenger Car Units (PCU) factors have been applied to the survey, based on the PCU values provided in Table 10.1 in Roads and Maritime's *Traffic Modelling Guidelines* report (Roads and Maritime, 2013):

- Passenger car = 1.0.
- Light commercial vehicle = 1.0.
- Rigid heavy = 2.0.
- Heavy vehicles (if number of heavy articulated vehicles is unknown) = 2.5.
- Bus = 2.0.
- Articulated heavy = 4.0.

The data indicates that the key roads in the vicinity of the project are operating within the acceptable capacity for weekday morning and afternoon peak periods.

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCU)	V/C ratio
Springhill Road	Northeast of BlueScope Access Road	Eastbound	1,200	3	1,466	0.41
		Westbound	1,200	3	522	0.14
	Northwest of	Eastbound	1,200	3	1,358	0.38
	BlueScope Access Road	Westbound	1,200	3	520	0.14
BlueScope	South of	Northbound	900	2	35	0.02
Access Road	Springhill Road	Southbound	900	2	69	0.04
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	1,200	3	1,358	0.38
	Southwest of Cringila Car Park Road	Eastbound	1,200	3	1,394	0.39
	Southeast of Emily Road (Entry)	Westbound	1,200	3	1,800	0.50
	Northwest of Emily Road (Entry)	Westbound	1,200	3	1,791	0.50
	Northeast of Emily Road (Exit)	Westbound	1,200	3	1,772	0.49
	Northwest of Emily Road (Exit)	Westbound	1,200	3	1,795	0.50
	Northeast of Flagstaff Road	Northbound	1,200	3	1,708	0.47
	Southeast of Flagstaff Road	Northbound	1,200	3	1,697	0.47
Cringila Car	Southeast of	Northbound	900	1	51	0.06
Park Road	Cringila Car Park	Southbound	900	1	14	0.02
	Southwest of	Eastbound	900	1	17	0.02
	Cringila Car Park	Westbound	900	1	56	0.06

Table 4.11 Midblock volume / capacity analysis – AM peak hour

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCU)	V/C ratio
Loop Road	Northeast	Northbound	900	1	88	0.10
	of Cringila Car Park Road	Southbound	900	1	45	0.05
	Southeast	Northbound	900	1	51	0.06
of Cringila Car Park Road	Southbound	900	1	48	0.05	
Emily Road	South of Five	Northbound	900	1	23	0.03
	Islands Road	Westbound	900	1	9	0.01
Flagstaff Road	East of Five	Eastbound	900	2	19	0.01
Islar	Islands Road	Westbound	900	2	8	0.00
Old Port Road ¹	North of Darcy	Northbound	900	1	91	0.10
	Road	Southbound	900	1	87	0.10

Table 4.12 Midblock volume / capacity analysis – PM peak hour

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCU)	V/C ratio
Springhill Road	Northeast of	Eastbound	1,200	3	599	0.17
	BlueScope Access Road	Westbound	1,200	3	397	0.11
	Northwest of	Eastbound	1,200	3	541	0.15
	BlueScope Access Road	Westbound	1,200	3	442	0.12
BlueScope	South of	Northbound	900	2	84	0.05
Access Road	Springhill Road	Southbound	900	2	18	0.01
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	1,200	3	2,016	0.56
	Southwest of Cringila Car Park Road	Eastbound	1,200	3	1,979	0.55
	Southeast of Emily Road (Entry)	Westbound	1,200	3	1,499	0.42
	Northwest of Emily Road (Entry)	Westbound	1,200	3	1,483	0.41
	Northeast of Emily Road (Exit)	Westbound	1,200	3	1,474	0.41
	Northwest of Emily Road (Exit)	Westbound	1,200	3	1,554	0.43
	Northeast of Flagstaff Road	Northbound	1,200	3	1,311	0.36
	Southeast of Flagstaff Road	Northbound	1,200	3	1,284	0.36

¹ Based on the traffic data from Port Kembla Gas Terminal Traffic Impact Assessment Report prepared by GHD in 2018

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCU)	V/C ratio
Cringila Car	Southeast of	Northbound	900	1	5	0.01
Park Road	Cringila Car Park	Southbound	900	1	42	0.05
	Southwest of	Eastbound	900	1	44	0.05
	Cringila Car Park	Westbound	900	1	6	0.01
Loop Road	op Road Northeast of Cringila Car Park Road	Northbound	900	1	9	0.01
		Southbound	900	1	121	0.13
	Southeast of Cringila Car Park Road	Northbound	900	1	8	0.01
		Southbound	900	1	81	0.09
Emily Road	South of Five	Northbound	900	1	80	0.09
	Islands Road	Westbound	900	1	16	0.02
Flagstaff Road	East of Five	Eastbound	900	2	32	0.02
	Islands Road	Westbound	900	2	5	0.00
Old Port Road ²	North of Darcy	Northbound	900	1	96	0.11
	Road	Southbound	900	1	127	0.14

4.3.4 Historical traffic growth trends

Traffic count data from the TfNSW Traffic Volumes Viewer website was used to determine historical traffic growth trends for roads within the study area.

A summary of the historical average weekday traffic volumes at Five Islands Road, east of Springhill Road (TfNSW Count Station ID: 07097) is shown in Table 4.13. The historical traffic count data indicates that there has been a decline in traffic volume in the order of some ten per cent in this location between 2014 to 2018.

45,472

5	-	, ,			
Direction	2014	2015	2016	2017	2018
Northbound	22,366	22,190	22,620	23,185	22,998
Southbound	22,815	23,009	22,852	17,776	17,625

 Table 4.13
 Average weekday traffic volumes (24 hours) – Five Islands Road, east of Springhill Road

45,199

Source: TfNSW Traffic Volume Viewer website

Total

4.4 Safety - crash data review

45,181

Road crash information from 2015 to 2019 in the following locations was collected from road crash statistics published by NSW Centre for Road Safety:

- Five Islands Road within approximately 100 metres from Emily Roads (both directions), as shown in Figure 4.16.
- Five Islands Road within approximately 100 metres from Flagstaff Road (both directions), as shown in Figure 4.17.
- Springhill Road within approximately 100 metres from BlueScope Access Road (both directions), as shown in Figure 4.18.

40,961

40,623

² Based on the traffic data from Port Kembla Gas Terminal Traffic Impact Assessment Report prepared by GHD in 2018

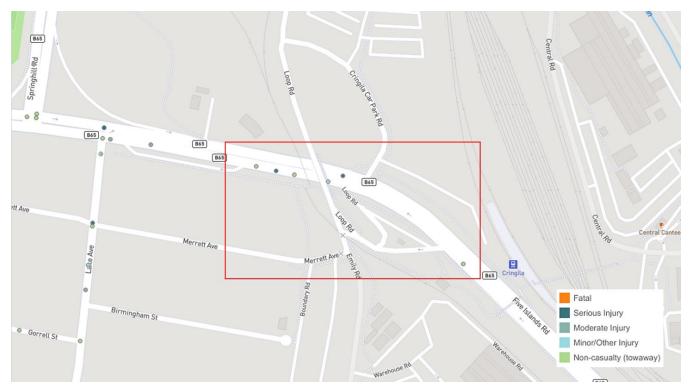


 Figure 4.16
 Crash locations (2015-2019) – Five Islands Road within approximately 100 metres from Emily Road

 Source: Transport for NSW Centre for Road Safety modified by GHD

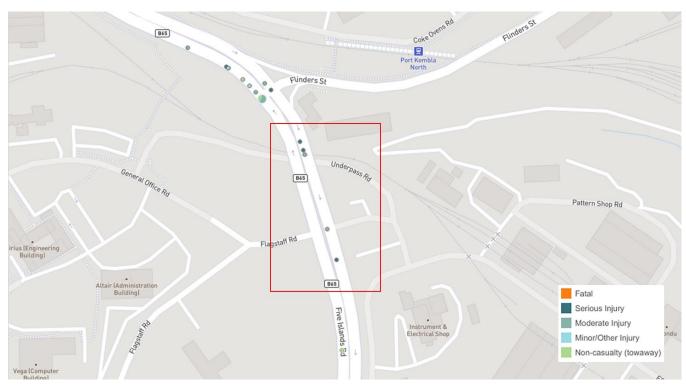


 Figure 4.17
 Crash locations (2015-2019) – Five Islands Road within approximately 100 metres from Flagstaff Road

 Source: Transport for NSW Centre for Road Safety modified by GHD

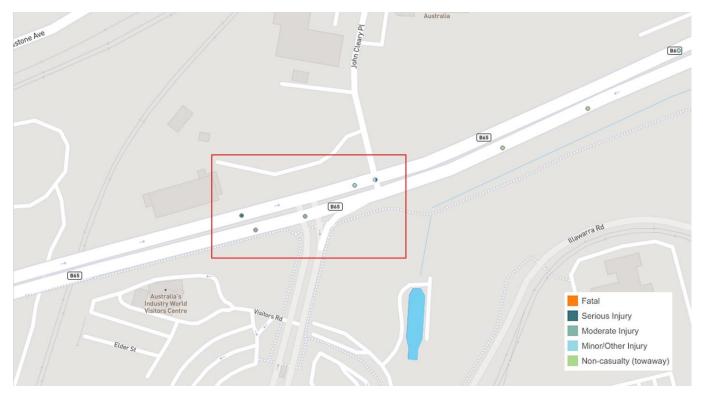


Figure 4.18 Crash locations (2015-2019) – Springhill Road within approximately 100 metres from BlueScope Access Road Source: Transport for NSW Centre for Road Safety modified by GHD

From 2015 to 2019, 6 crashes were recorded near Five Islands Road and Emily Roads intersections, five crashes were recorded near Five Islands Road and Flagstaff intersection, and seven crashes were recorded near Springhill Road and BlueScope Access Road intersection. A summary of these crashes is presented in Table 4.14.

Table 4.14	Number of recorded crashes by road section (2015-2019)
	Number of recorded crushes by road section (2010-2013)

Location	Number of	Number of Injuries			
	Crashes	Fatal	Serious	Moderate	Minor
Five Islands Road within approximately 100 metres from Emily Road	6	0	2	0	1
Five Islands Road within approximately 100 metres from Flagstaff Road	5	0	3	2	0
Springhill Road within approximately 100 metres from BlueScope Access Road	7	0	2	3	2
Total	18	0	7	5	3

The predominant crash types are:

- Rear-end collisions and collisions with parked vehicles during daytime hours.
- Collisions with objects and parked vehicles on left and right hand bends at night.

These could be attributed to the reduced sight distance around the bends (when compared to straight alignment) or poor driver behaviour such as speeding and tailgating, among others.

4.5 Public and active transport

Active transport collectively refers to pedestrian traffic and commuter or recreational bicycle traffic. In reviewing the site and its accessibility to public transport opportunities, reference was made to the *NSW Planning Guidelines for Walking and Cycling (2004)*. This document outlines a recommended walkable distance of 400 metres to 800 metres to public transport and other local amenities or a 1.5 km bicycle riding distance.

Details of the accessibility to public transport, walking and bicycle riding access is provided in the following sections.

4.5.1 Train services and bus services

The closest stations to the project site are Cringila Station and Port Kembla North Station. These stations are served by the South Coast Line.

The nearest train stations and bus stops from the project site are shown in Figure 4.19. The bus routes and frequencies are presented in Table 4.15.

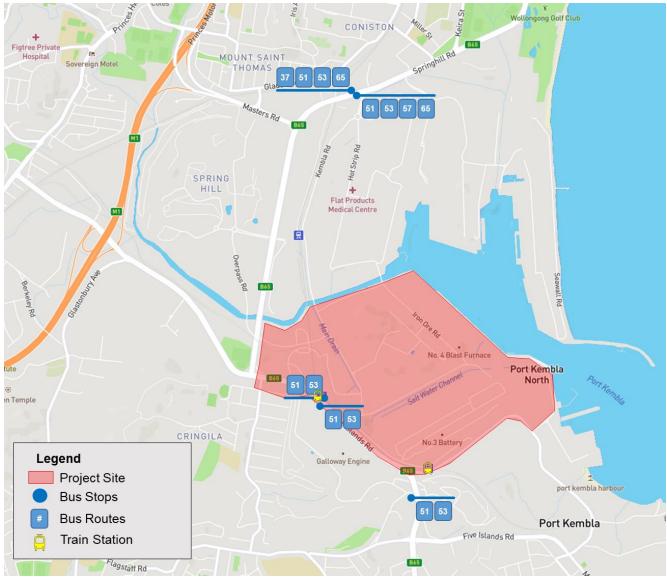


Figure 4.19 Train stations and bus stops locations

Source: Google Maps (2021), modified by GHD

Table 4.15	Bus services
------------	--------------

Bus Number	Route	Day	Frequency
37	Wollongong to Shellharbour via Dapto	Weekday	1 service per hour
	(Loop Service)	Saturday	1 service per hour
		Sunday and public holidays	1 service every 2 hours
51	Oak Flats to Wollongong via Stockland	Weekday	1 service per hour
	Shellharbour	Saturday	1 service per hour
		Sunday and public holidays	1 service every 2 hours
53	Shellharbour to Wollongong	Weekday	1 service per hour
		Saturday:	1 service per hour
		Sunday and public holidays	1 service per hour
57	Wollongong to Shellharbour via	Weekday	1 service per hour
	Warrawong (Loop Service)	Saturday	1 service per hour
		Sunday and public holidays	1 service every 2 hours
65	North Wollongong to Port Kembla (Loop	Weekday	1 service per hour
	Service)	Saturday	1 service per hour
		Sunday and public holidays	1 service every 2 hours

4.5.2 Walking and cycling

Active transport facilities in proximity to the project site are limited to footpaths / shared paths along Springhill Road, Five Islands Road, Cringila Car Park Road, Old Port Road, and BlueScope Access Road. The off-road bicycle (shared path) routes in the vicinity of the site, including along Springhill Road, Five Islands Road and Old Port Road, are presented in Figure 4.20. There are neither pedestrian nor bicycle facilities along Emily Road and Flagstaff Road within the PKSW premises.

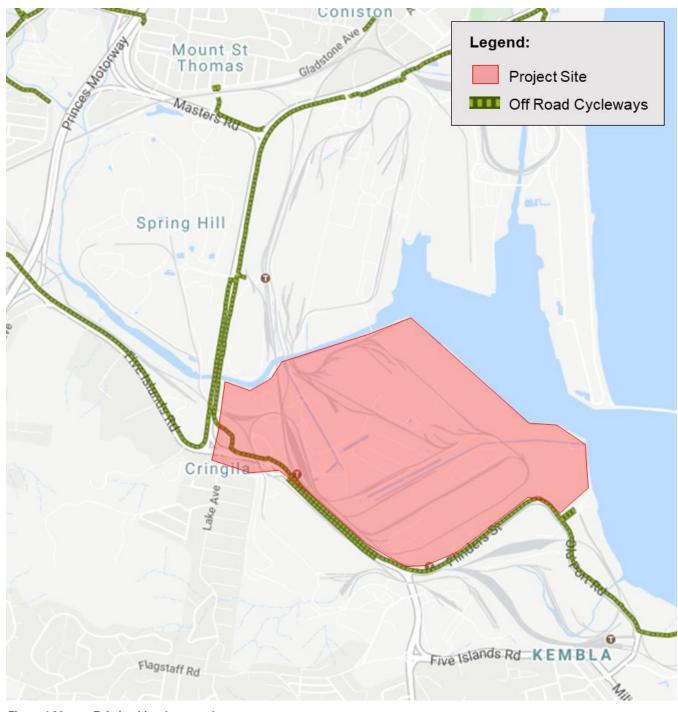


 Figure 4.20
 Existing bicycle network

 TfNSW Cycleway Finder (2021), modified by GHD

5. Construction activities

Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.

Construction activities will indicatively involve the following tasks:

- Removal of the remaining burden materials.
- Removal of the iron skull.
- Removal of worn carbon block refractories in the hearth.
- Removal of worn refractories in the remainder of the vessel.
- Demolition of other equipment including:
 - Cooling staves which protect the blast furnace shell.
 - Hot blast main refractory lining where required, including the expansion joints.
 - Clarifier tank and associated equipment where required.
- Repairs to the blast furnace shell where required.
- Installation of a new clarifier tank and associated equipment.
- Installation of the new hearth, sidewall refractories and staves.
- Repair / replacement of tuyeres, tapholes and instrumentation.
- Repair, maintenance and/or upgrade of ancillary equipment including:
 - Furnace cooling systems.
 - Hot blast system including the stoves, with the addition of stove waste gas heat recovery (WGHR) system.
 - Gas system, with addition of a top gas recovery turbine (TRT).
 - Furnace top, including the charging equipment, bleeder valves and outrigger crane.
 - Casthouse floors and associated equipment.
 - Stockhouse (raw materials feed system).
 - Rail works (product delivery system).
 - Automation and power systems.
 - Services.
- Installation of a new slag granulation system.
- Shutdown and make-safe of 5BF.
- Commissioning and ramp up of 6BF operations.

5.1 Construction program

A summary of the construction staging and duration for each of the construction activities is provided in Table 5.1.

 Table 5.1
 Construction staging

Stage	Activities	Approximate Duration
1	 Procurement of long-lead time items (hearth, refractories, staves) initiated. Progress with refurbishment activities that do not require long-lead items. Early works commences for enabling activities. Includes cranes, lifts, casthouse roof replacement, drainage, construction facilities. 	24 to 30 months
2	 Construction phase 1 activities including demolition, civils, stockhouse, slag handling, hot blast system, gas system, cooling system, wreck out of furnace, furnace top. Control system and automation upgrade. 	24 months
3	 Initiated with twelve months advance notice of end of 5BF operations. Construction phase 2 activities including relining of furnace. Complete in parallel with latter stages of phase 1 depending on timing of 5BF shutdown. Pre-commissioning and commissioning of 6BF 	12 months
4	 Managed transition of operations from 5BF to 6BF with ramp-down of 5BF followed by ramp-up production of 6BF. 5BF decommissioned and made safe on ceasing operation. 	1 month

5.2 Workforce

5.2.1 Workforce

The 6BF reline methodology allows reline activities to be completed in a measured way requiring a smaller construction workforce when compared to a 5BF multi-month reline outage.

Labour requirements for the 6BF reline model will be modest and will be mostly satisfied by local contractors. Across the duration of the project, a workforce of approximately 250 full time equivalent (FTE) workers will be required. As outlined in Section 5.4 a conservative number of 300 light vehicles accessing the site has been assumed in this assessment. If 6BF is required online earlier than 2026 for strategic, operational or safety reasons, this workforce size may be increased to complete the work in a reduced timeframe. The required increase in the workforce would be dependent on the timeframe required to complete the remaining works, however, this may result in a maximum of up to 1,000 workers being required, equivalent to what might be needed during a traditional reline.

During operation, it is anticipated that workforce requirements will not change significantly from existing operations with the 5BF workforce of approximately 105 to 110 FTE workers transferring to 6BF once operational.

5.2.2 Working hours

Authorisation for 24-hour construction is being sought as part of the request for planning approval.

Where practical, and subject to the final construction timetable, construction will be carried out during the following construction hours:

- Monday to Friday: 7.00 am to 6.00 pm.
- Saturday: 7.00 am to 6.00 pm.
- Sundays and public holidays: no work.

However, there will be a number of construction activities scheduled to be undertaken as night works to manage interaction with the remainder of the PKSW operations and the higher day-shift workforce.

Where practical, noise generating activities with the potential to impact any nearby receivers will be scheduled during standard hours.

Final installation of components inside the blast furnace and other residual construction activities will require 24hour construction (estimated to be a period of five months). Further, 24-hour construction may be required for an extended period to speed up the completion of construction if 6BF is required online earlier than 2026.

During the 6BF commissioning period, each of the separate sub-systems of the furnace will be trial run and tested for safe operation. There will be no concurrent ironmaking operation of both 5BF and 6BF.

5.3 Construction equipment

Much of the equipment and materials required for the project has a long lead time for procurement. Specific types and quantities of equipment will be determined during project planning. An indicative list of the plant and equipment expected to be used during construction is provided in Table 5.2. Equipment will be sourced from onsite and also brought to site by contractors as required. Larger equipment will require heavy vehicle transportation.

Construction equipment			
Excavators ranging from 5t to 40t	Bobcats (skid steer loaders)	Water blasters	Rail tamper
Cranes of various capacity ranging from 15t to 800t	Rock breaker	Grit blasters	Various brick saws and mixers
Dump trucks	Explosives equipment	Semi-trailers	Material hoists and winches
Front end loaders	Air compressors	Abbey hoists	Refractory gunning machine
Telescopic boom excavator	Diesel welders	Forklifts	Temporary stove burners, fuel pipe and fans.
Liquids tankers	Welding Machines	Sykes pumps	Alimak passenger and goods lifts
Tear-Out machine	Temporary conveyors	Temporary Oxygen, Acetylene, LPG, Argon, Nitrogen welding and cutting gases	Scaffolding
Boom and scissor lifts	Vacuum loading (suck) trucks	Concrete mixers	Concrete pumps
Fuel trucks	Flat Bed Trucks	Road Rollers	Piling Rigs
Concrete Saw	Plate compactors	-	-

Table 5.2 Indicative construction equipment

5.4 Traffic generation

The construction of the project is expected to generate:

- Approximately 300 light vehicles per day, comprising of contractors and construction personnel vehicles, which will result in 600 light vehicle movements per day (300 arrivals and 300 departures). These vehicles are expected to arrive between 5:00 am to 6:00 am and depart between 4:00 pm to 6:00 pm.
 - It is estimated that around ninety to ninety-five percent of the expected light vehicle movements would be directed to park in the central car park via Cringila Car Park Access Road. Some contractors and visitors may also use this access to the car park, where they will then be transported via minibus through the gate at Loop Road.
 - The remaining five percent of light vehicle movements are assumed to enter and exit via the North Gate.

- Up to 50 buses per day resulting in 100 bus movements per day via Cringila Car Park Road. These buses will be used to transport workers within PKSW premises e.g. from central car park to construction site and vice versa. Potential bus pick-up and drop-off points are presented in Figure 5.1. It should be noted, however, that only the pick-up and drop-off point at central car park has an existing lay-by. It is therefore recommended to provide temporary bus stop facilities and implement appropriate traffic controls at these locations.
- Between 50 and 100 trucks per day (depending upon the phase of construction works), resulting in between 100 and 200 truck movements per day.

This traffic generation is considered to be low and within the daily fluctuation in traffic at roads in the surrounding road network. The construction activities are therefore expected to have negligible traffic impacts.

As noted in Section 5.2.1, should the operation life of 5BF end sooner than currently planned then an increase from 300 to a maximum of 1000 staff per day may be required. Should this occur, these staff would change from a single day shift to 24 hour construction. This would spread the increased number of worker movements across a 24 hour period. Therefore, the assessment of 300 light vehicle movements assessed in Section 6.1 are considered representative of worst case peak hour movements.

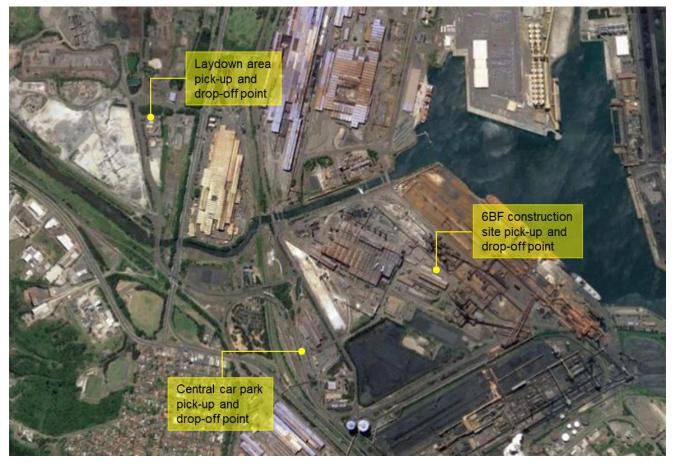


Figure 5.1 Indicative pick-up and drop-off points

Based on conservative estimates, the expected peak traffic generation for the construction activities is summarised in Table 5.3.

Table 5.3Traffic generation – two-way traffic

	Daily traffic generation (vehicles)	Peak Hour traffic generation (vehicles)
Light vehicles	600	300
Heavy vehicles	300	30
Total	900	330

5.5 Construction vehicle access routes

Three typical construction traffic access routes have been considered for the purpose of this assessment. These include the following routes and are shown in Figure 5.2:

- Route 1: access to laydown area via Cringila Car Park Road. Vehicles to depart at Emily Road / Five Islands Road intersection.
- Route 2: access to laydown area via Flagstaff Road and Five Islands Road intersection.
- Route 3: access to laydown area and construction site via Flinders Street, Stockpile Road and Old Port Road.

A summary of these routes is provided in Table 5.4.

Internal roads that will be used for access to laydown areas and construction site are shown in Figure 5.3

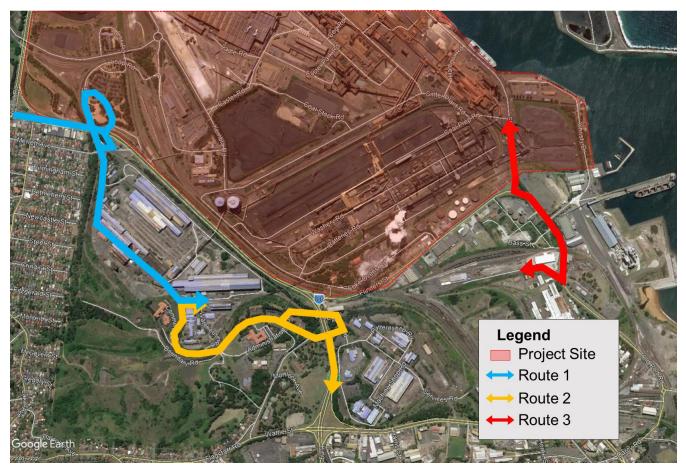
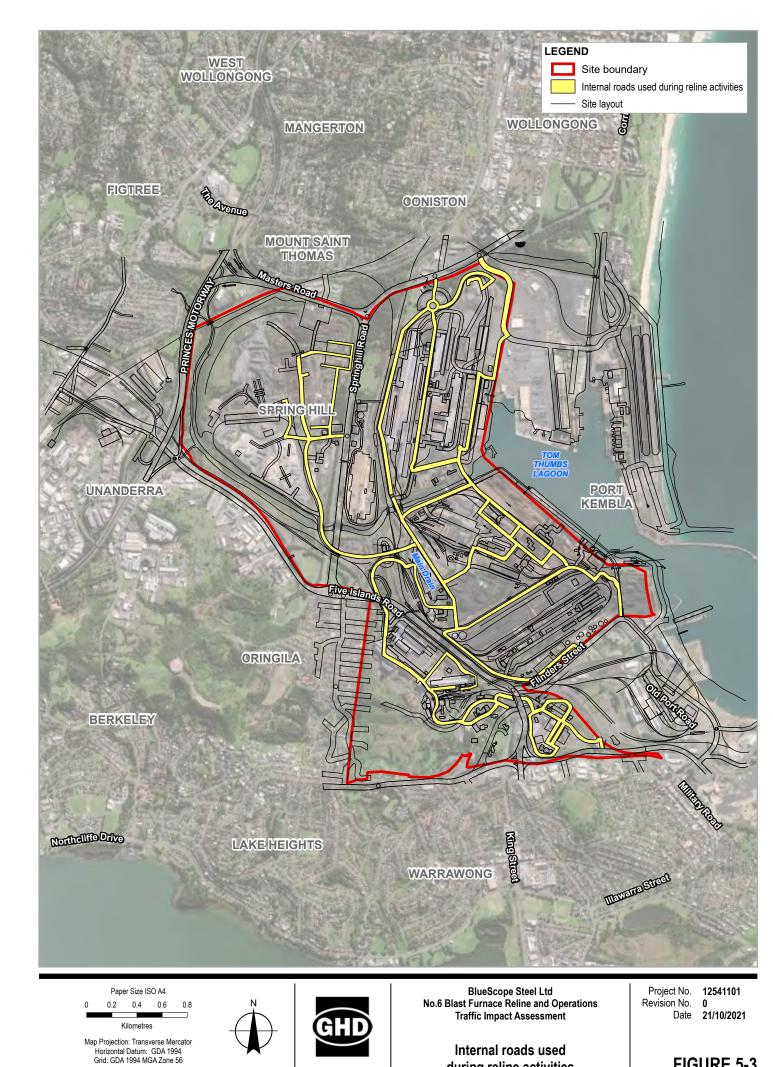



 Figure 5.2
 Construction Traffic Routes

 Source: Google maps (2021), modified by GHD

 Table 5.4
 Construction access routes to each construction site

Route ID	From	То	Route		Assumptions			
1A	Wollongong	PKSW project site	PKSW project site Princes Motorway (SB)		 Trips on Princes Motorway 			
			Five Islands Ro	oad (EB)	assumed to be split 50/5070% of HV trips generated			
			Cringila Car Pa	ark Road (NB)	 70% of 95% of LV trips 			
			Loop Road (SE	3)	generated			
			Emily Road (SI	3)				
1B	PKSW project site	Wollongong	Emily Road (N	B)	 Trips on Princes Motorway assumed to be split 50/50 			
			Emily Road (N	В)	 – 70% of HV trips generated 			
			Five Islands Ro	oad (WB)	 70% of 95% of LV trips 			
			Princes Motorv	vay (NB)	generated			
2A	Port Kembla	PKSW project site	Five Islands Road (NB)		- 30% of HV trips generated			
			Flagstaff Road (WB)		 – 30% of 95% of LV trips generated 			
			General Office Road (WB)					
			Emily Road (N	B)				
2B	PKSW project site Port Kem	Port Kembla	Port Kembla	Emily Road (SB)		Emily Road (SB)		 30% of HV trips generated
			General Office Road (EB)		 30% of 95% of LV trips generated 			
			Underpass Road (EB)	Flagstaff Road (EB)	5			
			Five Islands Road (SB)	Five Islands Road (NB)				
3	PKSW project site	Other PKSW locations	Old Port Road		 Along Old Port Road 			
4	PKSW project site	Other PKSW locations	Internal PKSW	roads only	 Internal only 			

G:l22l12541101\GIS\Maps\12541101_TrafficImpactAssessment_0.aprx\12541101_TIA004_InternaiRoad_0 Print date: 22 Oct 2021 - 17:56

FIGURE 5-3 during reline activities ce: BlueScope: Internal roads layout, 2021. LPI: DCDB/DTDB, 2017. World Imagery: Maxar. Created by: tmorton

6. Traffic impact assessment

This section outlines the traffic implications during the construction and operation of the project.

6.1 Construction impacts

6.1.1 Traffic impacts

Based on the traffic generation and traffic distributions outlined in Sections 5.4 and 5.5, the following sections summarise the expected increase in daily and peak hour traffic during peak construction activities. This peak construction period is expected to occur at the same time for a period of up to three years.

Daily traffic construction traffic

The expected increase in daily traffic associated with the peak construction activity for the project is summarised in Table 6.1 and the expected increase in peak hour traffic is summarised in Table 6.2.

It should be noted that peak hour traffic generation is associated with light vehicle movements during shift changeover periods. Light vehicle movements during other times of the day are expected to be minimal. Outside of shift change over hours, the construction of the project would result in an increase of around 30 two-way heavy vehicle movements per hour.

Road	Location	Direction	Light vehicles	Heavy vehicles	Total vehicles
Springhill Road	Northeast of	Eastbound	0	40	40
	BlueScope Access Road	Westbound	4	0	4
	Northwest of	Eastbound	11	0	11
	BlueScope Access Road	Westbound	11	0	11
BlueScope Access	South of Springhill	Northbound	15	0	15
Road	Road	Southbound	15	0	15
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	0	0	0
	Southwest of Cringila Car Park Road	Eastbound	200	110	310
	Southeast of Emily Road (Entry)	Westbound	0	0	0
	Northwest of Emily Road (Entry)	Westbound	0	0	0
	Northeast of Emily Road (Exit)	Westbound	0	0	0
	Northwest of Emily Road (Exit)	Westbound	200	110	310
	Northeast of Flagstaff Road	Northbound	0	0	0
	Southeast of Flagstaff Road	Northbound	170	80	250

 Table 6.1
 Increase in construction traffic generation – daily traffic

Road	Location	Direction	Light vehicles	Heavy vehicles	Total vehicles
Cringila Car Park	Southeast of Cringila	Northbound	200	110	310
Road	Car Park	Southbound	0	0	0
	Southwest of	Eastbound	200	110	310
	Cringila Car Park	Westbound	0	0	0
Loop Road	Northeast of Cringila	Northbound	285	0	285
	Car Park Road	Southbound	285	0	285
	Southeast of Cringila	Northbound	85	0	85
	Car Park Road	Southbound	285	110	395
Emily Road	South of Five Islands	Northbound	200	110	310
	Road	Westbound	0	0	0
Flagstaff Road	East of Five Islands	Eastbound	170	80	250
	Road	Westbound	0	0	0
Old Port Road	North of Darcy Road	Northbound	0	150	150
		Southbound	0	150	150

Table 6.2

Peak hour (AM and PM) construction traffic generation on the surrounding road network

Road	Location	Direction	Light vehicles	Heavy vehicles	Total vehicles
Springhill Road	Northeast of	Eastbound	0	4	4
	BlueScope Access Road	Westbound	4	0	4
	Northwest of	Eastbound	11	0	11
	BlueScope Access Road	Westbound	11	0	11
BlueScope Access	South of Springhill	Northbound	15	0	15
Road	Road	Southbound	15	0	15
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	0	0	0
	Southwest of Cringila Car Park Road	Eastbound	200	11	211
	Southeast of Emily Road (Entry)	Westbound	0	0	0
	Northwest of Emily Road (Entry)	Westbound	0	0	0
	Northeast of Emily Road (Exit)	Westbound	0	0	0
	Northwest of Emily Road (Exit)	Westbound	200	11	211
	Northeast of Flagstaff Road	Northbound	0	0	0
	Southeast of Flagstaff Road	Northbound	170	8	178

Road	Location	Direction	Light vehicles	Heavy vehicles	Total vehicles
Cringila Car Park	Southeast of Cringila	Northbound	200	11	211
Road	Car Park	Southbound	0	0	0
	Southwest of	Eastbound	200	11	211
	Cringila Car Park	Westbound	0	0	0
Loop Road	Northeast of Cringila	Northbound	285	0	285
	Car Park Road	Southbound	285	0	285
	Southeast of Cringila	Northbound	85	0	85
	Car Park Road	Southbound	285	11	296
Emily Road	South of Five Islands	Northbound	200	11	211
	Road	Westbound	0	0	0
Flagstaff Road	East of Five Islands	Eastbound	170	8	178
	Road	Westbound	0	0	0
Old Port Road	North of Darcy Road	Northbound	0	15	15
		Southbound	0	15	15

Midblock assessment

For a highly conservative midblock assessment of the proposal, the peak hour construction traffic movements have been added to the observed road network AM and PM peak hour traffic volumes. However, it should be noted that during the AM peak, the network peak hour was observed to be between 7:45 am and 8:45 am although the construction traffic peak hour is expected to be between 5:00 am and 6:00 am.

Additionally, the PM peak for staff light vehicle movements is expected to occur over a two hour period, with light vehicles departing the site between 4:00 pm to 6:00 pm. However, for a conservative assessment, it has been assumed that all staff would depart during the network peak hour.

Table 6.3 and Table 6.4 provide the VCR results for the AM and PM peak hours respectively for the peak construction period. As stated above, this is a highly conservative assessment, given that the peak hours for the construction traffic generation would not occur during the surrounding road network peak hours.

The data indicates that the majority of key roads in the vicinity of the project are expected to operate well within the acceptable capacity for weekday morning and afternoon peak periods.

Impacts to the M1 Princes Motorway are expected to be minimal given that this is a state Highway that caters for high traffic volumes.

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCUs)	V/C ratio
Springhill Road	Northeast of BlueScope Access Road	Eastbound	1,200	3	1,466	0.41
		Westbound	1,200	3	626	0.17
	Northwest of BlueScope Access Road	Eastbound	1,200	3	1,544	0.43
		Westbound	1,200	3	638	0.18
BlueScope	South of Springhill Road	Northbound	900	2	60	0.03
Access Road		Southbound	900	2	126	0.07

Table 6.3 Peak construction midblock volume / capacity – AM peak hour

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCUs)	V/C ratio
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	1,200	3	1,558	0.43
	Southwest of Cringila Car Park Road	Eastbound	1,200	3	2,058	0.57
	Southeast of Emily Road (Entry)	Westbound	1,200	3	2,028	0.56
	Northwest of Emily Road (Entry)	Westbound	1,200	3	2,016	0.56
	Northeast of Emily Road (Exit)	Westbound	1,200	3	1,994	0.55
	Northwest of Emily Road (Exit)	Westbound	1,200	3	2,020	0.56
	Northeast of Flagstaff Road	Northbound	1,200	3	1,860	0.52
	Southeast of Flagstaff Road	Northbound	1,200	3	2,045	0.57
Cringila Car Park	Southeast of Cringila Car Park	Northbound	900	1	515	0.57
Road		Southbound	900	1	16	0.02
	Southwest of Cringila Car Park	Eastbound	900	1	247	0.27
		Westbound	900	1	295	0.33
Loop Road	Northeast of Cringila Car Park Road	Northbound	900	1	678	0.75
		Southbound	900	1	57	0.06
	Southeast of Cringila Car Park Road	Northbound	900	1	239	0.27
		Southbound	900	1	121	0.13
Emily Road	South of Five Islands Road	Northbound	900	1	26	0.03
		Westbound	900	1	12	0.01
Flagstaff Road	East of Five Islands Road	Eastbound	900	2	120	0.07
		Westbound	900	2	115	0.06
Old Port Road	North of Darcy Road	Northbound	900	1	129	0.14
		Southbound	900	1	125	0.14

*veh = vehicles, hr = hour, PCU = passenger car units, V/C = volume to capacity ratio

Note, PCU factors = 1 for light vehicles, 2 for heavy vehicles (or 2.5 if the number of B-Doubles is unknown) and 4 for B-Doubles

 Table 6.4
 Peak construction midblock volume / capacity analysis – PM peak hour

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCUs)	V/C ratio
Springhill Road	Northeast of BlueScope	Eastbound	1,200	3	613	0.17
	Access Road	Westbound	1,200	3	416	0.12
	Northwest of BlueScope	Eastbound	1,200	3	587	0.16
	Access Road	Westbound	1,200	3	496	0.14
BlueScope Access	South of Springhill Road	Northbound	900	2	130	0.07
Road		Southbound	900	2	30	0.02
Five Islands Road	Southeast of Cringila Car Park Road	Eastbound	1,200	3	2,132	0.59
	Southwest of Cringila Car Park Road	Eastbound	1,200	3	2,088	0.58
	Southeast of Emily Road (Entry)	Westbound	1,200	3	1,625	0.45

Road	Location	Direction	Capacity (veh/hr/lane)	Number of lanes	Total vehicles (PCUs)	V/C ratio
	Northwest of Emily Road (Entry)	Westbound	1,200	3	1,609	0.45
	Northeast of Emily Road (Exit)	Westbound	1,200	3	1,600	0.44
	Northwest of Emily Road (Exit)	Westbound	1,200	3	2,148	0.60
	Northeast of Flagstaff Road	Northbound	1,200	3	1,381	0.38
	Southeast of Flagstaff Road	Northbound	1,200	3	1,448	0.40
Cringila Car Park Road	Southeast of Cringila Car Park	Northbound	900	1	7	0.01
		Southbound	900	1	51	0.06
	Southwest of Cringila Car Park	Eastbound	900	1	54	0.06
		Westbound	900	1	7	0.01
Loop Road	Northeast of Cringila Car Park	Northbound	900	1	11	0.01
	Road	Southbound	900	1	715	0.79
	Southeast of Cringila Car Park	Northbound	900	1	11	0.01
	Road	Southbound	900	1	669	0.74
Emily Road	South of Five Islands Road	Northbound	900	1	549	0.61
		Westbound	900	1	16	0.02
Flagstaff Road	East of Five Islands Road	Eastbound	900	2	214	0.12
		Westbound	900	2	5	0.00
Old Port Road	North of Darcy Road	Northbound	900	1	134	0.15
		Southbound	900	1	165	0.18

*veh = vehicles, hr = hour, PCU = passenger car units, V/C = volume to capacity ratio

Note, PCU factors = 1 for light vehicles, 2 for heavy vehicles (or 2.5 if the number of B-Doubles is unknown) and 4 for B-Doubles

6.1.2 Intersection performance

The following key intersections within the study area have been assessed using the SIDRA 8 intersection modelling software, as these intersections provide access to the project site:

- Cringila Car Park Road / Five Islands Road intersection (left in, left out only).
- Loop Road / Cringila Car Park Road intersection.
- Five Islands Road / Emily Road (Entry) intersection.
- Five Islands Road / Emily Road (Exit) intersection.
- Springhill Road / BlueScope Road signalised intersection.
- Five Islands Road / Flagstaff Road intersection (left in, left out only).

The intersection traffic modelling has been undertaken for the following weekday peak hour periods, to coincide with the construction traffic generation peak hours for the project, which is associated with the shift changeover periods:

- AM peak between 7:45 am and 8:45 am.
- PM peak between 4:00 pm and 5:00 pm.

Construction traffic generated by the project outside of these periods would be minor, with an increase of around 30 two-way heavy vehicle movements per hour on the surrounding road network.

A summary of the SIDRA intersection modelling results for the "without construction traffic" scenario and the "with construction traffic" scenario is provided in Table 6.5 and Table 6.6. The intersection modelling indicates that the construction traffic would have minor impacts to the operation of these intersections, which would continue to operate with a satisfactory Level of Service (LoS) under the peak construction traffic scenario for the project. Outputs from the SIDRA intersection modelling are provided in full in Appendix B.

Intersection		AM Peak	(7:45 am – 8:4	45 am)	F	PM Peak	(4:00 pm – 5:0	00 pm)
	Average Delay (s)	LoS	Control Type	Degree of Saturation	Average Delay (s)	LoS	Control Type	Degree of Saturation
Cringila Car Park Road / Five Islands Road	9.8	A	Stop	0.016	13.0	A	Stop	0.075
Loop Road / Cringila Car Park Road	5.2	A	Give way/Yield	0.029	5.6	A	Give way/Yield	0.005
Five Islands Road / Emily Road (Entry)	5.9	A	Give way/Yield	0.330	5.6	A	Give way/Yield	0.270
Five Islands Road / Emily Road (Exit)	6.7	A	Give way/Yield	0.028	6.1	A	Give way/Yield	0.087
Springhill Road / BlueScope Access Road	23.8	В	Signal	0.797	22.3	В	Signal	0.591
Five Islands Road / Flagstaff Road intersection	10.7	A	Give way/Yield	0.020	7.8	A	Give way/Yield	0.022

 Table 6.5
 SIDRA modelling results – 2021 surveyed traffic volumes (without construction traffic)

*Note - LoS = Level of Service

 Table 6.6
 SIDRA modelling results – During construction (with construction traffic)

Intersection	, I	AM Peak	(7:45 am – 8:4	5 am)	PM Peak (4:00 pm – 5:00 pm)			
	Average Delay (s)	LoS	Control Type	Degree of Saturation	Average Delay (s)	LoS	Control Type	Degree of Saturation
Cringila Car Park Road / Five Islands Road	8.9	A	Stop	0.013	12.6	A	Stop	0.069
Loop Road / Cringila Car Park Road	6.3	A	Give way/Yield	0.072	7.8	A	Give way/Yield	0.014
Five Islands Road / Emily Road (Entry)	5.9	A	Give way/Yield	0.330	5.6	A	Give way/Yield	0.270
Five Islands Road / Emily Road (Exit)	6.7	A	Give way/Yield	0.028	6.7	A	Give way/Yield	0.307
Springhill Road / BlueScope Access Road	23.9	В	Signal	0.797	22.3	В	Signal	0.591
Five Islands Road / Flagstaff Road intersection	10.1	A	Give way/Yield	0.019	7.8	A	Give way/Yield	0.228

*Note - LoS = Level of Service

6.1.3 Heavy vehicle approved routes

PKSW can be accessed by the following heavy vehicle routes approved for use by vehicles up to 26m B-double equivalent:

- Springhill Road.
- Five Islands Road.
- Flinders Street.
- Old Port Road.
- Masters Road (via Springhill Road).
- Princes Motorway (via Five Islands Road or Masters Road).

It is likely that certain specialist plant, equipment or materials may require the use of oversize or overmass (OSOM) vehicles. Where required OSOM permits would be obtained from TfNSW and licenced haulage contractors engaged to manage OSOM movements.

6.1.4 Car parking

Onsite parking at the central car park, with approximately 570 parking spaces, will be available for the expected project workforce. Personnel are expected to park at the central car park, accessed via Loop Road and will be bused to and from the construction site. In addition, the PKSW also has a range of other locations for formal and informal overflow parking should the need arise. Where possible, contractors would be encouraged to shuttle teams from their offsite premises to the PKSW, for example through the use of minibuses. This would reduce the number of onsite light vehicle parking spaces required. No on-street car parking is proposed to be utilised as part of the project so there would be no impacts to offsite on street parking availability to the public.

6.1.5 Public transport

The proposed construction arrangements would not impact train or bus services operating in the vicinity of the construction sites. The additional traffic generated by the construction activities is also expected to have minimal impacts to public transport services.

6.1.6 Transport infrastructure

New transport infrastructure proposed as part of the project is limited to upgrading pavement around the slag handling area. Traffic in this area is limited to internal traffic only and is not open to the public. Pavement types proposed including details of relevant Australian Standards and TfNSW standards used as a basis for design are outlined in Appendix C. No other upgrades to any transport related infrastructure are proposed as part of the project.

6.1.7 Active transport - Pedestrians and bicycle riders

The proposed construction arrangements are not expected to impact pedestrian or bicycle facilities. The additional traffic generated by the construction activities is expected to have minimal impacts to pedestrians and bicycle riders.

6.1.8 Safe Intersection Sight Distance (SISD) analysis

Austroads Guide to Road Design Part 4A: Unsignalised and Signalised Intersections identifies a minimum safe intersection sight distance of 170 metres is required for the construction traffic connection to Five Islands Road via Emily Road which has a posted speed of 80 km/h as presented in Table 6.7.

Table 6.7 Safe intersection sight distance (SISD) and corresponding minimum crest vertical curve size for sealed roads (S<L)

Route ID	Based on approach sight distance for cars ³ $h_1 = 1.1$, $h_2 = 0$, $d = 0.36^4$; Observation time = 3 sec								
	R⊤ = 1.5 sec⁵		R _T = 2.0 sec		R⊤ = 2.5 sec				
	SISD (m)	К	SISD (m)	K	SISD (m)	К			
40	67	4.9	73	6	-	-			
50	90	8.6	97	10	-	-			
60	114	14	123	16	-	-			
70	141	22	151	25	-	-			
80	170	31	181	35	-	-			
90	201	43	214	49	226	55			
100	234	59	248	66	262	74			
110	-	-	285	87	300	97			
120	-	-	324	112	341	124			
130	-	-	365	143	383	157			

Source: Austroads Guide to Road Design Part 4A: Unsignalised and Signalised Intersections

Notes:

K is the length of vertical curve for a 1% change in grade.

To determine SISD for trucks around horizontal curves, use Equation 2 with an observation time of 2.5 sec.

Main Roads Western Australia have adopted a desirable minimum reaction time of 2.5 sec and an absolute minimum reaction time of 2.0 sec. A reaction time of 1.5 sec is not to be used in Western Australia.

Combinations of design speed and reaction times not shown in this table are generally not used.

Based on the crash data review in Section 4.4, a rear-end collision within the vicinity of the intersection has been reported resulting to a minor injury which can be attributed to the reduced sight distance.

³ If the average grade over the braking length is not zero, calculate the approach sight distance (ASD) values using the

correction factors in Table 3.4 (or use Equation 1) by applying the average grade over the braking length. ⁴ A coefficient of deceleration of greater than 0.36 is not provided in this table. The provision of SISD requires more conservative values than for other sight distance models (e.g. the stopping sight distance model allows values up to 0.46 in constrained situations). This is because there is a much higher likelihood of colliding with hazards at intersections (that is, other vehicles). Comparatively, there is a relatively low risk of hitting a small object on the road (the stopping sight distance model).

⁵ A 1.5 sec reaction time is only to be used in constrained situations where drivers will be alert. Typical situations are given in Table 5.2 of AGRD Part 3. The general minimum reaction time is 2 sec.

Figure 6.1 Approach Sight Distance from Five Islands Road

Source: Google Maps

As shown in Figure 6.1, the approach sight distance to the Emily Road access / Five Islands Road intersection is considered acceptable, based on the distance measured through Google Maps. Figure 6.2 shows that the view could potentially be obstructed by an existing tree and the existing grade.

In order to verify the site distance, a site visit was undertaken in September 2021 to observe this potential site restriction and assess if the required SISD is achieved. This confirmed that a minimum of 170 metres SISD is achieved at the Emily Road access / Five Islands Road intersection, as shown at Figure 6.1, which meets the Austroads requirements.

Figure 6.2 Emily Road viewed form Five Islands Road

Source: Google Street View

Figure 6.3Emily Road viewed form Five Islands Road (site visit)Source: GHD weekday PM peak site inspection, September 2021

6.1.9 Rail

Construction activities will have no impact on the ongoing operation of freight or passenger rail networks.

6.2 Operational impacts

6.2.1 Traffic impacts

Regular operations of the site will resume after the construction period. Therefore, the operational peak hour traffic is expected to be lower than the peak hour traffic associated with the construction activities. The operation of the project traffic is therefore expected to have minimal traffic impacts in regard to intersection performance or midblock capacity to the surrounding road network.

6.2.2 Car parking

Once 6BF is operational, personnel are expected to park at designated car parks within PKSW in a similar manner as they currently do for the operation of 5BF. As such, there is expected to be minimal impacts to on-street car parking in the study area.

6.2.3 Public transport

The operation of the project would not impact train or bus services operating in the vicinity of the construction sites. The additional traffic generated by the operation of the project is expected to have minimal impacts to public transport services.

6.2.4 Pedestrians and bicycle riders

The operation of the project would not impact pedestrian or bicycle facilities. The traffic movements associated with the project are expected to have minimal impacts to pedestrians and bicycle riders.

7. Recommendations

7.1 Construction Traffic Management Plan

A Construction Traffic Management Plan (CTMP) will need to be prepared prior to the commencement of works to maintain the safety of all workers and road users within the vicinity of the site. The primary objectives of the CTMP would be:

- To minimise the impact of construction vehicle traffic on the overall operation of the road network.
- To provide continuous, safe, and efficient movement of traffic for both the general public and construction workers.
- Installation of appropriate advance warning signs to inform users of any changed traffic condition or provide directions to contractors not familiar with the site.
- To provide a description of the construction vehicles and the volume of these construction vehicles accessing the construction site.
- To provide information regarding the changed access arrangement and a description of the proposed external routes for vehicles, including the construction vehicles, accessing the site.
- Establishment of a safe pedestrian environment in the vicinity of the site.

All staff and subcontractors engaged on site should be required to undergo site induction. The induction will outline the requirements of the CTMP, including site access routes, environmental and occupational health and safety responsibilities, emergency procedures, potential carpooling opportunities and vehicle height restriction under the power lines, among others. Additionally, the Site Manager will discuss CTMP requirements regularly as a part of "toolbox talks".

7.2 Traffic management measures

The following are the recommended measures that should be in place prior to the commencement of and during the execution of the construction period:

- Key stakeholders, including owners/operators of adjacent lands and emergency service providers, should be notified of any changes to the traffic management arrangements prior to the commencement of works.
- Truck drivers should be directed to follow the predetermined haulage routes as described in Section 5.5.
- The construction site access layout will be reviewed during design development to consider the turn path required for the construction vehicles.
- No parking of light or heavy vehicles on the public road network.
- Any workers required to undertake works or traffic control shall be suitably trained and hold the required accreditation to carry out works on site and will also be site inducted.
- Provide protection to workers and road users through advanced warning of construction works, speed changes, safety barriers with adequate offsets and deflection allowance, where necessary.
- Site access should be restricted to authorised personnel only and existing employees on site. Pedestrian
 access to and around the site is to be maintained at all times.
- Roadwork speed zones must be logical, credible, and enforceable. They should only be used where they are self-enforcing or will be enforced. They should be used with other traffic control signs and devices and should not be used in place of more effective traffic controls. They should also be used only while road works are in progress or the lower speed road conditions exist.
- A Transport Access Guide (TAG) should be prepared to identify alternate travel options for visitors and staff to
 encourage sustainable transport and reduce parking demand. The TAG summarises alternate transport
 options to access the development, outlining where and how these services can be accessed and the
 frequency of the service. This could include but is not limited to:
 - Public transport locations (bus and train connection).
 - Active transport (cycle / walking) opportunities.

- Bicycle infrastructure facilities.
- Carpooling between workers (subject to COVID-19 safe practices).
- The following environmental requirements should be adhered to:
 - All vehicles transporting loose materials will have the entire load covered and/or secured to prevent any large items, excess dust or debris depositing onto the roadway during travel to and from the site, including but not limited to construction rumble strips/wheels wash at the site egress location.
 - The lead contractors will monitor the roads leading to and from the site and take all necessary steps to rectify any road deposits caused by site vehicles, to maintain the safety of all road users.
 - Vehicles operating to, from and within the site shall do so in a manner, which does not create unreasonable or unnecessary noise or vibration.
 - Public roads and access points will not be obstructed by any materials, vehicles, refuse skips or the like, under any circumstances.

8. Conclusion

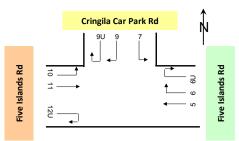
8.1 Overview

The purpose of this TIA is to document the results of the assessment of potential traffic impacts during the construction and operation of the project and includes the following scope:

- Review of the existing road and transport conditions, traffic volumes and crash data.
- Review of the construction works of the project and its access arrangements.
- Assessment of the potential impacts of the proposed construction works and the performance of the intersections during construction.
- Determine suitable mitigation measures to minimise impacts.

8.2 Key findings

The key findings of this TIA are summarised as:


- Analysis of the traffic survey conducted by Matrix Traffic and Transport Data Pty Ltd to Tuesday, 7 September 2021 identified the weekday morning traffic peak hour occurs between 7:45 am to 8:45 am and weekday afternoon traffic hour occurs between 4:00 pm to 6:00 pm.
- The construction of the project is expected to generate approximately 600 light vehicle movements, 100 bus movements, and 200 truck movements per day over a three-year period.
- The construction site for the project will be accessed primarily via Cringila Car Park Road in the northwest and via Flagstaff Road in the southeast.
- Train and bus services are available in proximity to the project site and workers should be encouraged to use such alternate transport options in addition to carpooling (subject to COVID-19 safe practices).
- Active transport facilities in proximity to the project site are limited to footpaths/shared paths along Springhill Road, Five Islands Road, Cringila Car Park Road, Old Port Road and BlueScope Access Road.
- A review of five-years of crash statistics identified that the predominant crash types are rear-end collisions and collisions with parked vehicles at daytime and off-carriageway left on right bend into objects and parked vehicles at night. These could be attributed to the reduced sight distance around bends (when compared to straight alignment) or poor driver behaviour such as speeding and tailgating.
- The current traffic data indicates that the majority of key roads in the vicinity of the project are expected to
 operate within the acceptable capacity for weekday morning and afternoon peak periods.
- The SIDRA 8 intersection modelling indicates that the construction traffic would have minor impacts on the
 operation of the intersections within the study area. These intersections would continue to operate with a
 satisfactory LoS under the peak construction traffic scenario for the project.
- Regular operations will resume after construction. Hence, the operational peak hour traffic is lower than the peak hour traffic associated with the construction activities. The operations are therefore expected to have minimal traffic impacts on the surrounding road network.
- The construction and operation of the project will not impact on-street parking and public and active transport movements.

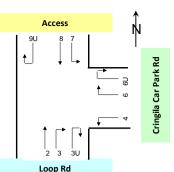
8.3 Final conclusion

Based on the assumptions and investigations undertaken by GHD and the conclusions drawn in this TIA, it is considered that the proposed project will not have an adverse impact on the road system, subject to the recommended mitigation measures being applied.

Appendix A Traffic Survey Data

: AUNSW1595		
: GHD Pty Ltd		
<mark>: Port Kembla</mark>		
: 1. Five Island	s Rd / Cringila (Car Park Rd
: Tue, 7th Sept	: 2021	
: Fine		
: Classified Inte	ersection Count	t
: 15 mins Data		
Class 1	Class 2	
Lights	Heavies	
	: GHD Pty Ltd : Port Kembla : 1. Five Island : Tue, 7th Sept : Fine : Classified Int : 15 mins Data Class 1	: GHD Pty Ltd : Port Kembla : 1. Five Islands Rd / Cringila (: Tue, 7th Sept 2021 : Fine : Classified Intersection Coun : 15 mins Data Class 1 Class 2

Approach				Five Isla	ands Rd	l				
Direction			irection Through			Direction Right Tur			rection 6 (U Turn)	
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
5:00 to 5:15				0			0			0
5:15 to 5:30				0			0			0
5:30 to 5:45				0			0		******	0
5:45 to 6:00				0			0			0
6:00 to 6:15				0			0			0
6:15 to 6:30				0			0			0
6:30 to 6:45				0			0			0
6:45 to 7:00				0			0			0
7:00 to 7:15				0			0			0
7:15 to 7:30				0			0			0
7:30 to 7:45				0			0			0
7:45 to 8:00				0			0			0
8:00 to 8:15				0			0			0
8:15 to 8:30				0			0			0
8:30 to 8:45				0			0			0
8:45 to 9:00				0			0			0
AM Totals		0	0	0	0	0	0	0	0	0
16:00 to 16:15				0			0			0
16:15 to 16:30				0			0			0
16:30 to 16:45				0			0			0
16:45 to 17:00				0			0			0
17:00 to 17:15				0			0			0
17:15 to 17:30				0			0			0
17:30 to 17:45				0			0			0
17:45 to 18:00				0			0			0
PM Totals		0	0	0	0	0	0	0	0	0

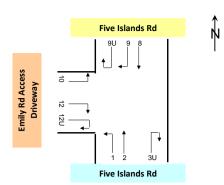

Approach				Cringila Ca	ar Park	Rd										Five Isla	ands Rd			
Direction		Direction Left Turr				Direction Right Tur			rection 9 (U Turn)	ÐU		irection : Left Turr	-		irection 1 Through				ection 1 (U Turn)	-
Time Period	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
5:00 to 5:15	4	0	4				0	0	0	0	8	0	8	41	9	50				0
5:15 to 5:30	3	0	3				0	0	0	0	23	0	23	76	6	82				0
5:30 to 5:45	6	0	6				0	0	0	0	44	2	46	103	6	109				0
5:45 to 6:00	2	0	2				0	0	0	0	44	0	44	127	8	135				0
6:00 to 6:15	6	0	6				0	0	0	0	30	1	31	116	9	125				0
6:15 to 6:30	5	1	6				0	0	0	0	32	2	34	153	11	164				0
6:30 to 6:45	2	0	2				0	0	0	0	43	2	45	286	24	310				0
6:45 to 7:00	3	0	3				0	0	0	0	33	0	33	280	20	300				0
7:00 to 7:15	4	0	4				0	0	0	0	26	3	29	183	29	212				0
7:15 to 7:30	1	0	1				0	0	0	0	19	1	20	187	29	216				0
7:30 to 7:45	1	0	1				0	0	0	0	20	2	22	222	30	252				0
7:45 to 8:00	0	0	0				0	0	0	0	11	1	12	250	22	272				0
8:00 to 8:15	1	0	1				0	0	0	0	11	2	13	219	30	249				0
8:15 to 8:30	5	1	6				0	0	0	0	7	2	9	252	27	279				0
8:30 to 8:45	6	0	6				0	0	0	0	5	0	5	248	27	275				0
8:45 to 9:00	1	1	2				0	0	0	0	7	1	8	246	32	278				0
AM Totals	50	3	53		0	0	0	0	0	0	363	19	382	2,989	319	3,308		0	0	0
16:00 to 16:15	8	0	8				0	0	0	0	5	4	9	366	13	379				0
16:15 to 16:30	4	0	4				0	0	0	0	4	1	5	341	16	357				0

15 to 1		4	0	4				U	0	0	0	4	1	5	341	16	357
16:30 to 1	.6:45	6	0	6				0	0	0	0	4	0	4	337	13	350
16:45 to 1	7:00	9	5	14				0	0	0	0	8	0	8	315	9	324
17:00 to 1	7:15	12	0	12				0	0	0	0	7	0	7	280	15	295
17:15 to 1	7:30	7	1	8				0	0	0	0	12	0	12	303	7	310
17:30 to 1	7:45	8	2	10				0	0	0	0	12	0	12	222	11	233
17:45 to 1	8:00	5	1	6				0	0	0	0	15	0	15	191	15	206
PM Total	s	59	9	68		0	0	0	0	0	0	67	5	72	2,355	99	2,454

Job No.	: AUNSW1595
Client	: GHD Pty Ltd
Suburb	: Port Kembla
Location	: 2. Loop Rd / Cringila Car Park Rd
Day/Date	: Tue, 7th Sept 2021
Weather	: Fine
Description	: Classified Intersection Count
	: 15 mins Data
	Class 1 Class 2

	: 15 mins Data														Loc	p Rd				
	Class 1 Cla	ss 2																		
Classifications		avies																		
			1																	
Approach				Loo	o Rd									Cring	ila Car Park	Rd				
Direction			irection Through			irection Right Tur			rection ((U Turn))irection Left Turr				Direction Right Tur			irection 6 (U Turn)	
	-					-	.,		-				.,				,		· ·	
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total
5:00 to 5:15		12	1	13	0	0	0	0	0	0	3	0	3		6	0	6	0	0	0
5:15 to 5:30		14	0	14	2	0	2	0	0	0	3	0	3		21	0	21	0	0	0
5:30 to 5:45		30	2	32	6	0	6	0	0	0	8	0	8		32	2	34	0	0	0
5:45 to 6:00	-	22	0	22	6	0	6	0	0	0	6	0	6		29	0	29	2	0	2
6:00 to 6:15	-	25	3	28	1	1	2	0	0	0	4	0	4		27	2	29	0	0	0
6:15 to 6:30	-	36	4	40	0	0	0	0	0	0	7	1	8		30	1	31	0	0	0
6:30 to 6:45		34	1	35	6	0	6	0	0	0	7	0	7		36	1	37	0	0	0
6:45 to 7:00	-	34	10	44	1	0	1	0	0	0	9	0	9		26	1	27	0	0	0
7:00 to 7:15	-	31	7	38	1	0	1	0	0	0	6	0	6		20	2	22	0	0	0
7:15 to 7:30	-	37	15	52	1	0	1	0	0	0	4	0	4		15	2	17	0	0	0
7:30 to 7:45		13	4	17	2	0	2	0	0	0	5	0	5		14	2	16	0	0	0
7:45 to 8:00	-	13	2	15	1	0	1	0	0	0	4	0	4		8	1	9	0	0	0
8:00 to 8:15		5	2	7	0	1	1	0	0	0	1	2	3		13	1	14	0	0	0
8:15 to 8:30		4	2	6 9	0	0	0	0	0	0	2	2	4		5	0	5	0	0	0
8:30 to 8:45 8:45 to 9:00		11	5	16	1	0	1	0	0	0 0	1 0	0	1 0		<u>6</u>	0	3	0	0	0
AM Totals	-	328	60	388	29	2	31	0	0	0	70	5	75		291	16	307	2	0	2
16:00 to 16:15		9	3	12	0	0	0	0	0	0	2	3	5		3	10	4	0	0	0
16:15 to 16:30		7	0	7	0	0	0	0	0	0	0	1	1		4	0	4	0	0	0
16:30 to 16:45		7	0	7	0	0	0	0	0	0	1	0	1		3	0	3	0	0	0
16:45 to 17:00		3	0	3	1	1	2	0	0	0	4	0	4		7	0	7	0	0	0
17:00 to 17:15		5	4	9	0	0	0	0	0	0	5	0	5		5	1	6	0	0	0
17:15 to 17:30		8	2	10	1	1	2	0	0	0	2	0	2		11	0	11	0	0	0
17:30 to 17:45		7	1	8	2	0	2	0	0	0	2	0	2		11	0	11	0	0	0
17:45 to 18:00		9	0	9	1	0	1	0	0	0	3	0	3		7	0	7	0	0	0
PM Totals		55	10	65	5	2	7	0	0	0	19	4	23		51	2	53	0	0	0

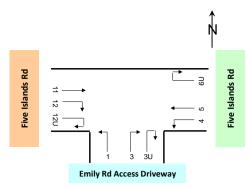
Approach						Ace			
Direction		Direction Left Turi			irection Through		D	rection (U Turn	
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
5:00 to 5:15	3	0	3	12	0	12	0	0	0
5:15 to 5:30	2	0	2	8	0	8	0	0	0
5:30 to 5:45	4	0	4	3	0	3	0	0	0
5:45 to 6:00	1	0	1	9	0	9	0	0	0
6:00 to 6:15	3	0	3	7	0	7	0	0	0
6:15 to 6:30	2	1	3	6	2	8	0	0	0
6:30 to 6:45	1	0	1	6	2	8	0	0	0
6:45 to 7:00	5	0	5	7	1	8	0	0	0
7:00 to 7:15	3	0	3	2	1	3	0	0	0
7:15 to 7:30	0	0	0	3	2	5	0	0	0
7:30 to 7:45	2	0	2	4	0	4	0	0	0
7:45 to 8:00	1	0	1	1	0	1	0	0	0
8:00 to 8:15	2	0	2	5	3	8	0	0	0
8:15 to 8:30	5	1	6	12	2	14	0	0	0
8:30 to 8:45	3	0	3	7	2	9	0	0	0
8:45 to 9:00	1	1	2	10	4	14	0	0	0
AM Totals	38	3	41	102	19	121	0	0	0
16:00 to 16:15	9	0	9	29	4	33	0	0	0
16:15 to 16:30	4	0	4	8	0	8	0	0	0



16:1	5	to	16:30	4	0	4	8	0	8
16:3	0	to	16:45	6	1	7	9	3	12
16:4	5	to	17:00	9	3	12	22	4	26
17:0	0	to	17:15	9	0	9	24	0	24
17:1	5	to	17:30	5	0	5	15	1	16
17:3	0	to	17:45	7	3	10	14	2	16
17:4	5	to	18:00	5	0	 5	23	2	25
F	PM.	Tot	als	54	7	61	144	16	160

Job No.	: AUNSW1595
Client	: GHD Pty Ltd
Suburb	: Port Kembla
Location	: 3. Five Islands Rd / Emily Rd Access Driveway
Day/Date	: Tue, 7th Sept 2021
Weather	: Fine
Description	: Classified Intersection Count
	: 15 mins Data
	Class 1 Class 2

Classifications Lights Heavies

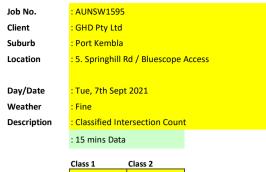


Approach						Five Isla				
Direction		Direction Left Turr			irection Through			I	irection (U Turn	
		r			-	-		ts	-	
Time Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Light	Heavies	Total
5:00 to 5:15	9	0	9	104	13	117				0
5:15 to 5:30	11	0	11	137	15	152				0
5:30 to 5:45	26	0	26	180	16	196				0
5:45 to 6:00	17	0	17	159	21	180				0
6:00 to 6:15	18	2	20	181	14	195				0
6:15 to 6:30	30	0	30	233	13	246				0
6:30 to 6:45	26	1	27	314	23	337				0
6:45 to 7:00	19	4	23	254	26	280				0
7:00 to 7:15	8	4	12	219	26	245				0
7:15 to 7:30	7	5	12	257	25	282				0
7:30 to 7:45	3	1	4	246	23	269		nononononononono		0
7:45 to 8:00	4	0	4	296	32	328				0
8:00 to 8:15	1	0	1	263	21	284				0
8:15 to 8:30	1	1	2	253	19	272				0
8:30 to 8:45	1	1	2	282	28	310		hanahahahahahahaha		0
8:45 to 9:00	8	1	9	245	35	280	**********			0
AM Totals	189	20	209	3,623	350	3,973	0	0	0	0
16:00 to 16:15	9	0	9	345	19	364				0
16:15 to 16:30	1	0	1	253	20	273				0
16:30 to 16:45	4	0	4	272	14	286				0
16:45 to 17:00	2	0	2	296	17	313				0
17:00 to 17:15	1	0	1	290	15	305	***************************************	******		0
17:15 to 17:30	7	0	7	250	8	258				0
17:30 to 17:45	6	1	7	227	11	238				0
17:45 to 18:00	5	0	5	226	9	235				0
PM Totals	35	1	36	2,159	113	2,272	0	0	0	0

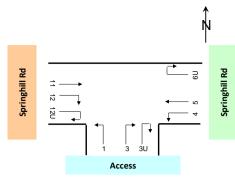
Approach				Five Isla	ands Rd									Emily Rd A	ccess Driv	veway				
Direction			irection Through			irection light Tur			rection 9 (U Turn)			irection : Left Turr				irection Right Tur			rection 1 (U Turn)	
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	
5:00 to 5:15				0			0			0	0	0	0				0			-
5:15 to 5:30				0			0			0	0	0	0				0			
5:30 to 5:45				0		****	0			0	0	0	0		****		0			
5:45 to 6:00				0			0			0	0	0	0				0			Ĩ
6:00 to 6:15				0			0			0	0	0	0				0			Ĩ
6:15 to 6:30				0	******		0	*****		0	0	0	0				0			Ĭ
6:30 to 6:45				0			0			0	0	0	0				0			
6:45 to 7:00				0			0			0	0	0	0				0			ĺ
7:00 to 7:15				0			0			0	0	0	0				0			ĺ
7:15 to 7:30				0			0			0	0	0	0				0			ĺ
7:30 to 7:45	-			0		****	0			0	0	0	0		****		0			ĺ
7:45 to 8:00				0			0			0	0	0	0				0			
8:00 to 8:15				0	******		0			0	0	0	0		******		0			ĺ
8:15 to 8:30				0	******		0			0	0	0	0				0			ĺ
8:30 to 8:45				0			0			0	0	0	0				0			ĺ
8:45 to 9:00				0			0			0	0	0	0				0			
AM Totals	Γ	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	
16:00 to 16:15				0			0			0	0	0	0				0			
16:15 to 16:30				0			0			0	0	0	0				0			-

	10 10.50			U			U			U	0	0	U			0		
	to 16:45			0			0			0	0	0	0			0		
	to 17:00			0			0			0	0	0	0			0		
7:00	to 17:15			0			0			0	0	0	0			0		
17:15	to 17:30			0			0			0	0	0	0			0		
17:30	to 17:45			0			0			0	0	0	0			0		
17:45	to 18:00	*****	******	0	******		0	*****		0	0	0	0			0	ľ	
РГ	M Totals	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ	0

Job No.	: AUNSW1595		
Client	: GHD Pty Ltd		
Suburb	<mark>: Port Kembla</mark>		
Location	: 4. Five Island	s Rd / Emily Rd	Access Driveway
Day/Date	: Tue, 7th Sept	2021	
Weather	: Fine		
Description	: Classified Int	ersection Coun	t
	: 15 mins Data		
	Class 1	Class 2	
Classifications	Lights	Heavies	
Classifications	Lights	rieavies	



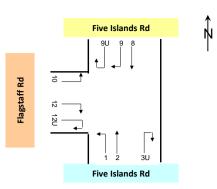
N Traffic and Transport E


Approach		Emily Rd Access Driveway														Five Isla	ands Rd			
Direction		Direction : Left Turn				irection			rection 3 (U Turn)	U		irection Left Turr			irection Through				irection 6 (U Turn)	
Time Period	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total
5:00 to 5:15	12	0	12			-	0	0	0	0			0	103	13	116				0
5:15 to 5:30	7	0	7				0	0	0	0			0	136	14	150				0
5:30 to 5:45	4	1	5			*****	0	0	0	0			0	178	18	196		*****		0
5:45 to 6:00	12	0	12				0	0	0	0			0	168	20	188				0
6:00 to 6:15	5	0	5				0	0	0	0			0	170	13	183				0
6:15 to 6:30	8	1	9			******	0	0	0	0		*****	0	232	15	247				0
6:30 to 6:45	7	0	7				0	0	0	0			0	312	22	334				0
6:45 to 7:00	11	0	11				0	0	0	0			0	261	21	282				0
7:00 to 7:15	3	0	3				0	0	0	0			0	204	29	233				0
7:15 to 7:30	7	2	9				0	0	0	0			0	260	26	286				0
7:30 to 7:45	6	1	7				0	0	0	0			0	269	24	293				0
7:45 to 8:00	6	0	6				0	0	0	0			0	274	31	305				0
8:00 to 8:15	5	0	5				0	0	0	0			0	268	18	286				0
8:15 to 8:30	5	2	7				0	0	0	0			0	260	22	282				0
8:30 to 8:45	5	0	5				0	0	0	0			0	280	28	308				0
8:45 to 9:00	7	1	8				0	0	0	0			0	249	34	283				0
AM Totals	110	8	118		0	0	0	0	0	0	0	0	0	3,624	348	3,972		0	0	0
16:00 to 16:15	29	6	35				0	0	0	0			0	322	18	340				0
16:15 to 16:30	10	0	10				0	0	0	0			0	263	21	284				0
16:30 to 16:45	9	2	11				0	0	0	0			0	292	13	305				0
16:45 to 17:00	23	1	24				0	0	0	0			0	281	18	299				0
17:00 to 17:15	24	0	24				0	0	0	0			0	281	14	295				0
17:15 to 17:30	16	1	17				0	0	0	0			0	271	7	278				0
17:30 to 17:45	13	1	14				0	0	0	0			0	212	11	223				0
17:45 to 18:00	24	2	26				0	0	0	0			0	242	10	252				0
PM Totals	148	13	161		0	0	0	o	0	0	0	0	0	2,164	112	2,276		0	0	0

Ар	proa	ich
Di	recti	on
	e Pe	
5:00	to	5:15
5:15	to	5:30
5:30	to	5:45
5:45	to	6:00
6:00	to	6:15
6:15	to	6:30
6:30	to	6:45
6:45	to	7:00
7:00	to	7:15
7:15	to	7:30
7:30	to	7:45
7:45	to	8:00
8:00	to	8:15
8:15	to	8:30
8:30	to	8:45
8:45	to	9:00
AN	/ Tot	als

ch				Five Isla	ands Rd					
			irection 1 Through			irection : Right Tur			ection 1 (U Turn)	
		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total
			-	0		-	0		-	0
				0	******		0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
		0	0	0	0	0	0	0	0	0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
				0			0			0
		0	0	0	0	0	0	0	0	0

Classifications Lights Heavies

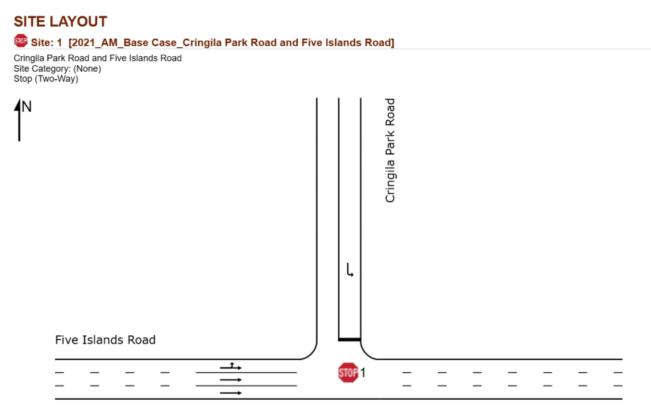

Approach		Access Direction 1 Direction 3 Direction										Springhill Rd								
Direction		irection Left Turn	_			irection Right Tur			rection a (U Turn)			irection Left Turn			Direction (Through				irection 6 (U Turn)	
Time Period	Lights	Heavies	Total		Lights	Heavies	Total		Lights	Heavies	Total									
5:00 to 5:15	4	2	6		0	0	0	0	0	0	2	0	2	24	6	30		0	0	0
5:15 to 5:30	3	1	4		1	0	1	0	0	0	5	0	5	31	14	45		0	0	0
5:30 to 5:45	7	1	8		1	0	1	0	0	0	3	0	3	49	14	63		0	0	0
5:45 to 6:00	11	4	15		3	0	3	0	0	0	2	0	2	54	21	75		0	0	0
6:00 to 6:15	5	1	6		0	0	0	0	0	0	5	0	5	56	15	71		0	0	0
6:15 to 6:30	9	1	10		0	0	0	0	0	0	5	0	5	83	19	102		0	0	0
6:30 to 6:45	13	3	16		1	1	2	0	0	0	15	1	16	141	11	152		0	0	0
6:45 to 7:00	30	0	30		4	0	4	0	0	0	15	1	16	123	20	143		0	0	0
7:00 to 7:15	31	2	33		6	0	6	0	0	0	9	0	9	112	17	129		0	0	0
7:15 to 7:30	7	2	9		1	2	3	0	0	0	9	4	13	133	29	162		0	0	0
7:30 to 7:45	4	4	8		1	0	1	0	0	0	8	2	10	175	29	204		0	0	0
7:45 to 8:00	1	5	6		2	0	2	0	0	0	6	2	8	145	26	171		0	0	0
8:00 to 8:15	2	2	4		1	0	1	0	0	0	1	0	1	141	15	156		0	0	0
8:15 to 8:30	0	4	4		3	0	3	0	0	0	6	0	6	152	25	177		0	0	0
8:30 to 8:45	2	2	4		3	0	3	0	0	0	4	0	4	184	22	206		0	0	0
8:45 to 9:00	2	2	4		2	0	2	0	0	0	3	0	3	173	27	200		0	0	0
AM Totals	131	36	167		29	3	32	0	0	0	98	10	108	1,776	310	2,086		0	0	0
16:00 to 16:15	17	1	18		6	0	6	0	0	0	1	0	1	319	16	335		0	0	0
16:15 to 16:30	12	2	14		6	0	6	0	0	0	0	0	0	298	9	307		0	0	0
16:30 to 16:45	13	5	18		4	0	4	0	0	0	2	0	2	326	6	332		0	0	0
16:45 to 17:00	8	3	11		8	1	9	0	0	0	2	1	3	320	8	328		0	0	0
17:00 to 17:15	6	3	9		4	0	4	0	0	0	3	0	3	455	7	462		0	0	0
17:15 to 17:30	10	2	12		2	0	2	0	0	0	6	0	6	321	6	327		0	0	0
17:30 to 17:45	14	2	16		4	0	4	0	0	0	3	0	3	252	12	264		0	0	0
17:45 to 18:00	8	0	8		0	0	0	0	0	0	2	0	2	238	7	245		0	0	0
PM Totals	88	18	106		34	1	35	0	0	0	19	1	20	2,529	71	2,600		0	0	0

Approach			Spring	hill Rd					
Direction		irection : (Through			irection tight Tur			rection 1 (U Turn)	
ime Period	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	
0 to 5:15	29	10	39	13	2	15	0	0	
to 5:30	47	25	72	20	3	23	0	0	
to 5:45	92	19	111	14	5	19	1	0	
to 6:00	117	25	142	30	0	30	0	0	
to 6:15	111	22	133	21	1	22	0	0	
to 6:30	188	11	199	51	4	55	0	0	
to 6:45	215	21	236	78	4	82	0	0	
o 7:00	263	15	278	52	5	57	0	0	
to 7:15	166	18	184	33	7	40	0	0	
to 7:30	230	26	256	19	2	21	0	0	
xo 7:45	292	22	314	11	7	18	1	0	
to 8:00	367	22	389	8	2	10	0	0	
0 8:15	331	31	362	6	4	10	0	0	
<mark>o 8:30</mark>	391	31	422	3	4	7	0	0	
to 8:45	347	26	373	5	2	7	0	0	
to 9:00	312	25	337	7	2	9	0	0	
Fotals	3,498	349	3,847	371	54	425	2	0	
16:15	227	14	241	1	6	7	0	0	
16:30	222	13	235	0	0	0	0	0	

6:30		222	13	235	0	0	U		0
to 16:45	2	202	8	210	2	1	3	0	
5 to 17:00	1	190	5	195	2	0	2	0	
to 17:15	1	161	4	165	13	1	14	0	
to 17:30		178	10	188	20	2	22	0	
to 17:45	1	111	7	118	15	1	16	0	
:45 to 18:00		137	5	142	2	0	2	0	
PM Totals	1,	1,428	66	1,494	55	11	66	0	

Job No.	: AUNSW1595
Client	: GHD Pty Ltd
Suburb	: Port Kembla
Location	: 6. Five Islands Rd / Flagstaff Rd
Day/Date	: Tue, 7th Sept 2021
Weather	: Fine
Description	: Classified Intersection Count
	: 15 mins Data
	Class 1 Class 2

Classifications Lights Heavies


Approach						Five Isla
Direction		Direction Left Turn			Direction (Through	
Time Period	Lights	Heavies	Total	Lights	Heavies	Total
5:00 to 5:15	4	0	4	119	8	127
5:15 to 5:30	4	0	4	157	7	164
5:30 to 5:45	6	0	6	206	10	216
5:45 to 6:00	9	0	9	173	13	186
6:00 to 6:15	7	0	7	196	14	210
6:15 to 6:30	13	0	13	274	7	281
6:30 to 6:45	15	0	15	365	19	384
6:45 to 7:00	11	0	11	281	22	303
7:00 to 7:15	2	1	3	221	23	244
7:15 to 7:30	1	0	1	261	24	285
7:30 to 7:45	1	1	2	252	14	266
7:45 to 8:00	2	0	2	294	23	317
8:00 to 8:15	2	0	2	262	17	279
8:15 to 8:30	2	0	2	236	10	246
8:30 to 8:45	2	0	2	269	15	284
8:45 to 9:00	2	0	2	240	26	266
AM Totals	83	2	85	3,806	252	4,058
16:00 to 16:15	1	0	1	295	6	301
16:15 to 16:30	0	0	0	225	11	236
16:30 to 16:45	1	0	1	256	10	266
16:45 to 17:00	3	0	3	252	11	263
17:00 to 17:15	3	0	3	260	8	268
17:15 to 17:30	1	0	1	227	2	229
17:30 to 17:45	0	0	0	217	8	225
17:45 to 18:00	0	0	0	195	5	200
PM Totals	9	o	9	1,927	61	1,988

Approach		Five Islands Rd Direction 8 Direction 9 Directic												Fla	gstaff Rd				
Direction			irection Through			irection light Tur			irection 9 (U Turn)			irection : Left Turr				irection Right Tui			rection (U Turi
Time Period		Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total	Lights	Heavies	Total		Lights	Heavies	Total	Lights	Heavies
5:00 to 5:15				0			0			0	1	1	2				0	0	0
5:15 to 5:30	1			0			0			0	2	0	2				0	0	0
5:30 to 5:45				0			0			0	3	2	5				0	0	0
5:45 to 6:00				0			0			0	0	1	1				0	0	0
6:00 to 6:15				0			0			0	2	0	2				0	0	0
6:15 to 6:30				0			0			0	2	0	2				0	0	0
6:30 to 6:45				0			0			0	4	0	4				0	0	0
6:45 to 7:00				0			0			0	3	1	4				0	0	0
7:00 to 7:15				0			0			0	16	1	17				0	0	0
7:15 to 7:30				0			0			0	8	1	9				0	0	0
7:30 to 7:45				0			0			0	1	1	2				0	0	0
7:45 to 8:00				0			0			0	4	2	6				0	0	0
8:00 to 8:15				0			0			0	3	1	4				0	0	0
8:15 to 8:30				0			0			0	2	1	3				0	0	0
8:30 to 8:45				0			0			0	6	0	6				0	0	0
8:45 to 9:00				0			0			0	5	0	5				0	0	0
AM Totals		0	0	0	0	0	0	0	0	0	62	12	74		0	0	0	0	0
16:00 to 16:15				0			0			0	13	0	13				0	0	0
16:15 to 16:30				0			0			0	8	0	8				0	0	0

to 16:15			0			0			0	13	0	13			0		0
			0			0			0	8	0	8			0		0
			0			0			0	5	0	5			0		0
			0			0			0	5	1	6			0		0
			0			0			0	10	0	10			0		0
	******		0			0		*****	0	8	0	8	*****	*****	0	ľ	0
		-	0			0			0	6	0	6			0		0
	******		0	*****		0			0	3	0	3			0		0
	•				•			•	•	50	1	50	-				
	0	0	0	0	0	0	0	0	0	58	1	59	0	0	0	0	

Appendix B SIDRA Results Summary

Site 1: Cringilla Car Park Road and Five Islands Road

Five Islands Road

Site 1: Cringilla Car Park Road and Five Islands Road 2021 AM Peak

MOVEMENT SUMMARY

Site: 1 [2021_AM_Base Case_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None) Stop (Two-Way)

Movem	ent Perform	ance - Vehicle	es									
Mov ID	Tum	Demar Total veh/h	id Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
North: C	Cringila Park Ro	bad										
7	L2	14	7.1	0.016	9.8	LOSA	0.1	0.4	0.46	0.86	0.46	51.8
Approa	ch	14	7.1	0.016	9.8	LOS A	0.1	0.4	0.46	0.86	0.46	51.8
West: F	ive Islands Roa	d										
10	L2	51	13.7	0.259	5.7	LOSA	0.0	0.0	0.00	0.07	0.00	53.4
11	T1	1344	9.9	0.259	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.8
Approa	ch	1395	10.0	0.259	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.7
All Vehi	cles	1409	10.0	0.259	0.3	NA	0.1	0.4	0.00	0.03	0.00	59.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

🕮 Site: 1 [2021_AM_Base Case_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road

Site Category: (None) Stop (Two-Way)

Lane Use and F	Performance	,											
	Demand		0	Deg.	Lane	Average	Level of	95% Back of C		Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
Martha Origoila Da	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
North: Cringila Pa	IK Road												
Lane 1	14	7.1	861	0.016	100	9.8	LOS A	0.1	0.4	Full	250	0.0	0.0
Approach	14	7.1		0.016		9.8	LOSA	0.1	0.4				
West: Five Islands	s Road												
Lane 1	462	10.3	1787	0.259	100	0.6	LOSA	0.0	0.0	Full	330	0.0	0.0
Lane 2	466	9.9	1804	0.259	100	0.0	LOS A	0.0	0.0	Full	330	0.0	0.0
Lane 3	466	9.9	1804	0.259	100	0.0	LOS A	0.0	0.0	Full	330	0.0	0.0
Approach	1395	10.0		0.259		0.2	NA	0.0	0.0				
Intersection	1409	10.0		0.259		0.3	NA	0.1	0.4				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with maior road lanes

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 1: Cringilla Car Park Road and Five Islands Road 2021 PM Peak

MOVEMENT SUMMARY

Site: 1 [2021_PM_Base Case_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None) Stop (Two-Way)

Movem	ent Perform	ance - Vehicl	es									
Mov ID	Tum	Demar Total veh/h	nd Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
North: C	cringila Park Ro	bad										
7	L2	42	16.7	0.075	13.0	LOSA	0.3	2.2	0.60	0.99	0.60	50.3
Approad	ch	42	16.7	0.075	13.0	LOSA	0.3	2.2	0.60	0.99	0.60	50.3
West: F	ive Islands Roa	ad										
10	L2	5	20.0	0.352	5.8	LOSA	0.0	0.0	0.00	0.00	0.00	52.8
11	T1	1974	3.6	0.352	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Approa	ch	1979	3.6	0.352	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehi	cles	2021	3.9	0.352	0.3	NA	0.3	2.2	0.01	0.02	0.01	59.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 1 [2021_PM_Base Case_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None)

Stop (Two-Way)

Lane Use and F	Performance												
	Demand		0.00	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
North: Cringila Pa	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
-													
Lane 1	42	16.7	560	0.075	100	13.0	LOSA	0.3	2.2	Full	250	0.0	0.0
Approach	42	16.7		0.075		13.0	LOSA	0.3	2.2				
West: Five Islands	s Road												
Lane 1	659	3.7	1873	0.352	100	0.1	LOSA	0.0	0.0	Full	330	0.0	0.0
Lane 2	660	3.6	1876	0.352	100	0.0	LOSA	0.0	0.0	Full	330	0.0	0.0
Lane 3	660	3.6	1876	0.352	100	0.0	LOS A	0.0	0.0	Full	330	0.0	0.0
Approach	1979	3.6		0.352		0.0	NA	0.0	0.0				
Intersection	2021	3.9		0.352		0.3	NA	0.3	2.2				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 1: Cringilla Car Park Road and Five Islands Road 2024 AM Peak

MOVEMENT SUMMARY

Site: 1 [2024_AM_During Construction_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None) Stop (Two-Way)

Mov	Tum	Deman	d Flows	Deg.	Average	Level of	95% Back o	of Queue	Prop.	Effective	Aver, No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
North: C	ringila Park Ro	ad										
7	L2	14	7.1	0.013	8.9	LOS A	0.1	0.4	0.36	0.85	0.36	52.2
Approac	:h	14	7.1	0.013	8.9	LOSA	0.1	0.4	0.36	0.85	0.36	52.2
West: Fi	ve Islands Roa	d										
10	L2	262	6.9	0.299	5.6	LOSA	0.0	0.0	0.00	0.29	0.00	51.9
11	T1	1344	9.9	0.299	0.0	LOSA	0.0	0.0	0.00	0.06	0.00	59.6
Approac	h	1606	9.4	0.299	0.9	NA	0.0	0.0	0.00	0.10	0.00	59.0
All Vehic	des	1620	9.4	0.299	1.0	NA	0.1	0.4	0.00	0.10	0.00	58.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 1 [2024_AM_During Construction_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None) Stop (Two-Way)

Lane Use and F	erformance												
	Demand		0	Deg.	Lane	Average	Level of	95% Back of		Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
North: Cringila Pa	rk Road												
Lane 1	14	7.1	1038	0.013	100	8.9	LOS A	0.1	0.4	Full	250	0.0	0.0
Approach	14	7.1		0.013		8.9	LOS A	0.1	0.4				
West: Five Islands	Road												
Lane 1	529	8.4	1773	0.299	100	2.8	LOS A	0.0	0.0	Full	330	0.0	0.0
Lane 2	538	9.9	1804	0.299	100	0.0	LOS A	0.0	0.0	Full	330	0.0	0.0
Lane 3	538	9.9	1804	0.299	100	0.0	LOS A	0.0	0.0	Full	330	0.0	0.0
Approach	1606	9.4		0.299		0.9	NA	0.0	0.0				
Intersection	1620	9.4		0.299		1.0	NA	0.1	0.4				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site 1: Cringilla Car Park Road and Five Islands Road 2024 PM Peak

MOVEMENT SUMMARY

Site: 1 [2024_PM_During Construction_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road

Site Category: (None) Stop (Two-Way)

Moveme	ent Perform	nance - Vehicle	s									
Mov ID	Tum	Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
North: Cr	ingila Park R	load										
7	L2	40	12.5	0.069	12.6	LOS A	0.2	1.9	0.59	0.98	0.59	50.5
Approach	ı	40	12.5	0.069	12.6	LOS A	0.2	1.9	0.59	0.98	0.59	50.5
West: Fiv	e Islands Ro	ad										
10	L2	5	20.0	0.352	5.8	LOS A	0.0	0.0	0.00	0.00	0.00	52.8
11	T1	1974	3.6	0.352	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Approach	ı	1979	3.6	0.352	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicl	es	2019	3.8	0.352	0.3	NA	0.2	1.9	0.01	0.02	0.01	59.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 1 [2024_PM_During Construction_Cringila Park Road and Five Islands Road]

Cringila Park Road and Five Islands Road Site Category: (None) Stop (Two-Way)

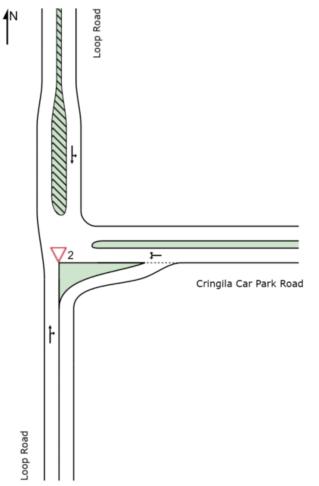
Lane Use and P	erformance)											
	Demand		0	Deg.	Lane	Average	Level of	95% Back of C		Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
North: Cringila Pa	veh/h rk Road	%	veh/h	v/c	%	Sec			m		m	%	%
Lane 1	40	12.5	582	0.069	100	12.6	LOSA	0.2	1.9	Full	250	0.0	0.0
Approach	40	12.5		0.069		12.6	LOSA	0.2	1.9				
West: Five Islands	Road												
Lane 1	659	3.7	1873	0.352	100	0.1	LOSA	0.0	0.0	Full	330	0.0	0.0
Lane 2	660	3.6	1876	0.352	100	0.0	LOSA	0.0	0.0	Full	330	0.0	0.0
Lane 3	660	3.6	1876	0.352	100	0.0	LOSA	0.0	0.0	Full	330	0.0	0.0
Approach	1979	3.6		0.352		0.0	NA	0.0	0.0				
Intersection	2019	3.8		0.352		0.3	NA	0.2	1.9				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes


SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 2: Loop Road and Cringilla Car Park Road

SITE LAYOUT

Site 2: Loop Road and Cringilla Car Park Road 2021 AM Peak

MOVEMENT SUMMARY

abla Site: 2 [2021_AM_Base Case_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Perform	ance - Vehicle	s									l in the second s
Mov ID	Tum	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: L	oop Road											
2	T1	48	20.8	0.029	0.0	LOS A	0.0	0.2	0.03	0.03	0.03	49.2
3	R2	3	33.3	0.029	5.2	LOS A	0.0	0.2	0.03	0.03	0.03	46.7
Approact	h	51	21.6	0.029	0.3	NA	0.0	0.2	0.03	0.03	0.03	49.0
East: Cri	ngila Car Par	k Road										
4	L2	15	33.3	0.048	5.0	LOSA	0.2	1.4	0.17	0.49	0.17	43.8
6	R2	41	7.3	0.048	5.0	LOS A	0.2	1.4	0.17	0.49	0.17	39.9
Approact	h	56	14.3	0.048	5.0	NA	0.2	1.4	0.17	0.49	0.17	41.1
North: Lo	oop Road											
7	L2	13	7.7	0.025	4.6	LOSA	0.0	0.0	0.00	0.16	0.00	45.9
8	T1	32	21.9	0.025	0.0	LOSA	0.0	0.0	0.00	0.16	0.00	47.0
Approact	h	45	17.8	0.025	1.3	NA	0.0	0.0	0.00	0.16	0.00	46.6
All Vehic	les	152	17.8	0.048	2.4	NA	0.2	1.4	0.07	0.24	0.07	44.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 2 [2021_AM_Base Case_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road Site Category: (None) Giveway / Yield (Two-Way)

	11
Lane	Use and Performance

Lane Use and Per	Tormance	,											
	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h		veh/h			Sec							
South: Loop Road													
Lane 1	51	21.6	1739	0.029	100	0.3	LOS A	0.0	0.2	Full	205	0.0	0.0
Approach	51	21.6		0.029		0.3	NA	0.0	0.2				
East: Cringila Car Pa	ark Road												
Lane 1	56	14.3	1156	0.048	100	5.0	LOSA	0.2	1.4	Full	250	0.0	0.0
Approach	56	14.3		0.048		5.0	NA	0.2	1.4				
North: Loop Road													
Lane 1	45	17.8	1785	0.025	100	1.3	LOSA	0.0	0.0	Full	105	0.0	0.0
Approach	45	17.8		0.025		1.3	NA	0.0	0.0				
Intersection	152	17.8		0.048		2.4	NA	0.2	1.4				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 2: Loop Road and Cringilla Car Park Road 2021 PM Peak

MOVEMENT SUMMARY

abla Site: 2 [2021_PM_Base Case_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road

Site Category: (None) Giveway / Yield (Two-Way)

Moveme	nt Perform	nance - Vehicle	s									
Mov ID	Turn	Demana Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: Loo	op Road											
2	T1	6	16.7	0.005	0.2	LOS A	0.0	0.1	0.15	0.13	0.15	47.2
3	R2	2	50.0	0.005	5.6	LOS A	0.0	0.1	0.15	0.13	0.15	44.9
Approach		8	25.0	0.005	1.6	NA	0.0	0.1	0.15	0.13	0.15	46.4
East: Crine	gila Car Pa	rk Road										
4	L2	2	50.0	0.004	5.0	LOS A	0.0	0.1	0.16	0.46	0.16	43.6
6	R2	3	0.0	0.004	4.9	LOS A	0.0	0.1	0.16	0.46	0.16	40.5
Approach		5	20.0	0.004	5.0	NA	0.0	0.1	0.16	0.46	0.16	41.9
North: Loo	op Road											
7	L2	41	12.2	0.066	4.7	LOS A	0.0	0.0	0.00	0.18	0.00	45.5
8	T1	79	13.9	0.066	0.0	LOSA	0.0	0.0	0.00	0.18	0.00	46.8
Approach		120	13.3	0.066	1.6	NA	0.0	0.0	0.00	0.18	0.00	46.3
All Vehicle	9S	133	14.3	0.066	1.7	NA	0.0	0.1	0.01	0.19	0.01	46.1

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 2 [2021_PM_Base Case_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road Site Category: (None)

Giveway / Yield (Two-Way)

Lane Use and Performance

ane use and Fe													
	Demand	I Flows		Deg.	Lane	Average	Level of	95% Back of (Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h		veh/h			sec							
outh: Loop Road													
ane 1	8	25.0	1560	0.005	100	1.6	LOS A	0.0	0.1	Full	205	0.0	0.0
oproach	8	25.0		0.005		1.6	NA	0.0	0.1				
ast: Cringila Car P	ark Road												
ane 1	5	20.0	1250	0.004	100	5.0	LOS A	0.0	0.1	Full	250	0.0	0.0
oproach	5	20.0		0.004		5.0	NA	0.0	0.1				
orth: Loop Road													
ane 1	120	13.3	1824	0.066	100	1.6	LOS A	0.0	0.0	Full	105	0.0	0.0
oproach	120	13.3		0.066		1.6	NA	0.0	0.0				
tersection	133	14.3		0.066		1.7	NA	0.0	0.1				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 2: Loop Road and Cringilla Car Park Road 2024 AM Peak

MOVEMENT SUMMARY

abla Site: 2 [2024_AM_During Construction_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road Site Category: (None) Giveway / Yield (Two-Way)

Moveme	nt Perform	ance - Vehicle	s									
Mov ID	Turn	Deman Total veh/h	id Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: Lo	op Road											
2	T1	133	7.5	0.072	0.1	LOS A	0.0	0.2	0.02	0.01	0.02	49.6
3	R2	3	33.3	0.072	6.3	LOS A	0.0	0.2	0.02	0.01	0.02	46.9
Approach	1	136	8.1	0.072	0.2	NA	0.0	0.2	0.02	0.01	0.02	49.5
East: Crin	igila Car Par	k Road										
4	L2	26	61.5	0.261	5.8	LOS A	1.1	8.0	0.31	0.57	0.31	42.7
6	R2	241	1.2	0.261	5.6	LOS A	1.1	8.0	0.31	0.57	0.31	39.6
Approach		267	7.1	0.261	5.6	NA	1.1	8.0	0.31	0.57	0.31	39.9
North: Lo	op Road											
7	L2	13	7.7	0.025	4.6	LOSA	0.0	0.0	0.00	0.16	0.00	45.9
8	T1	32	21.9	0.025	0.0	LOS A	0.0	0.0	0.00	0.16	0.00	47.0
Approach	1	45	17.8	0.025	1.3	NA	0.0	0.0	0.00	0.16	0.00	46.6
All Vehicle	es	448	8.5	0.261	3.5	NA	1.1	8.0	0.19	0.36	0.19	42.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 2 [2024_AM_During Construction_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road Site Category: (None) Giveway / Yield (Two-Way)

Lane	Use and	Performance

Lane Use and Fe	normanice												
	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h		veh/h	v/c		sec							
South: Loop Road													
Lane 1	136	8.1	1888	0.072	100	0.2	LOSA	0.0	0.2	Full	205	0.0	0.0
Approach	136	8.1		0.072		0.2	NA	0.0	0.2				
East: Cringila Car P	ark Road												
Lane 1	267	7.1	1023	0.261	100	5.6	LOSA	1.1	8.0	Full	250	0.0	0.0
Approach	267	7.1		0.261		5.6	NA	1.1	8.0				
North: Loop Road													
Lane 1	45	17.8	1785	0.025	100	1.3	LOSA	0.0	0.0	Full	105	0.0	0.0
Approach	45	17.8		0.025		1.3	NA	0.0	0.0				
Intersection	448	8.5		0.261		3.5	NA	1.1	8.0				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 2: Loop Road and Cringilla Car Park Road 2024 PM Peak

MOVEMENT SUMMARY

abla Site: 2 [2024_PM_During Construction_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road

Site Category: (None) Giveway / Yield (Two-Way)

Moveme	nt Perforn	nance - Vehicle	s									
Mov ID	Turn	Demano Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: Lo	op Road											
2	T1	6	16.7	0.006	1.1	LOS A	0.0	0.2	0.30	0.13	0.30	45.7
3	R2	2	50.0	0.006	7.4	LOS A	0.0	0.2	0.30	0.13	0.30	43.9
Approach		8	25.0	0.006	2.7	NA	0.0	0.2	0.30	0.13	0.30	45.1
East: Crin	gila Car Pa	rk Road										
4	L2	3	33.3	0.014	7.4	LOS A	0.1	0.5	0.43	0.50	0.43	41.6
6	R2	7	42.9	0.014	7.8	LOS A	0.1	0.5	0.43	0.50	0.43	35.6
Approach		10	40.0	0.014	7.7	NA	0.1	0.5	0.43	0.50	0.43	37.5
North: Loo	op Road											
7	L2	41	12.2	0.207	4.7	LOSA	0.0	0.0	0.00	0.05	0.00	47.4
8	T1	364	3.0	0.207	0.0	LOSA	0.0	0.0	0.00	0.05	0.00	49.1
Approach		405	4.0	0.207	0.5	NA	0.0	0.0	0.00	0.05	0.00	48.9
All Vehicle	es	423	5.2	0.207	0.7	NA	0.1	0.5	0.02	0.07	0.02	48.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 2 [2024_PM_During Construction_Loop Road and Cringila Car Park Road]

Loop Road and Cringila Car Park Road

Site Category: (None) Giveway / Yield (Two-Way)

Giveway / field (Two-way)

Lane Use and Performance

Earle Goe and Fe	ion manoe												
	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec						%	%
South: Loop Road													
Lane 1	8	25.0	1366	0.006	100	2.7	LOSA	0.0	0.2	Full	205	0.0	0.0
Approach	8	25.0		0.006		2.7	NA	0.0	0.2				
East: Cringila Car Pa	ark Road												
Lane 1	10	40.0	717	0.014	100	7.7	LOSA	0.1	0.5	Full	250	0.0	0.0
Approach	10	40.0		0.014		7.7	NA	0.1	0.5				
North: Loop Road													
Lane 1	405	4.0	1958	0.207	100	0.5	LOSA	0.0	0.0	Full	105	0.0	0.0
Approach	405	4.0		0.207		0.5	NA	0.0	0.0				
Intersection	423	5.2		0.207		0.7	NA	0.1	0.5				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 3: Five Islands Road and Emily Road (Entry)

SITE LAYOUT

Site: 3 [2021_AM_Base Case_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry) Site Category: (None) Giveway / Yield (Two-Way)

Site 3: Five Islands Road and Emily Road (Entry) 2021 AM Peak

MOVEMENT SUMMARY

abla Site: 3 [2021_AM_Base Case_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry)

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Perform	nance - Vehicle	s									
Mov ID	Turn	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: F	ive Islands R	oad										
1	L2	9	22.2	0.330	5.9	LOSA	0.0	0.0	0.00	0.01	0.00	51.5
2	T1	1791	8.4	0.330	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approac	h	1800	8.4	0.330	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehic	les	1800	8.4	0.330	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

∇ Site: 3 [2021_AM_Base Case_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry) Site Category: (None) Giveway / Yield (Two-Way)

Giveway / Tield (Two-way)

Lane Use and P	erformance												
	Demand		Can	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist	Config	Length	Adj. %	Block. %
South: Five Island		70	AGIBII	V/C	70	360			m		m	70	70
Lane 1	599	8.6	1816	0.330	100	0.2	LOS A	0.0	0.0	Full	1080	0.0	0.0
Lane 2	600	8.4	1820	0.330	100	0.1	LOSA	0.0	0.0	Full	1080	0.0	0.0
Lane 3	600	8.4	1820	0.330	100	0.1	LOSA	0.0	0.0	Full	1080	0.0	0.0
Approach	1800	8.4		0.330		0.1	NA	0.0	0.0				
Intersection	1800	8.4		0.330		0.1	NA	0.0	0.0				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane. Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 3: Five Islands Road and Emily Road (Entry) 2021 PM Peak

MOVEMENT SUMMARY

$\overline{ abla}$ Site: 3 [2021_PM_Base Case_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry)

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Perform	ance - Vehicle	s									
Mov ID	Tum	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: F	ive Islands Ro											
1	L2	16	0.0	0.270	5.6	LOSA	0.0	0.0	0.00	0.02	0.00	51.9
2	T1	1483	5.7	0.270	0.1	LOSA	0.0	0.0	0.00	0.01	0.00	59.9
Approac	h	1499	5.6	0.270	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehic	les	1499	5.6	0.270	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

∇ Site: 3 [2021_PM_Base Case_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry) Site Category: (None) Giveway / Yield (Two-Way)

	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h		veh/h			sec							
South: Five Island	ds Road												
Lane 1	500	5.5	1851	0.270	100	0.2	LOS A	0.0	0.0	Full	1080	0.0	0.0
Lane 2	500	5.7	1851	0.270	100	0.1	LOS A	0.0	0.0	Full	1080	0.0	0.0
Lane 3	500	5.7	1851	0.270	100	0.1	LOS A	0.0	0.0	Full	1080	0.0	0.0
Approach	1499	5.6		0.270		0.1	NA	0.0	0.0				
Intersection	1499	5.6		0.270		0.1	NA	0.0	0.0				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 3: Five Islands Road and Emily Road (Entry) 2024 AM Peak

MOVEMENT SUMMARY

♡ Site: 3 [2024_AM_During Construction_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry)

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Perform	nance - Vehicle	s									
Mov ID	Tum	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: F	ive Islands R	oad										
1	L2	9	22.2	0.330	5.9	LOS A	0.0	0.0	0.00	0.01	0.00	51.5
2	T1	1791	8.4	0.330	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approac	h	1800	8.4	0.330	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8
All Vehic	les	1800	8.4	0.330	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 3 [2024_AM_During Construction_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry) Site Category: (None) Giveway / Yield (Two-Way)

Giveway / Yield (Two-way)

Lane Use and P	erformance												
	Demand		0	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Сар.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
South: Five Islands	s Road												
Lane 1	599	8.6	1816	0.330	100	0.2	LOSA	0.0	0.0	Full	1080	0.0	0.0
Lane 2	600	8.4	1820	0.330	100	0.1	LOSA	0.0	0.0	Full	1080	0.0	0.0
Lane 3	600	8.4	1820	0.330	100	0.1	LOSA	0.0	0.0	Full	1080	0.0	0.0
Approach	1800	8.4		0.330		0.1	NA	0.0	0.0				
Intersection	1800	8.4		0.330		0.1	NA	0.0	0.0				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane. Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 3: Five Islands Road and Emily Road (Entry) 2024 PM Peak

MOVEMENT SUMMARY

abla Site: 3 [2024_PM_During Construction_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry)

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Perform	ance - Vehicle	s									
Mov ID	Turn	Demano Total	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	l Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
South: F	ive Islands Ro	veh/h bad	%	v/c	Sec		veh	m				km/h
1	L2	16	0.0	0.270	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	51.9
2	T1	1483	5.7	0.270	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.9
Approact	h	1499	5.6	0.270	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Vehic	les	1499	5.6	0.270	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 3 [2024_PM_During Construction_Five Islands Road and Emily Access Road (Entry)]

Five Islands Road and Emily Access Road (Entry) Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and P	erformance												
	Demand		0.00	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
South: Five Island	veh/h s Road	%	veh/h	v/c	%	Sec			m		m	%	%
Lane 1	500	5.5	1851	0.270	100	0.2	LOSA	0.0	0.0	Full	1080	0.0	0.0
Lane 2	500	5.7	1851	0.270	100	0.2	LOSA	0.0	0.0	Full	1080	0.0	0.0
	500			0.270	100		LOSA			Full	1080	0.0	
Lane 3		5.7	1851		100	0.1		0.0	0.0	Full	1080	0.0	0.0
Approach	1499	5.6		0.270		0.1	NA	0.0	0.0				
Intersection	1499	5.6		0.270		0.1	NA	0.0	0.0				
Intersection	1400	5.0		0.270		0.1	110	0.0	0.0				

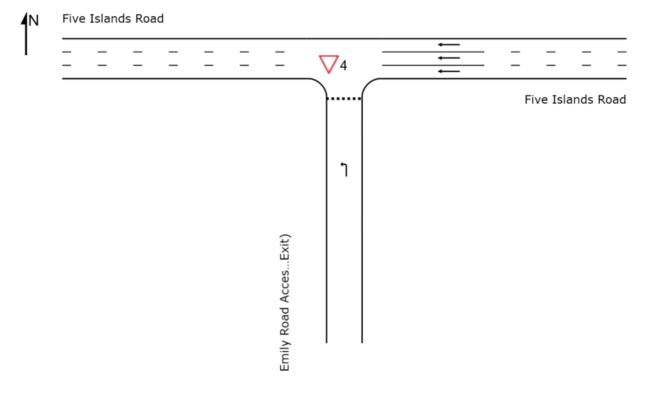
Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated

with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 4: Five Islands Road and Emily Road (Exit)

SITE LAYOUT

\overline{igvee} Site: 4 [2021_AM_Base Case_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

Site 4: Five Islands Road and Emily Road (Exit) 2021 AM Peak

MOVEMENT SUMMARY

abla Site: 4 [2021_AM_Base Case_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit)

Site Category: (None) Giveway / Yield (Two-Way)

Moveme	nt Perform	ance - Vehicle	s									
Mov	Turn	Demano		Deg.	Average	Level of	95% Back of		Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	Sec		veh					km/h
South: En	nily Road Ac	cess (Exit)										
1	L2	23	8.7	0.028	6.7	LOS A	0.1	0.8	0.53	0.67	0.53	31.4
Approach	1	23	8.7	0.028	6.7	LOS A	0.1	0.8	0.53	0.67	0.53	31.4
East: Five	e Islands Roa	ad										
5	T1	1772	8.4	0.325	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	1	1772	8.4	0.325	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicle	es	1795	8.4	0.325	0.1	NA	0.1	0.8	0.01	0.01	0.01	59.4

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 4 [2021_AM_Base Case_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and F	erformance												
	Demand		0	Deg.	Lane	Average	Level of	95% Back of C		Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
South: Emily Road	d Access (Exit)	1											
Lane 1	23	8.7	809	0.028	100	6.7	LOSA	0.1	0.8	Full	50	0.0	0.0
Approach	23	8.7		0.028		6.7	LOSA	0.1	0.8				
East: Five Islands	Road												
Lane 1	591	8.4	1820	0.325	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
Lane 2	591	8.4	1820	0.325	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
Lane 3	591	8.4	1820	0.325	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
Approach	1772	8.4		0.325		0.0	NA	0.0	0.0				
Intersection	1795	8.4		0.325		0.1	NA	0.1	0.8				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 4: Five Islands Road and Emily Road (Exit) 2021 PM Peak

MOVEMENT SUMMARY

abla Site: 4 [2021_PM_Base Case_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit)

Site Category: (None) Giveway / Yield (Two-Way)

Mov	Turn	Demar	td Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Aver, No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h		v/c	SEC		veh					km/h
South: E	mily Road Acc	cess (Exit)										
1	L2	80	11.3	0.087	6.1	LOS A	0.3	2.6	0.50	0.67	0.50	32.0
Approac	h	80	11.3	0.087	6.1	LOSA	0.3	2.6	0.50	0.67	0.50	32.0
East: Fiv	e Islands Roa	d										
5	T1	1474	5.7	0.265	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approac	h	1474	5.7	0.265	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehic	des	1554	6.0	0.265	0.3	NA	0.3	2.6	0.03	0.03	0.03	58.1

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 4 [2021_PM_Base Case_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and F	Performance)											
	Demand		0	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Сар.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
South: Emily Roa	d Access (Exit	1)											
Lane 1	80	11.3	917	0.087	100	6.1	LOS A	0.3	2.6	Full	50	0.0	0.0
Approach	80	11.3		0.087		6.1	LOSA	0.3	2.6				
East: Five Islands	Road												
Lane 1	491	5.7	1851	0.265	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
Lane 2	491	5.7	1851	0.265	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
Lane 3	491	5.7	1851	0.265	100	0.0	LOS A	0.0	0.0	Full	135	0.0	0.0
Approach	1474	5.7		0.265		0.0	NA	0.0	0.0				
Intersection	1554	6.0		0.265		0.3	NA	0.3	2.6				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 4: Five Islands Road and Emily Road (Exit) 2024 AM Peak

MOVEMENT SUMMARY

abla Site: 4 [2024_AM_During Construction_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

Mov	Tum	Deman	d Flows	Deg.	Average	Level of	95% Back o	f Queue	Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%		Sec		veh					km/h
South: E	mily Road Acc	ess (Exit)										
1	L2	23	8.7	0.028	6.7	LOSA	0.1	0.8	0.53	0.67	0.53	31.4
Approac	h	23	8.7	0.028	6.7	LOSA	0.1	0.8	0.53	0.67	0.53	31.4
East: Fiv	e Islands Roa	d										
5	T1	1772	8.4	0.325	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Approac	h	1772	8.4	0.325	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehic	les	1795	8.4	0.325	0.1	NA	0.1	0.8	0.01	0.01	0.01	59.4

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 4 [2024_AM_During Construction_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and P	erformance												
	Demand		0.000	Deg.	Lane	Average	Level of	95% Back of (Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h	%	veh/h	v/c	%	Sec			m		m	%	%
South: Emily Road	d Access (Exit)												
Lane 1	23	8.7	809	0.028	100	6.7	LOS A	0.1	0.8	Full	50	0.0	0.0
Approach	23	8.7		0.028		6.7	LOSA	0.1	0.8				
East: Five Islands	Road												
Lane 1	591	8.4	1820	0.325	100	0.0	LOS A	0.0	0.0	Full	135	0.0	0.0
Lane 2	591	8.4	1820	0.325	100	0.0	LOS A	0.0	0.0	Full	135	0.0	0.0
Lane 3	591	8.4	1820	0.325	100	0.0	LOS A	0.0	0.0	Full	135	0.0	0.0
Approach	1772	8.4		0.325		0.0	NA	0.0	0.0				
Intersection	1795	8.4		0.325		0.1	NA	0.1	0.8				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 4: Five Islands Road and Emily Road (Exit) 2024 PM Peak

MOVEMENT SUMMARY

abla Site: 4 [2024_PM_During Construction_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit)

Site Category: (None) Giveway / Yield (Two-Way)

Moveme	ent Perform	nance - Vehicle	s									
Mov	Turn	Deman		Deg.	Average	Level of	95% Back o		Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	Sec		veh					km/h
South: Er	mily Road Ac	cess (Exit)										
1	L2	291	6.9	0.307	6.7	LOS A	1.5	10.9	0.56	0.77	0.61	31.5
Approach	ı	291	6.9	0.307	6.7	LOS A	1.5	10.9	0.56	0.77	0.61	31.5
East: Five	e Islands Roa	ad										
5	T1	1474	5.7	0.265	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Approach	ı	1474	5.7	0.265	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
All Vehicl	es	1765	5.9	0.307	1.1	NA	1.5	10.9	0.09	0.13	0.10	54.1

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 4 [2024_PM_During Construction_Five Islands Road and Emily Road Access (Exit)]

Five Islands Road and Emily Road Access (Exit) Site Category: (None) Giveway / Yield (Two-Way)

formance												
		0	Deg.	Lane	Average	Level of			Lane	Lane	Cap.	Prob.
						Service	Veh		Config			Block.
		veh/h	V/C	%	Sec			m		m	%	%
Access (Exit))											
291	6.9	948	0.307	100	6.7	LOS A	1.5	10.9	Full	50	0.0	0.0
291	6.9		0.307		6.7	LOSA	1.5	10.9				
oad												
491	5.7	1851	0.265	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
491	5.7	1851	0.265	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
491	5.7	1851	0.265	100	0.0	LOSA	0.0	0.0	Full	135	0.0	0.0
1474	5.7		0.265		0.0	NA	0.0	0.0				
1765	5.9		0.307		1.1	NA	1.5	10.9				
	Demand Total veh/h Access (Exit) 291 291 0ad 491 491 491 1474	Demand Flows Total HV veh/h % 291 6.9 291 6.9 0ad 491 5.7 491 5.7 491 5.7 1474 5.7	Demand Flows Total Cap. Yeb//h % veh/h 291 6.9 948 291 6.9 oad 491 5.7 1851 491 5.7 1851 491 5.7 1851 491 5.7 1851 491 5.7 1851 491 5.7 1851 491 5.7 1851	Demand Flows Total Deg. HV Cap. veh/h Deg. Sam veh/h veh/h v/c 291 6.9 948 0.307 291 6.9 0.307 0.307 oad	Demand Flows Total Deg. Weh/h Lane Satn Lane Util veh/h % veh/h v/c % 291 6.9 948 0.307 100 291 6.9 0.307 100 291 6.9 0.307 100 291 5.7 1851 0.265 100 491 5.7 1851 0.265 100 491 5.7 1851 0.265 100 1474 5.7 0.265 100	Demand Flows Total Cap. Weh/h Deg. Satn v/c Lane Util % Average Delay sec 291 6.9 948 0.307 100 6.7 291 6.9 0.307 100 6.7 291 6.9 0.307 100 6.7 291 5.7 1851 0.265 100 0.0 491 5.7 1851 0.265 100 0.0 491 5.7 1851 0.265 100 0.0 1474 5.7 0.265 0.0 0.0 0.0	Demand Flows Total Cap. HV Deg. Satn Lane Util. Average Delay % Level of Service veh/h v/c % sec Service 291 6.9 948 0.307 100 6.7 LOS A 291 6.9 0.307 6.7 LOS A 291 5.7 1851 0.265 100 0.0 LOS A 491 5.7 1851 0.265 100 0.0 LOS A 491 5.7 1851 0.265 100 0.0 LOS A 1474 5.7 0.265 0.0 NA	Demand Flows Total Cap. Veh/h Deg. veh/h Lane v/c Average Delay % Level of Service 95% Back of Veh 291 6.9 948 0.307 100 6.7 LOS A 1.5 291 6.9 0.307 6.7 LOS A 1.5 oad	Demand Flows Total Cap. Veh/h Deg. Satn Lane Util. Average Delay % Level of Service 95% Back of Queue Veh Dist Dist veh/h % veh/h % service Veh Dist veh/h % veh/h % service Veh Dist 291 6.9 948 0.307 100 6.7 LOS A 1.5 10.9 291 6.9 0.307 6.7 LOS A 1.5 10.9 oad 0.265 100 0.0 LOS A 0.0 0.0 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 1474 5.7 0.265 0.0 NA 0.0 0.0	Demand Flows Total Cap. veh/h Deg. Satn Lane Util. Average Delay % Level of Service 95% Back of Queue Veh Lane Dist Lane Config 291 6.9 948 0.307 100 6.7 LOS A 1.5 10.9 Full 291 6.9 0.307 6.7 LOS A 1.5 10.9 Full 291 6.9 0.307 0.0 6.7 LOS A 1.5 10.9 Full 291 6.9 0.307 0.0 0.0 LOS A 1.5 10.9 oad	Demand Flows Total Cap. Veh/h Deg. Satn Lane Util. V/c Average Delay Service Level of Service 95% Back of Queue Veh Lane Dist Lane Config Lane Length m 291 6.9 948 0.307 100 6.7 LOS A 1.5 10.9 Full 50 291 6.9 0.307 6.7 LOS A 1.5 10.9 Full 50 291 6.9 0.307 6.7 LOS A 1.5 10.9 Full 50 291 6.9 0.307 0.00 0.0 LOS A 1.5 10.9 Full 50 291 6.9 0.307 0.00 0.0 LOS A 1.5 10.9 Full 135 0ad 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 Full 135 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 Full 135 1474	Demand Flows Total V/V Cap. Veh/h Deg. Veh Lane Veh Lane Dist m Lane Config Lane Length Cap. Adj. m Cap. M 291 6.9 948 0.307 100 6.7 LOS A 1.5 10.9 Full 50 0.0 291 6.9 948 0.307 100 6.7 LOS A 1.5 10.9 Full 50 0.0 291 6.9 0.307 100 0.0 LOS A 1.5 10.9 Full 50 0.0 oad 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 Full 135 0.0 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 Full 135 0.0 491 5.7 1851 0.265 100 0.0 LOS A 0.0 0.0 Full 135 0.0 1474 5.7 1851 0.2

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 5: Springhill Road and BlueScope Access Road (Exit)

SITE LAYOUT

Site: 5 [2021_AM_Base Case_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access Site Category: (None) Signals - Fixed Time Isolated

Springhill Road 4N _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - -130 -5 -_ _ _ _ _ _ _ _ _ _ + 100 £ Springhill Road ۱ ۱ τlr ٦ 60 30 I 1 1 BlueScope Access I I

MOVEMENT SUMMARY

Site: 5 [2021_AM_Base Case_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 60 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movem	ent Perform	ance - Vehicle	s									
Mov ID	Turn	Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: B	ueScope Acc	ess										
1	L2	24	70.8	0.045	23.2	LOS B	0.4	4.1	0.77	0.67	0.77	30.0
3	R2	12	0.0	0.045	30.7	LOS C	0.3	2.6	0.90	0.66	0.90	29.4
Approact	ı	36	47.2	0.045	25.7	LOS B	0.4	4.1	0.81	0.66	0.81	29.8
East: Spi	inghill Road											
4	L2	25	12.0	0.145	36.0	LOS C	0.7	5.5	0.94	0.71	0.94	28.0
5	T1	497	12.5	0.308	17.9	LOS B	3.9	30.3	0.81	0.66	0.81	57.4
Approact	ı	522	12.5	0.308	18.8	LOS B	3.9	30.3	0.82	0.66	0.82	56.0
West: Sp	ringhill Road											
11	T1	1315	7.1	0.797	25.3	LOS B	13.5	100.6	0.98	0.94	1.17	51.3
12	R2	45	35.6	0.293	37.2	LOS C	1.3	12.2	0.96	0.74	0.96	35.8
Approact	ı	1360	8.1	0.797	25.7	LOS B	13.5	100.6	0.98	0.93	1.17	50.8
All Vehic	es	1918	10.0	0.797	23.8	LOS B	13.5	100.6	0.93	0.85	1.07	51.7

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 5 [2021_AM_Base Case_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 60 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Lane Use and Pe	erformance	•											
	Demano		0	Deg.	Lane	Average	Level of	95% Back of		Lane	Lane	Сар.	Prob.
	Total veh/h	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
South: BlueScope /		%	veh/h	v/c	%	Sec			m	_	m	%	%
Lane 1	17	70.8	374	0.045	100	21.4	LOS B	0.4	4.1	Short	60	0.0	NA
Lane 2	11	46.4	235	0.045	100	27.5	LOS B	0.3	2.6	Full	80	0.0	0.0
Lane 3	8	0.0	183	0.045	100	32.2	LOS C	0.2	1.6	Short	30	0.0	NA
Approach	36	47.2		0.045		25.7	LOS B	0.4	4.1				
East: Springhill Roa	ad												
Lane 1	25	12.0	173	0.145	100	36.0	LOS C	0.7	5.5	Short	100	0.0	NA
Lane 2	164	12.5	533	0.308	100	17.9	LOS B	3.8	29.5	Full	370	0.0	0.0
Lane 3	164	12.5	533	0.308	100	17.9	LOS B	3.8	29.5	Full	370	0.0	0.0
Lane 4	169	12.5	547	0.308	100	17.9	LOS B	3.9	30.3	Full	370	0.0	0.0
Approach	522	12.5		0.308		18.8	LOS B	3.9	30.3				
West: Springhill Ro	ad												
Lane 1	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.0
Lane 2	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.0
Lane 3	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.0
Lane 4	45	35.6	154	0.293	100	37.2	LOS C	1.3	12.2	Short	130	0.0	NA
Approach	1360	8.1		0.797		25.7	LOS B	13.5	100.6				
Intersection	1918	10.0		0.797		23.8	LOS B	13.5	100.6				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

MOVEMENT SUMMARY

Site: 5 [2021_PM_Base Case_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Moveme	nt Perform	ance - Vehicle	S									
Mov ID	Tum	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: Bl	ueScope Acc	ess										
1	L2	52	17.3	0.080	17.0	LOS B	0.8	6.3	0.70	0.69	0.70	42.2
3	R2	32	3.1	0.080	26.5	LOS B	0.4	3.1	0.91	0.68	0.91	31.4
Approach		84	11.9	0.080	20.6	LOS B	0.8	6.3	0.78	0.68	0.78	38.4
East: Spri	inghill Road											
4	L2	6	16.7	0.030	29.7	LOS C	0.1	1.1	0.91	0.65	0.91	31.3
5	T1	391	3.1	0.429	21.8	LOS B	3.1	22.4	0.94	0.75	0.94	54.1
Approach		397	3.3	0.429	21.9	LOS B	3.1	22.4	0.94	0.74	0.94	53.8
West: Spr	ringhill Road											
11	T1	529	4.5	0.591	22.8	LOS B	4.3	31.5	0.97	0.80	1.03	53.3
12	R2	12	58.3	0.074	30.9	LOS C	0.3	3.0	0.91	0.68	0.91	38.9
Approach		541	5.7	0.591	23.0	LOS B	4.3	31.5	0.97	0.80	1.02	53.0
All Vehicle	es	1022	5.3	0.591	22.3	LOS B	4.3	31.5	0.95	0.77	0.97	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 5 [2021_PM_Base Case_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Long Line and Borfo

Lane Use and I													
	Demand			Deg.	Lane	Average	Level of	95% Back of		Lane	Lane	Cap.	Prob.
	Total veh/h	HV %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist m	Config	Length m	Adj. %	Block 9
South: BlueScope		70	venm	V/C	70	Sec					111	70	3
Lane 1	48	17.3	601	0.080	100	16.2	LOS B	0.8	6.3	Short	60	0.0	N
Lane 2	19	6.1	235	0.080	100	25.9	LOS B	0.4	3.1	Full	80	0.0	0.
Lane 3	17	3.1	215	0.080	100	26.9	LOS B	0.4	2.8	Short	30	0.0	N
Approach	84	11.9	210	0.080	100	20.6	LOS B	0.8	6.3	Chlore		0.0	
East: Springhill R	oad												
Lane 1	6	16.7	201	0.030	100	29.7	LOS C	0.1	1.1	Short	100	0.0	N/
Lane 2	129	3.1	301	0.429	100	21.8	LOS B	3.0	21.8	Full	370	0.0	0.
Lane 3	129	3.1	301	0.429	100	21.8	LOS B	3.0	21.8	Full	370	0.0	0.
Lane 4	133	3.1	309	0.429	100	21.7	LOS B	3.1	22.4	Full	370	0.0	0.
Approach	397	3.3		0.429		21.9	LOS B	3.1	22.4				
West: Springhill F	Road												
Lane 1	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.
Lane 2	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.
Lane 3	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.
Lane 4	12	58.3	163	0.074	100	30.9	LOS C	0.3	3.0	Short	130	0.0	N
Approach	541	5.7		0.591		23.0	LOS B	4.3	31.5				
Intersection	1022	5.3		0.591		22.3	LOS B	4.3	31.5				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 5: Springhill Road and BlueScope Access Road (Exit) 2024 AM Peak

MOVEMENT SUMMARY

Site: 5 [2024_AM_During Construction_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 60 seconds (Site Practical Cycle Time) Variable Sequence Analysis applied. The results are given for the selected output sequence.

Movem	ent Performa	ance - Vehicle	es									
Mov ID	Turn	Deman Total veh/h	nd Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	l Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: B	lueScope Acce	ess										
1	L2	24	70.8	0.045	23.2	LOS B	0.4	4.1	0.77	0.67	0.77	30.0
3	R2	12	0.0	0.045	30.7	LOS C	0.3	2.6	0.90	0.66	0.90	29.4
Approac	h	36	47.2	0.045	25.7	LOS B	0.4	4.1	0.81	0.66	0.81	29.8
East: Sp	ringhill Road											
4	L2	29	10.3	0.166	36.0	LOS C	0.8	6.4	0.95	0.71	0.95	28.0
5	T1	497	12.5	0.308	17.9	LOS B	3.9	30.3	0.81	0.66	0.81	57.4
Approac	h	526	12.4	0.308	18.9	LOS B	3.9	30.3	0.82	0.67	0.82	55.8
West: Sp	pringhill Road											
11	T1	1315	7.1	0.797	25.3	LOS B	13.5	100.6	0.98	0.94	1.17	51.3
12	R2	56	28.6	0.350	37.3	LOS C	1.7	14.5	0.97	0.75	0.97	35.8
Approac	h	1371	8.0	0.797	25.8	LOS B	13.5	100.6	0.98	0.93	1.17	50.7
All Vehic	les	1933	9.9	0.797	23.9	LOS B	13.5	100.6	0.93	0.85	1.07	51.5

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab)

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

Site: 5 [2024_AM_During Construction_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 60 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Lane Line and Re

Lane Use and F													
	Demano		Cap.	Deg.	Lane	Average	Level of	95% Back of		Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist m	Config	Length m	Adj. %	Block 9
South: BlueScope		70	VOIDTI	110	70	300						70	
Lane 1	17	70.8	374	0.045	100	21.4	LOS B	0.4	4.1	Short	60	0.0	N
Lane 2	11	46.4	235	0.045	100	27.5	LOS B	0.3	2.6	Full	80	0.0	0.0
Lane 3	8	0.0	183	0.045	100	32.2	LOS C	0.2	1.6	Short	30	0.0	NA
Approach	36	47.2		0.045		25.7	LOS B	0.4	4.1				
East: Springhill R	oad												
Lane 1	29	10.3	175	0.166	100	36.0	LOS C	0.8	6.4	Short	100	0.0	N/
Lane 2	164	12.5	533	0.308	100	17.9	LOS B	3.8	29.5	Full	370	0.0	0.
Lane 3	164	12.5	533	0.308	100	17.9	LOS B	3.8	29.5	Full	370	0.0	0.0
Lane 4	169	12.5	547	0.308	100	17.9	LOS B	3.9	30.3	Full	370	0.0	0.0
Approach	526	12.4		0.308		18.9	LOS B	3.9	30.3				
West: Springhill R	Road												
Lane 1	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.0
Lane 2	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.0
Lane 3	438	7.1	550	0.797	100	25.3	LOS B	13.5	100.6	Full	620	0.0	0.
Lane 4	56	28.6	160	0.350	100	37.3	LOS C	1.7	14.5	Short	130	0.0	N
Approach	1371	8.0		0.797		25.8	LOS B	13.5	100.6				
Intersection	1933	9.9		0.797		23.9	LOS B	13.5	100.6				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab)

Lane LOS values are based on average delay per lane

Intersection and Approach LOS values are based on average delay for all lanes

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 5: Springhill Road and BlueScope Access Road (Exit) 2024 PM Peak

MOVEMENT SUMMARY

Site: 5 [2024_PM_During Construction_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

Moveme	ent Perform	ance - Vehicle	s									
Mov ID	Turn	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South: Bl	ueScope Acc	ess										
1	L2	63	14.3	0.092	17.3	LOS B	0.9	7.3	0.71	0.69	0.71	42.7
3	R2	36	2.8	0.092	26.5	LOS B	0.5	3.7	0.91	0.69	0.91	31.4
Approach	ı	99	10.1	0.092	20.6	LOS B	0.9	7.3	0.78	0.69	0.78	38.9
East: Spr	inghill Road											
4	L2	6	16.7	0.030	29.7	LOS C	0.1	1.1	0.91	0.65	0.91	31.3
5	T1	391	3.1	0.429	21.8	LOS B	3.1	22.4	0.94	0.75	0.94	54.1
Approach	ו	397	3.3	0.429	21.9	LOS B	3.1	22.4	0.94	0.74	0.94	53.8
West: Sp	ringhill Road											
11	T1	529	4.5	0.591	22.8	LOS B	4.3	31.5	0.97	0.80	1.03	53.3
12	R2	12	58.3	0.074	30.9	LOS C	0.3	3.0	0.91	0.68	0.91	38.9
Approach	ו	541	5.7	0.591	23.0	LOS B	4.3	31.5	0.97	0.80	1.02	53.0
All Vehicl	es	1037	5.2	0.591	22.3	LOS B	4.3	31.5	0.94	0.77	0.97	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements. SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

LANE SUMMARY

Site: 5 [2024_PM_During Construction_Springhill Road and BlueScope Access]

Springhill Road and BlueScope Access

Site Category: (None) Signals - Fixed Time Isolated Cycle Time = 50 seconds (Site Practical Cycle Time)

Variable Sequence Analysis applied. The results are given for the selected output sequence.

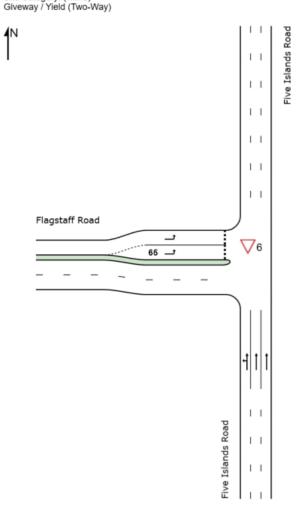
Lane Use and I													
	Demand		Cap.	Deg.	Lane	Average	Level of	95% Back of		Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist m	Config	Length m	Adj. %	Block %
South: BlueScope			TOTOT	110									
Lane 1	57	14.3	613	0.092	100	16.3	LOS B	0.9	7.3	Short	60	0.0	NA
Lane 2	23	6.1	244	0.092	100	25.9	LOS B	0.5	3.7	Full	80	0.0	0.0
Lane 3	20	2.8	215	0.092	100	27.0	LOS B	0.5	3.3	Short	30	0.0	NA
Approach	99	10.1		0.092		20.6	LOS B	0.9	7.3				
East: Springhill R	oad												
Lane 1	6	16.7	201	0.030	100	29.7	LOS C	0.1	1.1	Short	100	0.0	NA
Lane 2	129	3.1	301	0.429	100	21.8	LOS B	3.0	21.8	Full	370	0.0	0.
Lane 3	129	3.1	301	0.429	100	21.8	LOS B	3.0	21.8	Full	370	0.0	0.0
Lane 4	133	3.1	309	0.429	100	21.7	LOS B	3.1	22.4	Full	370	0.0	0.0
Approach	397	3.3		0.429		21.9	LOS B	3.1	22.4				
West: Springhill F	Road												
Lane 1	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.0
Lane 2	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.0
Lane 3	176	4.5	298	0.591	100	22.8	LOS B	4.3	31.5	Full	620	0.0	0.
Lane 4	12	58.3	163	0.074	100	30.9	LOS C	0.3	3.0	Short	130	0.0	N/
Approach	541	5.7		0.591		23.0	LOS B	4.3	31.5				
Intersection	1037	5.2		0.591		22.3	LOS B	4.3	31.5				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.


Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

Site 6: Five Islands Road and Flagstaff Road

SITE LAYOUT

 ∇ Site: 6 [2021_AM_Base Case_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road Site Category: (None) Giveway / Yield (Two-Way)

Site 6: Five Islands Road and Flagstaff Road 2021 AM Peak

MOVEMENT SUMMARY

▽ Site: 6 [2021_AM_Base Case_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Performa	ance - Vehic	les									
Mov ID	Turn	Dema Total veh/h	nd Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver, No. Cycles	Average Speed km/h
South: F	Five Islands Ro	ad										
1	L2	8	100.0	0.307	6.1	LOSA	0.0	0.0	0.00	0.02	0.00	49.4
2	T1	1690	5.8	0.307	0.0	LOSA	0.0	0.0	0.00	0.01	0.00	59.9
Approad	ch	1698	6.2	0.307	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
West F	lagstaff Road											
10	L2	19	21.1	0.020	10.7	LOSA	0.1	0.6	0.59	0.70	0.59	33.7
Approac	ch	19	21.1	0.020	10.7	LOSA	0.1	0.6	0.59	0.70	0.59	33.7
All Vehic	cles	1717	6.4	0.307	0.2	NA	0.1	0.6	0.01	0.01	0.01	59.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D)

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 6 [2021_AM_Base Case_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and F	Performance	•											
	Demand		0	_ Deg. l		Average	Level of	95% Back of Queue		Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist m	Config	Length m	Adj. %	Block. %
South: Five Island	ds Road												
Lane 1	562	7.1	1831	0.307	100	0.2	LOSA	0.0	0.0	Full	390	0.0	0.0
Lane 2	568	5.8	1850	0.307	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Lane 3	568	5.8	1850	0.307	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Approach	1698	6.2		0.307		0.1	NA	0.0	0.0				
West: Flagstaff R	oad												
Lane 1	15	21.1	782	0.020	100	7.6	LOSA	0.1	0.6	Full	200	0.0	0.0
Lane 2	4	21.1	178	0.020	100	24.1	LOS B	0.1	0.5	Short	65	0.0	NA
Approach	19	21.1		0.020		10.7	LOS A	0.1	0.6				
Intersection	1717	6.4		0.307		0.2	NA	0.1	0.6				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

Site 6: Five Islands Road and Flagstaff Road 2021 PM Peak

MOVEMENT SUMMARY

▽ Site: 6 [2021_PM_Base Case_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road

Site Category: (None) Giveway / Yield (Two-Way)

Movem	ent Performa	ance - Vehicle	es.									
Mov ID	Turn	Deman Total veh/h	id Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	f Queue Distance m	Prop. Queued	Effective Stop Rate	Aver, No. Cycles	Average Speed km/h
South: F	ive Islands Ro	ad										
1	L2	5	0.0	0.228	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	57.2
2	T1	1280	3.6	0.228	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Approad	ch	1285	3.6	0.228	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
West Fl	lagstaff Road											
10	L2	32	3.1	0.022	7.8	LOSA	0.1	0.6	0.52	0.66	0.52	37.5
Approac	ch	32	3.1	0.022	7.8	LOSA	0.1	0.6	0.52	0.66	0.52	37.5
All Vehic	cles	1317	3.6	0.228	0.2	NA	0.1	0.6	0.01	0.02	0.01	59.3

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 6 [2021_PM_Base Case_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road

Site Category: (None) Giveway / Yield (Two-Way)

Lane Use and Performance													
	Demand		0	Deg.	Lane	Average			Queue	Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist m	Config	Length m	Adj. %	Block. %
South: Five Island	ls Road												
Lane 1	428	3.6	1875	0.228	100	0.1	LOS A	0.0	0.0	Full	390	0.0	0.0
Lane 2	428	3.6	1876	0.228	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Lane 3	428	3.6	1876	0.228	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Approach	1285	3.6		0.228		0.0	NA	0.0	0.0				
West: Flagstaff Ro	bad												
Lane 1	23	3.1	1064	0.022	100	6.1	LOSA	0.1	0.6	Full	200	0.0	0.0
Lane 2	9	3.1	423	0.022	100	12.1	LOSA	0.1	0.5	Short	65	0.0	NA
Approach	32	3.1		0.022		7.8	LOS A	0.1	0.6				
Intersection	1317	3.6		0.228		0.2	NA	0.1	0.6				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane. Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site 6: Five Islands Road and Flagstaff Road 2024 AM Peak

MOVEMENT SUMMARY

abla Site: 6 [2024_AM_During Construction_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road Site Category: (None) Giveway / Yield (Two-Way)

im ands Road	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay	Level of Service	95% Back of		Prop.	Effective	Aver No.	Average
ands Road				Sec		Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
2	97	12.4	0.324	5.7	LOSA	0.0	0.0	0.00	0.10	0.00	54.0
1	1690	5.8	0.324	0.0	LOSA	0.0	0.0	0.00	0.03	0.00	59.5
	1787	6.2	0.324	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.1
f Road											
2	19	21.1	0.019	10.1	LOSA	0.1	0.6	0.55	0.67	0.55	34.2
	19	21.1	0.019	10.1	LOSA	0.1	0.6	0.55	0.67	0.55	34.2
	1806	6.3	0.324	0.4	NA	0.1	0.6	0.01	0.04	0.01	58.8
	Road	1 1690 1787 Road 2 19 19	1 1690 5.8 1787 6.2 Road 2 19 21.1 19 21.1	1 1690 5.8 0.324 1787 6.2 0.324 Road 2 19 21.1 0.019 19 21.1 0.019	1 1690 5.8 0.324 0.0 1787 6.2 0.324 0.3 Road 2 19 21.1 0.019 10.1 19 21.1 0.019 10.1	1 1690 5.8 0.324 0.0 LOS A 1787 6.2 0.324 0.3 NA Road 2 19 21.1 0.019 10.1 LOS A 19 21.1 0.019 10.1 LOS A	1 1690 5.8 0.324 0.0 LOS A 0.0 1787 6.2 0.324 0.3 NA 0.0 Road 2 19 21.1 0.019 10.1 LOS A 0.1 19 21.1 0.019 10.1 LOS A 0.1	1 1690 5.8 0.324 0.0 LOSA 0.0 0.0 1787 6.2 0.324 0.3 NA 0.0 0.0 Road 2 19 21.1 0.019 10.1 LOSA 0.1 0.6 19 21.1 0.019 10.1 LOSA 0.1 0.6	1 1690 5.8 0.324 0.0 LOS A 0.0 0.0 0.00 1787 6.2 0.324 0.3 NA 0.0 0.0 0.00 Road 2 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55	1 1690 5.8 0.324 0.0 LOS A 0.0 0.0 0.00 0.03 1787 6.2 0.324 0.3 NA 0.0 0.0 0.00 0.03 Road 2 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55 0.67 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55 0.67	1 1690 5.8 0.324 0.0 LOS A 0.0 0.0 0.00 0.03 0.00 1787 6.2 0.324 0.3 NA 0.0 0.0 0.00 0.03 0.00 Road 2 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55 0.67 0.55 19 21.1 0.019 10.1 LOS A 0.1 0.6 0.55 0.67 0.55

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

abla Site: 6 [2024_AM_During Construction_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road Site Category: (None) Giveway / Yield (Two-Way)

	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total	HV	Cap.	Satn	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
	veh/h		veh/h			Sec							%
South: Five Island	ds Road												
Lane 1	589	6.9	1820	0.324	100	1.0	LOS A	0.0	0.0	Full	390	0.0	0.0
Lane 2	599	5.8	1850	0.324	100	0.0	LOS A	0.0	0.0	Full	390	0.0	0.0
Lane 3	599	5.8	1850	0.324	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Approach	1787	6.2		0.324		0.3	NA	0.0	0.0				
West: Flagstaff R	oad												
Lane 1	16	21.1	853	0.019	100	7.1	LOS A	0.1	0.6	Full	200	0.0	0.0
Lane 2	3	21.1	160	0.019	100	26.3	LOS B	0.1	0.5	Short	65	0.0	NA
Approach	19	21.1		0.019		10.1	LOS A	0.1	0.6				
Intersection	1806	6.3		0.324		0.4	NA	0.1	0.6				

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site 6: Five Islands Road and Flagstaff Road 2024 PM Peak

MOVEMENT SUMMARY

abla Site: 6 [2024_PM_During Construction_Five Islands Road and Flagstaff Road]

Five Islands Road and Flagstaff Road Site Category: (None)

Giveway / Yield (Two-Way)

ent Perform	ance - Vehicle	s									
Tum	Deman Total veh/h	id Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Aver No. Cycles	Average Speed km/h
ive Islands Ro	ad										
L2	5	0.0	0.228	5.6	LOSA	0.0	0.0	0.00	0.01	0.00	57.2
T1	1280	3.6	0.228	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
:h	1285	3.6	0.228	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
agstaff Road											
L2	32	3.1	0.022	7.8	LOSA	0.1	0.6	0.52	0.66	0.52	37.5
:h	32	3.1	0.022	7.8	LOSA	0.1	0.6	0.52	0.66	0.52	37.5
cles	1317	3.6	0.228	0.2	NA	0.1	0.6	0.01	0.02	0.01	59.3
	Turn ive Islands Ro L2 T1 th agstaff Road L2 th	Tum Deman Total veh/h ive Islands Road L2 5 T1 1280 th 1285 agstaff Road L2 32 th 32	Total veh/h HV % ive Islands Road 1285 L2 5 0.0 T1 1280 3.6 ch 1285 3.6 agstaff Road 12 3.1 ch 32 3.1	Turn Demand Flows Total Deg. Satn Total HV Satn veh/h % V/c ive Islands Road 1280 3.6 0.228 T1 1280 3.6 0.228 th 1285 3.6 0.228 agstaff Road 122 32 3.1 0.022 th 32 3.1 0.022 1000000000000000000000000000000000000	Turn Demand Flows Total Deg. HV Average Sain Delay Delay ive Islands Road 5 0.0 0.228 5.6 T1 1280 3.6 0.228 0.0 th 1285 3.6 0.228 0.0 agstaff Road	Turn Demand Flows Total Deg. HV Average Satn Level of Delay ive Islands Road % v/c sec Service L2 5 0.0 0.228 5.6 LOS A T1 1280 3.6 0.228 0.0 LOS A th 1285 3.6 0.228 0.0 NA agstaff Road L2 32 3.1 0.022 7.8 LOS A th 32 3.1 0.022 7.8 LOS A	Turn Demand Flows Total Deg. HV Average Delay Level of Delay 95% Back of Service 95% Back of Vehicles vetvh % v/r Sain Delay Service Vehicles veh ive Islands Road 0.0 0.228 5.6 LOS A 0.0 T1 1280 3.6 0.228 0.0 LOS A 0.0 th 1285 3.6 0.228 0.0 NA 0.0 agstaff Road 32 3.1 0.022 7.8 LOS A 0.1	Turn Demand Flows Total Deg HV Average Sain Level of Delay 95% Back of Queue Vehicles Distance Distance veh/h % v/c Sain Delay Service 95% Back of Queue veh/h % v/c Sain Delay Service Vehicles Distance ive Islands Road 1280 3.6 0.228 0.0 LOS A 0.0 0.0 T1 1280 3.6 0.228 0.0 NA 0.0 0.0 agstaff Road 10.022 7.8 LOS A 0.1 0.6 th 32 3.1 0.022 7.8 LOS A 0.1 0.6	Turn Demand Flows Total Deg. HV Average Satn Level of Delay 95% Back of Queue Vehicles Prop. Distance Prop. Queued ive Islands Road v/v v/v v/v v/v v/v v/v prop. Queued Queued v/v v/v prop. Queued Queued v/v prop. Queued prop. Queued v/v prop. Queued prop. Queued prop. Queued prop. Queued prop. Queued prop. Queued prop. Queued	Turn Demand Flows Total Deg. HV Average Satn Level of Delay 95% Back of Queue Vehicles Prop. Distance Effective Stop Rate ive Islands Road	Turn Demand Flows Total Deg. HV Average Satn Level of Delay 95% Back of Queue veh Prop. Distance weh Effective Nueued Aver No. Stop Rate Aver No. Cycles ive Islands Road

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LANE SUMMARY

✓ Site: 6 [2024_PM_During Construction_Five Islands Road and Flagstaff Road]

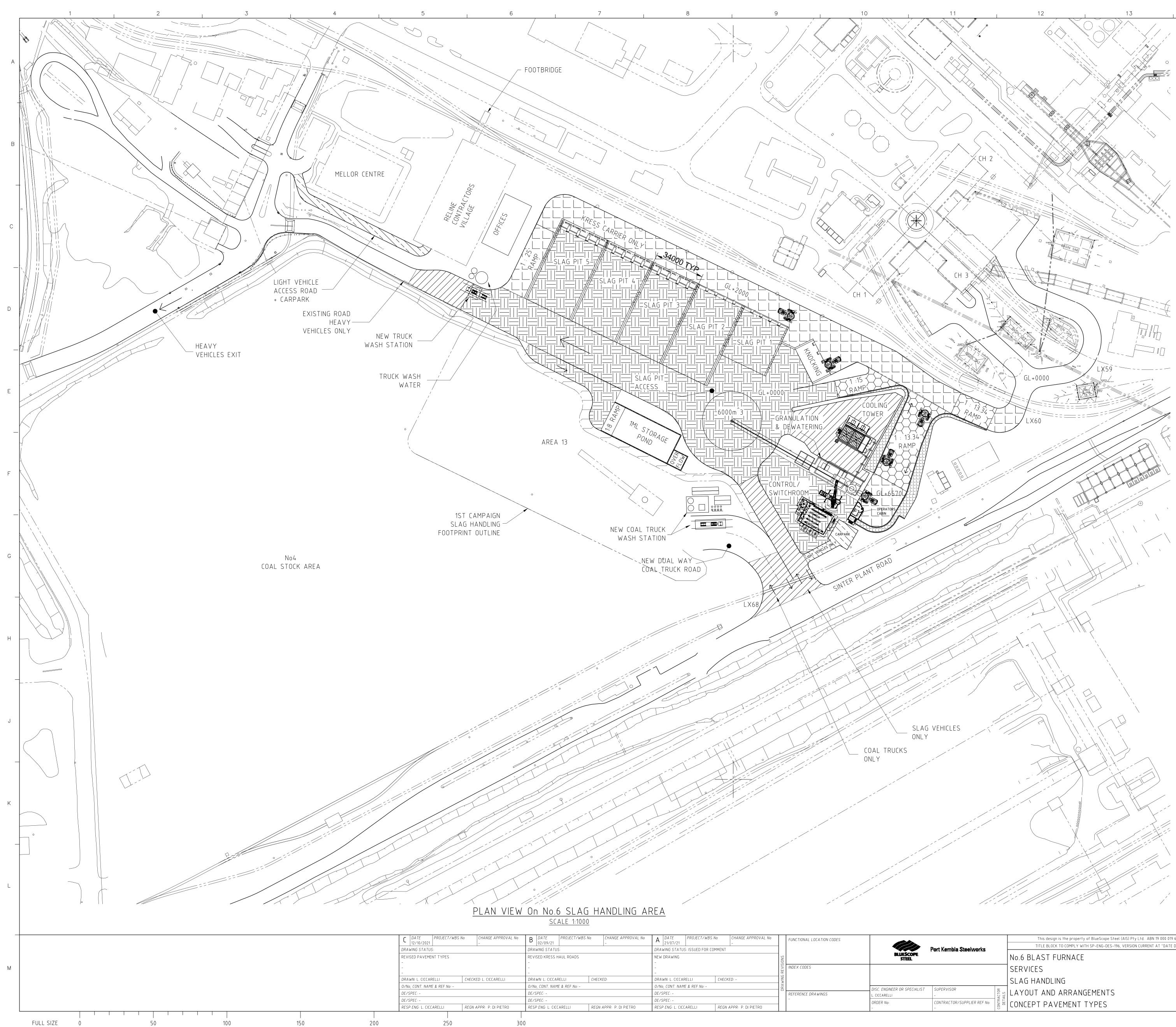
Five Islands Road and Flagstaff Road Site Category: (None) Giveway / Yield (Two-Way)

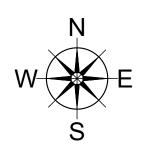
	Demand	Flows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total veh/h	H∨ %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist	Config	Length m	Adj. %	Block. %
South: Five Island													
Lane 1	428	3.6	1875	0.228	100	0.1	LOSA	0.0	0.0	Full	390	0.0	0.0
Lane 2	428	3.6	1876	0.228	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Lane 3	428	3.6	1876	0.228	100	0.0	LOSA	0.0	0.0	Full	390	0.0	0.0
Approach	1285	3.6		0.228		0.0	NA	0.0	0.0				
West: Flagstaff Ro	oad												
Lane 1	23	3.1	1064	0.022	100	6.1	LOSA	0.1	0.6	Full	200	0.0	0.0
Lane 2	9	3.1	423	0.022	100	12.1	LOSA	0.1	0.5	Short	65	0.0	NA
Approach	32	3.1		0.022		7.8	LOS A	0.1	0.6				
Intersection	1317	3.6		0.228		0.2	NA	0.1	0.6				

Site Level of Service (LOS) Method: Delay (RTANSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Lane LOS values are based on average delay per lane.

Minor Road Approach LOS values are based on average delay for all lanes


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road lanes.


SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

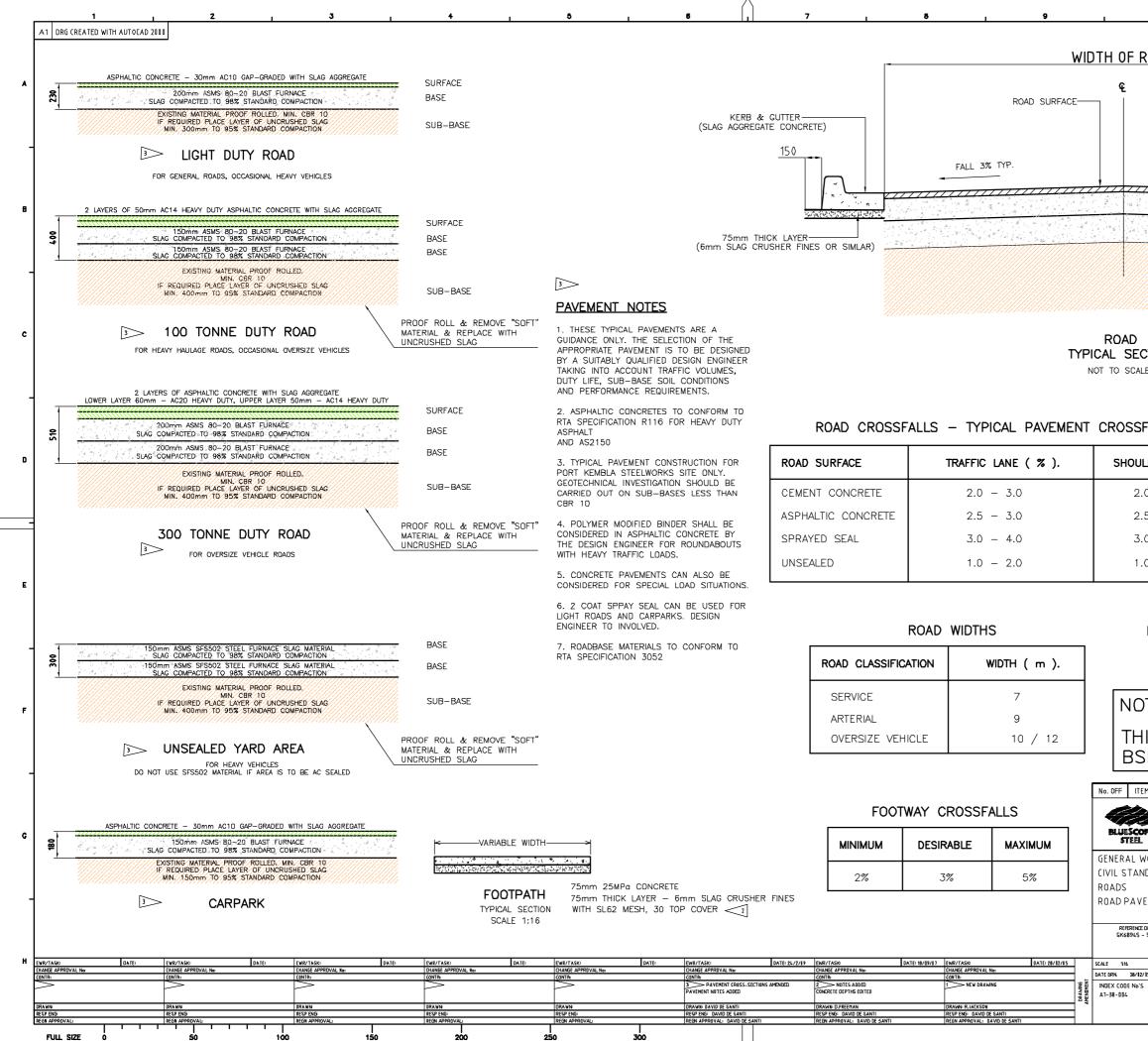
Appendix C Slag handling area pavement upgrade

14

PAVEMENT TYPES REFER DRG 398730

100 TONNE DUTY ROAD

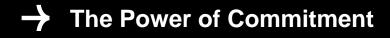
LIGHT DUTY ROAD


15

300 TONNE DUTY ROAD KRESS UNSEALED YARD ROAD (TBC)

UNSEALED YARD AREA

	This design is the property of BlueScope Steel (AIS) Pty Ltd. ABN 19 000 019 625	B1	CHANGE APPROVA	L NUMBER:		PROJECT/WBS No:	
Port Kembla Steelworks	TITLE BLOCK TO COMPLY WITH SP-ENG-DES-196, VERSION CURRENT AT "DATE DRN"	וטן	DRAWN		CHECKED		DISC. ENGINEER OR
I alt letting steenaalys	No.6 BLAST FURNACE		L. CICCARELLI				
	SERVICES		DISC. ENGINEER OR S	5PECIALIST	RESPONSIBLE ENGI	NEER	REGISTRATION A
	SLAG HANDLING		AUTOCAD FILE NAM	ME: SLG-DWG-MECH-B	 SL-6BFPROP0035-C.C)WG AUTOCAD I	 PRINT: 12/10/2021
SUPERVISOR - STREAM	LAYOUT AND ARRANGEMENTS		DATE DRN 21/07/21	DRAWING No:	BFPF)35
CONTRACTOR/SUPPLIER REF No:	CONCEPT PAVEMENT TYPES		<i>SCALE</i> 1:1000	DRAWING STATUS:		FOR COMMENT	


16	
ENGINEER OR SPECI,	ALIST
STRATION APPRO	VAL
12/10/2021 09:09	AM
5	REV No
J	C

10		11	1	12	
ROAD					
	FAL	L 3% TYP			
SFALLS. ULDER (%). 2.0 – 4.0 2.5 – 4.0 3.0 – 4.0 1.0 – 2.0		RTA RC AS 174 AS 174 AS 174 AS 174 AS 174 AS 174 AS 215	RENCES DAD DESIGN 42.1 42.2 42.7 42.10 42.10 42.11 42.13 50 PECIFICATIO	GUIDE	
SELEC	WENT DE CT MATER WIDTH (PTHS CI RIAL ZOI CHANGEI	HANGED NE ADDE D RSEDE	D S	3
COPE . WORKS ANDARDS AVEMENT TYPES 8	DESCRIPTION embla Steel & CROSS SECT	WOTKS TECHNOL INDUSTR CONTRAC	CTOR/SUPPLIER REF N RESP ENGN ORDE	DEP AR TMENT 3730_112 ID: ID: ID: ID: ID: ID: ID: ID:	19 011 119 625 NR 119 119 119 625 NR 119 119 625 NR 119 119 625 NR 119 119 625
45 - SHEET 3 DRAV ROBY	WN YN JACKSON, PEA Engineer / Specialist	CHECKED DAVID DE SAN DISC DASINER DISC DASINER DISC DASINER DISC DASINER	/ SPECIALIST	RESPONSELE ENGINEER DAVID DE SANTI REGISTRATION APPROVA DAVID DE SANTI	3

ghd.com

Appendix J Greenhouse Gas Assessment

Blast Furnace No. 6 Reline Project

Greenhouse Gas Report

BlueScope Steel (AIS) Pty Ltd

07 March 2022

→ The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373

133 Castlereagh Street, Level 15 Sydney, New South Wales 2000, Australia **T** +61 2 9239 7100 | **F** +61 2 9239 7199 | **E** sydmail@ghd.com | **ghd.com**

Document status

Status	Revision	Author	Reviewer		Approved for	issue	
Code			Name	Signature	Name	Signature	Date
S4	0	Pantju Nam	Sue Trahair		Karl Rosen		04/02/22
S4	1	Pantju Nam	Sue Trahair	On file.	Karl Rosen	Karlhow	07/03/22

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Executive summary

BlueScope Steel (AIS) Pty Ltd's (BlueScope) Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is currently in care and maintenance. 5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation. 6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

GHD Pty Ltd (GHD) was commissioned by BlueScope to prepare a Greenhouse Gas (GHG) assessment for the project. GHD has carried out this GHG assessment in accordance with relevant international, national, state, and local policies, using methodologies which are representative of good GHG accounting in Australia.

Construction emissions from the project rely upon data from other sections of the Environmental Impact Statement, as well as data supplied by BlueScope. Construction emissions are estimated to be 30,000 tCO₂-e, or approximately 9,800 tCO₂-e per annum over the three-year construction period. Emissions during construction are minor and approximately 0.1% of annual operational emissions.

Operational emissions from the project rely upon Scope 1 and 2 emissions data provided by BlueScope. The quantity of GHG emissions for the operation of PKSW, of which 6BF will be a component, was approximately 6,869,000 tCO₂-e per annum in FY2021. The assessment of Scope 1 and 2 operational emissions concluded that 6BF will have a similar GHG emissions profile to 5BF with improvements (reductions) in GHG emissions intensity from the commencement of operations of 6BF. Over \$100 million of project scope is directed at environmental improvements, including \$80 million of improvements which are designed to deliver reductions in GHG emissions. This will mean that the project will make a near-term positive environmental impact, relative to current 5BF operations. The scope of the project is intended to address the dual aims of the project: to secure BlueScope's domestic ironmaking needs from 2026, as well as provide a bridge to transition from current blast furnace technology to new and emerging low emissions technologies once available at commercial, viable scale.

Construction emissions from the project rely upon data from other sections of the Environmental Impact Statement, as well as data supplied by BlueScope. Construction emissions are estimated to be 30,000 tCO₂-e, or approximately 9,800 tCO₂-e per annum over the three-year construction period. Emissions during construction are minor and approximately 0.1% of annual operational emissions.

This GHG assessment is supported by qualitative information taken from the Climate Action Report published in 2021 (Climate Action Report) by BlueScope's parent company, BlueScope Steel Limited (BSL). GHD considers this to be an appropriate assessment approach in the context of the complex operations of an integrated iron and steelmaking facility such as PKSW. In adopting this approach, GHD has also had regard to the fact that the project is essentially a like for like replacement of current ironmaking operations at 5BF.

Current steelmaking technology is a GHG intensive activity. For example, in 2020, the average GHG emissions intensity of steelmakers reporting to Worldsteel using BF-BOF technology was 2.33 tCO₂-e per tonne of crude steel produced. During this period, the GHG emissions intensity of steelmaking at PKSW was 2.21 tCO₂-e per tonne of crude steel produced, comparing favourably to the average reported by Worldsteel. This means that for 2020, PKSW was within the top quartile of reporters in terms of lowest GHG emissions intensity for integrated steel plants globally, using the Worldsteel calculation methodology (based on ISO 14404 series).

BSL's publication of its Climate Action Report acknowledges the role the steel industry can play in the transition to a net zero emissions future, including its use as a critical component of renewable energy and transport infrastructure. To achieve net zero emissions in steelmaking, commercialisation of breakthrough technologies and supporting infrastructure will be needed.

The availability of breakthrough low GHG emissions ironmaking technologies was considered by BlueScope in assessing options for the future configuration of PKSW. However, as technologies that are suitable for use at PKSW are unlikely to be available and commercially viable at scale until a time well after that required to replace 5BF, the only technically feasible and commercially viable option for BlueScope to continue steelmaking at Port

Kembla in the short to medium term is to progress with the existing configuration and reline 6BF. The reline of 6BF provides a 'bridge' to transition from the current blast furnace technology to new and emerging low emissions technologies when they are commercially available.

The GHG reduction measures incorporated in the project design are outlined in section 6 of this report. These measures include the installation of a Top Gas Recovery Turbine to generate electricity, installation of a Waste Gas Heat Recovery system to reduce fuel consumption at the stoves, installation of dual lances at the tuyeres to enable the use of alternative reductants such as hydrogen-rich Coke Ovens Gas and renewable hydrogen, and optimisation of raw material inputs. These measures are part of a broader suite of climate-related projects at Port Kembla that have the potential to further reduce GHG emissions intensity.

In addition to these measures and outside of the scope of the project, BlueScope and BSL are currently investigating emerging technologies such as the use of sustainably sourced biochar as a replacement for pulverised coal used in the blast furnace and, in partnership with Shell Energy Operations Pty Ltd, the design, build and operation of a 10 MW renewable energy hydrogen electrolyser to test the use of renewable hydrogen in the blast furnace at PKSW. BSL has also signed a Memorandum of Understanding with Rio Tinto Group to explore using renewable hydrogen to replace coking coal to directly reduce iron ore sourced from the Pilbara region. Other GHG emission reduction investments made by BSL external to the project are outlined in section 3.

This GHG assessment has been informed by GHG emission data reported for existing operations and the targets and goals set by BSL in the Climate Action Report (noting the enablers essential to those targets being met are explained in the Climate Action Report), including those relating to BlueScope's operations at PKSW. The aims and objectives of the Climate Action Report are considered to be consistent with international, national, state, and local GHG policies which are outlined in section 3 of this report.

Similarly, the commitment of BlueScope over the campaign life of 6BF to continue research and investment in emerging technologies for PKSW, including 6BF, to more substantially reduce GHG emissions, are considered by GHD to be consistent with international, national, state and local GHG policies aimed at achieving a net zero future.

Contents

1.	Intro	duction		1		
	1.1	Backg	round and project overview	1		
	1.2	Purpos	se of this report	1		
	1.3	Propor	nent details	1		
	1.4	Limitat	tions	2		
2.	Meth	odology		3		
	2.1	Overvi	iew	3		
	2.2	Green	house gases and global warming potentials	3		
	2.3	Assess	sment approach	3		
		2.3.1	Construction phase emission sources	4		
	0.4	2.3.2	Operations phase emission sources	4		
	2.4		nptions and exclusions	4		
3.			lative and policy context	5		
	3.1		tary's environmental assessment requirements	5		
	3.2		ndustry context	5		
	3.3		l policy context	6		
	3.4	3.3.1 Nation	Intergovernmental Panel on Climate Change al policy context	6 7		
	3.4	3.4.1	Australia's Long-Term Emissions Reduction Plan	7		
	3.5		policy context	8		
		3.5.1	NSW 2040 Economic Blueprint	8		
		3.5.2	NSW Climate Change Policy Framework	8		
	3.6	•	policy context	9		
		3.6.1	Climate Change Mitigation Plan 2020	9		
	27	3.6.2	Sustainable Wollongong 2030	9		
	3.7	3.7.1	cope context BlueScope Steel Limited's Climate Action Report	10 11		
		3.7.2	BlueScope Steel Limited Sustainability Report FY2021	13		
	3.8	GHG a	applicable legislation and guidelines	13		
4.	Exist	ing enviro	onment	14		
	4.1	Overvi		14		
	4.2	Port K	embla Steelworks	17		
	4.3	Projec	t summary	20		
5.	Impa	ct assess	sment	23		
	5.1	Constr	ruction	23		
	5.2	Operat	24			
	5.3	Impact	t of emissions	24		
6.	Gree	nhouse g	as reduction measures	26		
	6.1	Overvi	iew	26		
	6.2	Techn	27			
	6.3	6.3 Proposed technologies for implementation				
		6.3.1	Dual lance tuyeres	29		
		6.3.2	Top Gas Recovery Turbine	30		

		6.3.3	Waste Gas Heat Recovery	30
	6.4	Emergir	ng and future breakthrough technologies	30
		6.4.1	Biochar	31
		6.4.2	Hydrogen-based Direct Reduced Iron (DRI) / Electric Arc Furnace (EAF) steelmaking	31
		6.4.3	Hydrogen-based Direct Reduced Iron (DRI) / Melter / Basic Oxygen Furnace (BOF)	32
		6.4.4	Direct electrolysis of iron ore	33
		6.4.5	Blast Furnace coupled with Carbon Capture, Utilisation and Storage (CCUS)	33
7.	Mitigati	on meas	sures	34
	7.1	Constru	ction	34
	7.2	Operatio	ons	34
8.	Conclu	sions		35
9.	Referer	ices		36

Table index

Table 2.1	Greenhouse gases and 100-year global warming potentials	3
Table 3.1	Greenhouse gas SEARs	5
Table 3.2	Climate Change Emission Scenarios	6
Table 4.1	Project summary	20
Table 5.1	Construction emission assumptions	23
Table 5.2	Construction and commissioning emissions	23
Table 5.3	Summary of PKSW annual emissions	24
Table 5.4	National and NSW GHG emissions	25
Table 6.1	Summary of potential technologies (sourced from McKinsey & Company (2020)	
	report)	27
Table 6.2	Technologies or practices proposed as part of the project	28

Figure index

Figure 3.1	Indicative iron and steelmaking decarbonisation pathway (BSL Climate Action	
-	Report, 2020)	12
Figure 4.1	Regional location	15
Figure 4.2	Site layout	16
Figure 4.3	Integrated steelworks schematic	19
Figure 4.4	Key features	22

Terms and abbreviations

Abbreviation	Description
ABS	Australian Bureau of Statistics
AR	Assessment Report
BF	Blast Furnace
BFG	Blast Furnace Gas
BlueScope	BlueScope Steel (AIS) Pty Ltd
BOF	Basic Oxygen Furnace
BSL	BlueScope Steel Limited
°C	Degrees Celsius
С	Carbon
C&D	Construction and Demolition
CBAM	Carbon Border Adjustment Mechanism
CCUS	Carbon Capture Usage and Storage
CH ₄	Methane
COG	Coke Ovens Gas
CO ₂	Carbon dioxide
CO2CRC	CO ₂ Cooperative Research Centre
CSSI	Critical State Significant Infrastructure
DPIE	Department of Planning, Industry and Environment
DRI	Direct Reduced Iron
DISER	Department of Industry, Science, Energy and Resources
EAF	Electric Arc Furnace
EF	Emission Factor
EIS	Environmental Impact Statement
EP&A	Environmental Planning and Assessment 1979
EU	European Union
FY	Financial year
GHD	GHD Pty Ltd
GHG	Greenhouse gas
GHG Protocol	Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard
GWP	Global Warming Potential
H ₂	Hydrogen
НВІ	Hot Briquetted Iron
HPCOG	High Pressure Coke Ovens Gas
IPCC	Intergovernmental Panel on Climate Change
ISO	International Standards Association
kg	Kilograms
kL	Kilolitre
km	Kilometres

Abbreviation	Description
kPa	Kilopascal
kW/m ²	Kilowatts per square metre
LGA	Local Government Area
LPG	Liquefied Petroleum Gas
m	Metres
MSW	Municipal Solid Waste
Mtpa	Million tonnes per annum
MW	Megawatt
MWh	Megawatt hour
N ₂ O	Nitrous oxide
NG	Natural Gas
NGA	National Greenhouse Accounts
NGER	National Greenhouse and Energy Reporting
NGER Act	National Greenhouse and Energy Reporting Act 2007
NSW	New South Wales
PCI	Pulverized Coal Injection
PKSW	Port Kembla Steelworks
RCPs	Representation Concentration Pathways
SEARs	Secretary's Environmental Assessment Requirements
SF ₆	Sulphur hexafluoride
scrap	scrap steel
SRD	State and Regional Development
t	Tonnes
tCO ₂ -e	Tonnes of carbon dioxide equivalent
TCFD	Task Force on Climate-related Financial Disclosures
TRL	Technology Readiness Level
TRT	Top Gas Recovery Unit
UN	United Nations
USD	United States Dollar

1. Introduction

1.1 Background and project overview

BlueScope Steel (AIS) Pty Ltd's (BlueScope) Port Kembla Steelworks (PKSW) operation in NSW includes two blast furnaces. No. 5 Blast Furnace (5BF) is currently operating, while No. 6 Blast Furnace (6BF) is in care and maintenance.

5BF is expected to continue to produce (molten) iron on a continuous basis until it reaches the end of its operational life at some stage between 2026 and 2030. BlueScope is proposing a move of iron manufacture from 5BF to 6BF, after 5BF ceases operation.

6BF last produced iron in 2011, at which point it was taken out of service and placed into care and maintenance. To prepare 6BF to become operational again, major maintenance works are required (the project). The project aims to return 6BF to service through a reline process that will be carried out while 5BF continues to operate.

The project has been declared Critical State Significant Infrastructure (CSSI) in accordance with section 5.13 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) and Schedule 5 of the *State Environmental Planning Policy (State and Regional Development) 2011* (SRD SEPP).

1.2 Purpose of this report

GHD Pty Ltd (GHD) was commissioned by BlueScope to prepare a greenhouse gas (GHG) assessment for the project. This report will support the preparation of an Environmental Impact Statement (EIS) under the EP&A Act for the project.

This report addresses the relevant criteria in the NSW Secretary's Environmental Assessment Requirements (SEARs) for the project issued in July 2021 (as outlined in Section 3.7).

As such, this report focuses on the impact of GHG emissions associated with the ongoing iron making from 6BF once 5BF comes to the end of its current campaign.

1.3 Proponent details

BlueScope Steel (AIS) Pty Ltd (BlueScope) (ABN 19 000 019 625) is a wholly owned subsidiary of BlueScope Steel Limited (BSL) (ABN 16 000 011 058). BlueScope is the owner and operator of PKSW and is the proponent for the project. BlueScope is one of Australia's leading manufacturers, and one of only two primary producers of iron and steel in Australia, and together with BSL, is a global leader in finished and semi-finished steel products.

1.4 Limitations

This report has been prepared by GHD for BlueScope Steel (AIS) Pty Ltd and may only be used and relied on by BlueScope Steel (AIS) Pty Ltd for the purpose agreed between GHD and BlueScope Steel (AIS) Pty Ltd as set out in Section 1.2.

GHD otherwise disclaims responsibility to any person other than BlueScope Steel (AIS) Pty Ltd arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by BlueScope Steel (AIS) Pty Ltd and others who provided information to GHD (including Government authorities), which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

2. Methodology

2.1 Overview

The SEARS (refer Section 3.1) require an assessment of GHG emissions associated with the project, but do not mandate a specific standard, protocol, or methodology for the GHG assessment. This assessment has been undertaken in accordance with the principles of ISO 14064-2 and National Greenhouse and Energy Reporting (NGER) (Measurement) Determination 2008 for measuring emissions, in the following steps:

- Review relevant legislation, guidelines and policy documents to establish the regulatory context for the GHG assessment. Refer Section 3.
- Describe the existing environment, PKSW, and the proposed project. Refer Section 4.
- Establish baseline GHG emissions for PKSW inclusive of the existing operation of 5BF and assess the likely GHG emissions from 6BF. Refer Section 5.
- Assess potential GHG emissions reduction measures that may be applicable to the operation of 6BF and review their viability for incorporation into the project. Refer Section 6.

2.2 Greenhouse gases and global warming potentials

The GHGs considered in this assessment and the corresponding global warming potential (GWP) for each GHG are listed in Table 2.1. GWP is a metric used to quantify and communicate the relative contributions of different substances to climate change over a given time horizon. GWP accounts for the radiative efficiencies of various gases and their lifetimes in the atmosphere, allowing for the impacts of individual gases on global climate change to be compared relative to those for the reference gas carbon dioxide (CO₂).

The GWPs from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report and section 2.02 of the National Greenhouse and Energy Reporting (NGER) Regulations 2008, updated July 2021, were used in this assessment.

Greenhouse gas	Global warming potential
Carbon dioxide (CO ₂)	1
Methane (CH ₄)	28
Nitrous oxide (N ₂ O)	265
Sulphur hexafluoride (SF6)	23,500

 Table 2.1
 Greenhouse gases and 100-year global warming potentials

2.3 Assessment approach

Relevant sections of the following documents were used for the purposes of defining appropriate methods for quantification of emissions from individual sources from existing operations:

- NGER (Measurement) Determination 2008 (as amended) and NGER Act 2007, Commonwealth Department of Environment and Energy
- Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (GHG Protocol) (World Business Council for Sustainable Development and World Resources Institute, 2015)

These guidelines are considered representative of good practice GHG accounting in Australia and are applicable to the project.

The methodology undertaken for this GHG assessment is semi-quantitative using the data provided by BlueScope and BlueScope reports for the operational emissions of the project. Therefore, the assessment will use existing GHG emissions calculated by BlueScope.

2.3.1 Construction phase emission sources

The following emission sources were included in the assessment boundary for the construction stage:

- Diesel used in plant and equipment
- Transport of plant, materials and equipment to the site, and removal of waste from the site
- Worker commuting, including private transport to/from the site, and buses used around the site
- Electricity from the NSW grid
- Disposal of waste
- Acetylene for welding
- Natural gas use during commissioning of the 6BF.

2.3.2 Operations phase emission sources

The following emission sources were included in the assessment boundary for the operations stage:

- Scope 1 and 2 emissions from iron and steelmaking activities.

2.4 Assumptions and exclusions

The following were excluded from the GHG assessment:

- The scope of this assessment did not include detailed analysis of Scope 3 emissions. Scope 3 emissions associated with construction of the project will be comparable to when BlueScope undertakes periodic maintenance shutdowns and are considered relatively minor. The Scope 3 emissions associated with the operation of 6BF will not materially differ from existing operations, given 5BF and 6BF use the same technology to make iron, and only one furnace will be operating at a time. The Scope 3 emissions from the production of iron ore and coal will therefore remain relatively consistent and as such, a detailed analysis of Scope 3 emissions has not been undertaken.
- No significant vegetation clearing is required by the project with the exception of some weeds on established hardstand areas. Therefore, emissions associated with vegetation clearing are negligible and do not require further consideration.
- Emissions during the operation of the project which are likely to be negligible compared with other emissions from the proposal, include:
 - Emissions associated with combustion of fuels used in minor quantities such as LPG, gasoline, solvents, oils and greases during maintenance and inspection activities.
 - Emissions associated with the leakage of hydrofluorocarbons. The project may use negligible quantities of hydrofluorocarbons for refrigeration and air conditioning during operation of the proposal, and therefore have not been included in this assessment.
- Emissions during the operation of the project which will be the same as current operations, including:
 - Transport of workers to site
 - Transport of raw materials to the site
 - Transport of products and co-products from the site

3. Industry, legislative and policy context

3.1 Secretary's environmental assessment requirements

Table 3.1 outlines the SEARs relevant to GHG.

Table 3.1 Greenhouse gas SEARs

Requirements	Where addressed
An assessment of the greenhouse gas emissions of the project and any measures to minimise emissions intensity, improve energy efficiency and adopt new technologies to reduce emissions in the medium to long term	 Section 5 impact assessment Section 6 GHG reduction measures and technologies Section 7 mitigation measures

3.2 Steel industry context

The traditional blast furnace methodology for iron and steel production is carbon intensive: the process relies on the stripping of oxygen from ferrous ores using carbon (in the form of coke) as the reductant. Currently, approximately 73% of the world's iron production is via the blast furnace pathway. Every tonne of steel globally produced across all steel manufacturing technologies in 2020 emitted, on average, 1.85 tonnes of CO₂, equating to 7 to 9 percent of global CO₂ emissions in that year (Worldsteel Association, 2021). Consequently, steel manufacturers across the globe are increasingly facing a decarbonisation challenge. This challenge is driven by three key developments that go beyond the Paris Agreement (McKinsey & Company, 2020):

- Further tightening of carbon emission regulations. This is manifested in CO₂ reduction targets, as well as rising CO₂ emission prices as outlined in the European Green Deal.
- Growing investor and public interest in sustainability. For example, the Institutional Investors Group on Climate Change, a global network with 250-plus investors and over USD 30 trillion in assets under management, has raised expectations for the steel industry to safeguard its future in the face of climate change. At the same time, global investment firm BlackRock has confirmed its commitment to environmentally responsible business development and sustainable investing.
- Changing customer requirements and growing demand for carbon-friendly steel products. A trend that has
 already been observed in various industries, including the auto industry, where manufacturers have the aim of
 eliminating carbon emissions completely from their entire value chains (including their suppliers) and taking
 on a full life cycle perspective in future.

A recent study of 20 global steelmakers estimates that the global steel industry may find approximately 14 percent of steel companies' potential value is at risk if they are unable to decrease their environmental impact under a 2°C scenario (refer to Section 3.3.1 for more information regarding Intergovernmental Panel on Climate Change, climate scenario), where global carbon prices rise to USD 100 per tonne of CO₂ (McKinsey & Company, 2020). Results range from 2 percent to 30 percent for individual companies.

To reduce its GHG emissions, the steel industry has identified a range of measures to be implemented. These are reflected in BSL's first Climate Action Report published in 2021 (Climate Action report), and include:

- Reducing emissions in response to climate science, technology availability and the timing of key investment decisions
- Creating carbon efficient and climate resilient solutions for customers
- Increasing the use of affordable and reliable renewable energy
- Using quality, cost-effective carbon offsets only where direct abatement is not feasible
- Making the case for local, sustainable steel use
- Monitoring and appropriately managing climate risks and engaging with external stakeholders and partners.

BlueScope and BSL acknowledge the part they can play in the steel industry's transition to net zero. The Climate Action Report, the contents of which are discussed further in section 3.7, describes the strategies which will underpin this transition for BSL, including the transition which has already commenced and which will continue at BlueScope's PKSW.

It should also be acknowledged that steel is a fundamental part of any future renewable economy. Steel will be required for all alternative energy systems used to power the economy in the future. Further, steel is a fundamental part of the circular economy, being infinitely recyclable. In playing its part in supplying materials to drive the renewable economy BlueScope and BSL acknowledge that this needs to be undertaken with reduced CO₂ intensity.

3.3 Global policy context

Australia is one of 191 countries plus the European Union that have committed to keeping global temperature rises to well below 2°C through the Paris Agreement under the United Nations Framework Convention on Climate Change (Paris Agreement). Over 73 of these countries, including Australia, have set a goal of reaching net zero GHG emissions by 2050. Some countries may also start acting beyond the commitments of the Paris Agreement. Action on climate change at the diplomatic and national levels is mirrored in many parts of the global community. Details of Australia's commitment to meeting globally agreed targets are outlined in Section 3.4.

More than 175 of the world's largest companies have committed to reducing their emissions to net zero by 2050, and local governments and community groups are increasingly looking for opportunities to invest in emissions reduction initiatives. The Intergovernmental Panel on Climate Change (IPCC) provides scientific information on anthropogenic climate change which is relied upon in global agreements (such as the Paris Agreement) on how to mitigate and adapt to future climatic conditions.

3.3.1 Intergovernmental Panel on Climate Change

The IPCC strongly recommends limiting the global temperature increase to 1.5° C, to prevent the impacts of climate change significantly increasing. These impacts amplify rapidly between just 1.5° C and 2° C of temperature increase. The IPCC has reported that limiting global warming to 1.5° C will require "rapid and far-reaching" transitions in land, energy, industry, buildings, transport, and cities. Global net human-caused emissions of CO₂ will need to fall by about 45 percent from 2010 levels by 2030, reaching 'net zero' around 2050. This means that any remaining emissions will need to be balanced by removing CO₂ from the air (IPCC, 2021). The ideal scenario to slow warming would be Representation Concentration Pathways (RCPs)¹ 2.6, however, according to the IPCC the world is on track for RCP 6.0 or RCP 8.5 if no measures are implemented in the next decade (IPCC, 2021). Table 3.2 details the IPCC's RCPs.

Global climate response	Climate scenario	Projected increase in global surface temperature	IPCC report source
Strong immediate response, emissions peak by 2020, with rapid decline in emissions thereafter from global participation and application of technologies	RCP 2.6 , atmospheric concentration of CO ₂ projected at approximately 420 ppm by 2100	Mean projected increase 1.0°C Anomaly range +0.3 to 1.7°C (by 2081 – 2100)	Assessment Report (AR)5 (IPCC, 2014)
Slower response, emissions peak around 2040, then decline	RCP 4.5 , atmospheric concentration of CO ₂ projected at approximately 540 ppm by 2100	Mean projected increase 1.8°C Anomaly range +1.1 to 2.6°C (by 2081 – 2100)	AR5 (IPCC, 2014)

Table 3.2 Climate Change Emission Sc	Scenarios
--------------------------------------	-----------

¹ RCPs are concentration pathways used in the IPCC which show different greenhouse gas concentration (not emissions) trajectories to illustrate possible climate futures (e.g. a high emissions future meaning increased temperatures or a low emissions future with less temperature increase) which are dependent on the volume of GHG emissions in the future.

Global climate response	Climate scenario	Projected increase in global surface temperature	IPCC report source
Slow response , application of mitigation strategies and technologies	RCP 6.0 , atmospheric concentration of CO ₂ projected at approximately 660 ppm by 2100	Mean projected increase 2.2°C Anomaly range +1.4 to 3.1°C (by 2081 – 2100)	AR5 (IPCC, 2014)
Little curbing of emissions, continuing rapid rise throughout the 21st century	RCP 8.5 , atmospheric concentration of CO ₂ projected at approximately 940 ppm by 2100 and continuing to increase	Mean projected increase 3.7°C Anomaly range +2.6 to 4.8°C (by 2081 – 2100)	AR5 (IPCC, 2014)

3.4 National policy context

The Australian government is taking a technology led approach, implemented via a whole-of-economy plan, to achieve a net zero emissions target by 2050. This plan is outlined in *Australia's Long-Term Emissions Reduction Plan* (Australian Government, 2021).

3.4.1 Australia's Long-Term Emissions Reduction Plan

Australia's Long-Term Emissions Reduction Plan (the Plan), published in 2021, is a whole-of-economy plan that aims to achieve net-zero emissions by 2050. The Plan emphasises the Australian Government's commitment to promoting employment, particularly in regional Australia, whilst also continuing to pursue opportunities for economic growth through international partnerships.

The Plan relies on lowering technology costs as opposed to raising taxes to reduce emissions. Examples of technology that will be promoted under the Plan include clean hydrogen, low-cost solar, energy storage, low emissions steel and aluminium, carbon capture and storage and soil carbon. The Plan aims to not only lower the costs of these existing technologies, but also to investigate emerging technologies such as livestock feed to reduce methane emissions. Approximately \$20 billion of Government funding will underpin this Technology Investment Roadmap by 2030.

By maintaining a focus on expanding choices for Australian consumers and businesses, the Plan aims to incentivise buy-in and promote interest in developing industry specific decarbonisation plans with realistic targets and an attitude of accountability. By utilising a holistic, all-economy approach, the Plan aims to create clean energy supply chains involving all market sectors. This is based on a four-pronged approach which includes:

- Driving down technology costs
- Enabling development at scale
- Seeking opportunities in new and traditional markets
- Fostering global collaboration

The Plan highlights the crucial role that needs to be played by regional industries, including industries in the traditional energy production and energy intensive sectors which, according to the Plan, have formed the backbone of Australian exports. The Plan advocates for a voluntary decarbonisation approach as it acknowledges the ongoing demand for coal, gas and carbon intensive exports globally. The Plan reflects the view of the Australian Government that transitioning to other energy producing or utilising industries, such as clean hydrogen and renewable energy, requires a delicate balancing act as Australia aims to retain its position as a global exporter of coal and gas in the interim (Australia Government, 2021).

The Plan outlines how the Australian Government plans to achieve net zero GHG emissions by 2050. As discussed later in this report, the project incorporates technologies which will, immediately upon commencement of ironmaking from the relined 6BF, reduce GHG emissions intensity from iron and steelmaking at PKSW relative to emissions from current operations. In addition, the project includes features to facilitate transition to emerging new low emissions technology once proven at commercial scale. The project is therefore consistent with the aims and objectives of the Plan.

3.5 State policy context

3.5.1 NSW 2040 Economic Blueprint

The NSW 2040 Economic Blueprint (NSW Government 2019) (the Blueprint) aims to inform views on what the NSW economy can achieve over the next two decades. The Blueprint has been informed by research on economic, jobs and productivity trends, and through broad consultation with various stakeholders. The Blueprint identifies a range of recommendations to enhance the performance of the NSW economy guided by the following aspirations:

- A two-trillion-dollar economy after 2040
- Healthy, productive people
- Vibrant, well-connected cities
- Productive, vibrant regions
- Innovative, world-class businesses
- Sustainable environmental and resources management
- Better government performance

A key aspect of the Blueprint in achieving the above aspirations is a focus on economic growth, advanced manufacturing and new industries. The project will contribute to these areas through the significant capital investment being made, and the jobs and revenue it will deliver to the NSW economy, once operational and also during construction. Additionally, the continued production of steel at PKSW will benefit downstream manufacturing industries, helping to promote the development of advanced GHG reduction mechanisms, for example, by supplying steel for renewable energy infrastructure and projects.

In relation to the aspiration of innovative, world-class businesses, the Blueprint recommends encouraging high growth future industries, more advanced manufacturing, and growing the local defence industry supply chain. The project will help realise these recommendations by maintaining the domestic supply of steel products to manufacturing businesses within these sectors. This will contribute to the State's capacity to secure defence procurements and facilitate the growth of new businesses and industries, as well as reduce the transport of materials from overseas, thereby decreasing transport-related GHG emissions. The Blueprint identifies that sustainable environmental and resource management is required to have an innovative industrial base, liveable cities, productive jobs, and high living standards.

The potential impacts of the GHGs from the project and associated reduction measures have been assessed throughout this report. BlueScope has incorporated commercially proven GHG reduction technologies into the project, as well as measures which will facilitate the transition to emerging new low emissions technology once proven at commercial scale. The project is therefore considered to be consistent with the aspiration of sustainable environmental and resource management.

3.5.2 NSW Climate Change Policy Framework

The NSW Government has released the NSW Climate Change Policy Framework, which commits NSW to the aspirational objectives of achieving net zero emissions by 2050, helping NSW to become more resilient to a changing climate.

The policy framework defines the NSW Government's role in reducing GHG emissions and adapting to the impacts of climate change. The Net Zero Plan Stage 1: 2020-2030 (Net Zero Plan) is the first stage implemented under the NSW Climate Change Policy Framework. It outlines how the NSW Government's climate change objectives will be achieved over the current decade. Plans for the following two decades will be released in stages to enable incorporation of evolving technologies, and to allow for continual improvement over time with the aim of achieving net zero emissions by 2050.

Net Zero Plan Stage 1: 2020-2030

The Net Zero Plan Stage 1: 2020–2030 outlines four key priorities for reducing emissions in the period 2020 to 2030. These are:

- Drive uptake of proven emission reduction technologies
- Empower consumers and businesses to make sustainable choices
- Invest in the next wave of emissions reduction innovation
- Ensure that NSW leads by example

As discussed in section 6, BlueScope has incorporated commercially proven GHG emission reduction technologies into the project, as well as measures which will facilitate the transition to emerging new low emissions technology once proven at commercial scale. The project is therefore consistent with the NSW Climate Change Policy Framework and Net Zero Plan Stage 1: 2020–2030.

3.6 Local policy context

Wollongong City Council (Council) has developed and implemented the following plans and strategies of relevance to GHG:

- Wollongong City Council Climate Change Mitigation Plan 2020
- Sustainable Wollongong 2030

3.6.1 Climate Change Mitigation Plan 2020

The objectives of Wollongong City Council's Climate Change Mitigation Plan 2020 are to:

- 1. Lead the community in emissions reduction and climate change action.
- 2. Reduce Council's GHG emissions through effective energy management and improving energy efficiency.
- 3. Reduce Council's GHG emissions through the increased use of renewable energy and alternative fuels.
- 4. Reduce Council's GHG emissions from landfill through resource recovery and gas capture.
- 5. Support the community and businesses to reduce their GHG emissions.

3.6.2 Sustainable Wollongong 2030

The Sustainable Wollongong 2030 strategy outlines how the City of Wollongong will work together with key stakeholders to create a sustainable future and a more liveable city. The strategy provides the overarching framework and goals to create a sustainable Wollongong. It identifies six priority areas and six related goals relevant to fostering increased sustainability in Wollongong. Of relevance to the project are:

- Priority area 1 goal: Environmental and climate leadership underpins Council decision-making and service delivery which inspires the same in others.
- Priority area 2 goal: Together protect our environment, reduce emissions and increase resilience to climate change.
- Priority area 3 goal: We will achieve net zero emissions by 2030 for Council operations and together achieve net zero emissions by 2050 for the city.

As a significant employer and contributor to the local community, BlueScope is cognisant of the role it plays in assisting the Council in achieving its goals. As demonstrated by BSL's Climate Action Report, BlueScope, as the largest Australian company within the BSL group of companies, is committed to showing leadership in reducing emissions from its operations. The project, through the incorporation of GHG reduction technologies which have been proven to be viable at commercial scale, as well as measures which will allow for the transition to emerging new low emissions technology once proven at commercial scale, is consistent with the goals of both the Council's Climate Change Mitigation Plan 2030 and the Sustainable Wollongong 2030 strategy.

3.7 BlueScope context

BlueScope's parent company, BSL, has embedded climate strategy into its corporate strategy and has set a goal of pursuing net zero GHG emissions across its global operations by 2050. Achieving the 2050 net zero goal is highly dependent on several enablers, including the commerciality of emerging and breakthrough technologies, the availability of affordable and reliable renewable energy and hydrogen, the availability of quality raw materials, and the appropriate policy settings. BSL has also established medium term targets of a 12% improvement in Scope 1 and 2 GHG emissions intensity by 2030 for its steelmaking activities, and a 30% improvement GHG emissions intensity by 2030 for its non-steelmaking activities².

The company has taken a range of measures to enhance its management of climate change risks and opportunities, including reporting annually in line with the recommendations of the Task Force on Climate-related Financial Disclosures (TCFD). The importance of the climate change strategy is evidenced by the refocus of the Board Committee previously known as the Audit and Risk Committee to issues around sustainability, including climate change, and the corresponding change of name to the Risk and Sustainability Committee of the Board. The company has also established a Climate Change Council, introduced shadow carbon pricing for the evaluation of major capital projects, and invested in a solar power purchasing agreement equivalent to 20 per cent of its Australian electricity consumption. In February 2021, BSL appointed a Chief Executive Climate Change to lead its global climate change response and help drive the company's decarbonisation pathway.

BlueScope and BSL are also participating in and leading several collaborations with industry and research organisations, including ResponsibleSteel, the Net Zero Steel Pathway Methodology Project, the Australian Industry Energy Transition Initiative project, and with the University of Wollongong.

To achieve net zero emissions in steelmaking, commercialisation of breakthrough technologies and supporting infrastructure will be needed. The availability of breakthrough low carbon ironmaking technologies has been an important consideration in assessing options for the future configuration of PKSW. As these technologies require significant development, and are unlikely to be commercially viable at industrial-scale for use in the specific circumstances at Port Kembla Steelworks prior to the end of the current 5BF campaign, the most technically feasible and economically viable option for BlueScope at this time is to progress with the project. As emerging and breakthrough technologies are developed over time to full commercial scale, the strong cash-flows and earnings capability of the Australian Steel Products business, of which BlueScope is a part, is expected to provide significant capacity to transition to these technologies as and when they become technically and commercially viable for use in the Australian context. While breakthrough technologies continue to be developed, there is scope to optimise production processes to reduce GHG emissions through existing and emerging technologies.

Raw material availability will be crucial to secure steel production capability in the near and longer term and to support the transition to net zero. Securing access to the raw materials that are currently used in the blast furnace process, such as metallurgical coal, will be critical in the early transition period, as will be securing future raw material requirements, such as Direct Reduced Iron (DRI) and renewable hydrogen.

BSL and BlueScope are working with partners across the industry, including research and academic bodies to explore emerging and breakthrough technologies to support their decarbonisation pathway. In October 2021 BSL and Rio Tinto signed a Memorandum of Understanding (MOU) to research and design low-emissions processes and technologies for the steel value chain across iron ore processing, iron and steelmaking and related technologies. The two priority action areas for immediate exploration are:

Hydrogen Direct Reduction and Iron Melter

This concept will involve producing a low emissions iron feed for consumption at Port Kembla and will explore the direct reduction of Rio Tinto's Pilbara iron ores, with the intent of using renewable hydrogen produced from renewable electricity. The direct reduced iron (DRI) from this process will be melted in an electrical furnace, powered with renewable electricity, to produce iron suitable for the steelmaking process.

Enhancing existing processes

BSL and Rio Tinto will cooperate to explore the development of projects involving iron ore processing and technologies directed at reducing carbon emissions from existing iron and steelmaking processes.

² The Climate Action Report contains further details on the Climate Change strategy and the scope and boundaries of the net zero goal and medium term targets

In December 2021, BSL signed a Memorandum of Understanding with Shell Energy Operations Pty Ltd to collaborate on two projects:

- Pilot renewable hydrogen electrolyser plant at the Port Kembla Steelworks

This initial project will investigate designing, building and operating a 10 MW renewable hydrogen electrolyser to explore and test the use of renewable hydrogen in the blast furnace at BlueScope's Port Kembla Steelworks. The ambition is to demonstrate hydrogen as a pathway towards low emissions steelmaking. The hydrogen could also potentially be used for other purposes, such as to feed a pilot direct reduced iron (DRI) plant.

Ilawarra hydrogen hub concept

The MoU also provides for BlueScope and Shell to collaborate with other organisations to explore a "hydrogen hub" in the Illawarra. This project will explore options for hydrogen supply and offtake, renewable energy supply and hydrogen and electricity infrastructure. The project will also examine the logistics infrastructure required for a commercially viable hydrogen supply chain in the Illawarra.

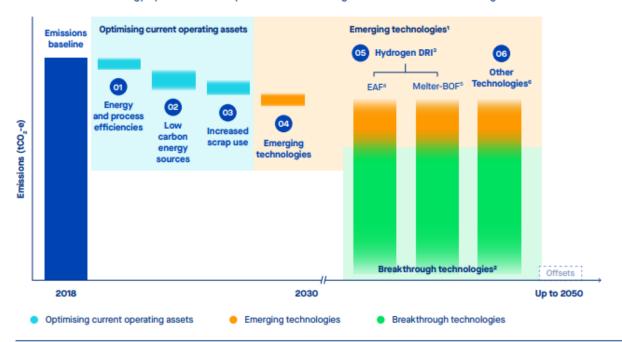
Along with its Finley Solar Farm Power Purchase Agreement in NSW, in late 2020 BSL announced a \$20 million investment to develop a Renewable Manufacturing Zone at PKSW. Half of this investment will be allocated to companies aspiring to build manufacturing capability, particularly in the renewable energy sector in NSW, with an immediate focus on supporting the manufacture of wind tower, solar farm, and pumped hydro electricity transmission facilities. The remaining half of the investment will be directly investing into PKSW to support the development of technology solutions in steelmaking, such as the development of renewable hydrogen projects.

3.7.1 BlueScope Steel Limited's Climate Action Report

In 2021, BSL published its first Climate Action Report (BSL, 2021). The Climate Action Report builds on BSL's earlier reporting on climate change issues over several years in its annual Sustainability Reports and, prior to that, in its annual Community, Safety and Environment reports.

The Climate Action Report outlines its goal of pursuing net zero scope 1 and 2 GHG emissions across all BSL operations by 2050. The Climate Action Report acknowledges that achieving this goal is dependent on several enablers including:

- Evolution of emerging and breakthrough technologies to viable, commercial scale.
- Access to affordable and reliable renewable energy.
- Availability of appropriate volumes of competitively priced hydrogen from renewable sources.
- Access to appropriate quality and quantity of raw materials in both the near and longer-term.
- Public policy that supports investment in decarbonisation and avoids risk of carbon leakage.


For its steelmaking sites, including PKSW as well as its sites in North America and New Zealand, BSL's mid-term goal is to achieve a 12 per cent Scope 1 and 2 GHG emissions intensity reduction target by 2030, relative to FY2018. This translates into a target of 1 per cent year-on-year emission intensity reduction (from the 2018 baseline) across steelmaking activities. In addition, for its non-steelmaking activities, BSL has set a target of a 30 percent reduction in Scope 1 and 2 emissions by 2030, also relative to FY2018.

The decarbonisation pathway for steelmaking is represented visually in the Climate Action Report and is shown in Figure 3.1.

While the opportunities described in the Climate Action Report remain under assessment and development, BlueScope and BSL have taken a range of measures to enhance their management of climate change risks and opportunities, including reporting annually in line with the recommendations of the Task Force on Climate-related Financial Disclosures (TCFD). The importance of the climate change strategy is evidenced by the refocus of the Board Committee, previously known as the Audit and Risk Committee, to issues around sustainability, including climate change, and the corresponding change of name to the Risk and Sustainability Committee. BSL has also established a Climate Change Council and introduced shadow carbon pricing for the evaluation of major capital projects. In February 2021, BSL appointed a Chief Executive Climate Change to lead its global climate change response and help drive the company's decarbonisation pathway. BlueScope and BSL are also actively participating in and leading several collaborations with industry and research organisations, including World Steel, Responsible Steel, the Net Zero Steel Pathway Methodology Project, the Australian Industry Energy Transition Initiative project, and with the University of Wollongong.

INDICATIVE IRON- AND STEELMAKING DECARBONISATION PATHWAY

Details of each technology option that corresponds to the below Figure⁷ is outlined in the following section.

1 Emerging technologies refers to demonstrated technology that is commercially available but requires further application to integrated steelworks, e.g. biochar, hydrogen tuyere injection, etc.

2 Breakthrough technologies refers to technology not yet commercialised, currently at concept or pilot stage, or not yet applied to integrated steelworks (e.g low Technology Readiness Level (TRL)).

3 Contingent upon feasible supply of hydrogen from renewable sources.

4 Requires suitable high-grade ores, estimated at less than 15% of available ores and access to cost-effective energy sources.

5 For Melter-BOF, DRI-melter replaces the blast furnace. Maintains existing BOF and caster infrastructure, and allows a wider range of ores to be used.

6 Other technologies include CCUS, electrolytic reduction, etc.

7 Each technology option is allocated a number which corresponds to information outlined in this section.

Figure above: BlueScope's indicative decarbonisation pathway for our iron- and steelmaking activities.

Note: this diagram is not intended to present a checklist of sequential projects that will be implemented by BlueScope; pursuit of one project may preclude or impact the economics for other projects. This is especially true for options that require significant reconfiguration of existing facilities/process routes, or would result in duplicative production routes such as those included in 05 and 06.

Figure 3.1 Indicative iron and steelmaking decarbonisation pathway (BSL Climate Action Report, 2020)

BSL and BlueScope GHG reductions progress

Since FY2018 BSL has reduced its steelmaking GHG emissions intensity by 1.8 per cent (that is, across the three steelmaking sites in PKSW, North America and New Zealand), and has also reduced the GHG emissions intensity of its midstream non-steelmaking activities by 6.3 per cent.

Taking a longer-term perspective, since 2005, absolute GHG emissions from BSL's steelmaking operations have decreased by 28 per cent, while GHG emissions intensity has reduced by 21 per cent.

Greenhouse gas reduction measures are further outlined in Chapter **Error! Reference source not found.**. The commitment of BlueScope and BSL to meeting the GHG objectives set out in the Climate Action Report is demonstrated by the GHG reductions achieved to date as well as the significant investment which continues to be made in reducing the GHG intensity of operations at Port Kembla and across BSL's global footprint.

3.7.2 BlueScope Steel Limited Sustainability Report FY2021

The FY2021 BSL Sustainability Report outlines BSL's strategy for achieving its sustainability goals, including the Climate Change goals for BSL and BlueScope described in Section 3.7.1. BSL's strategy emphasises the need for strong returns and sustainable outcomes over the next five years and beyond, with investment in carbon reduction technologies a core element of the strategy, alongside product and service innovation and delivery of safe, inclusive and diverse workplaces.

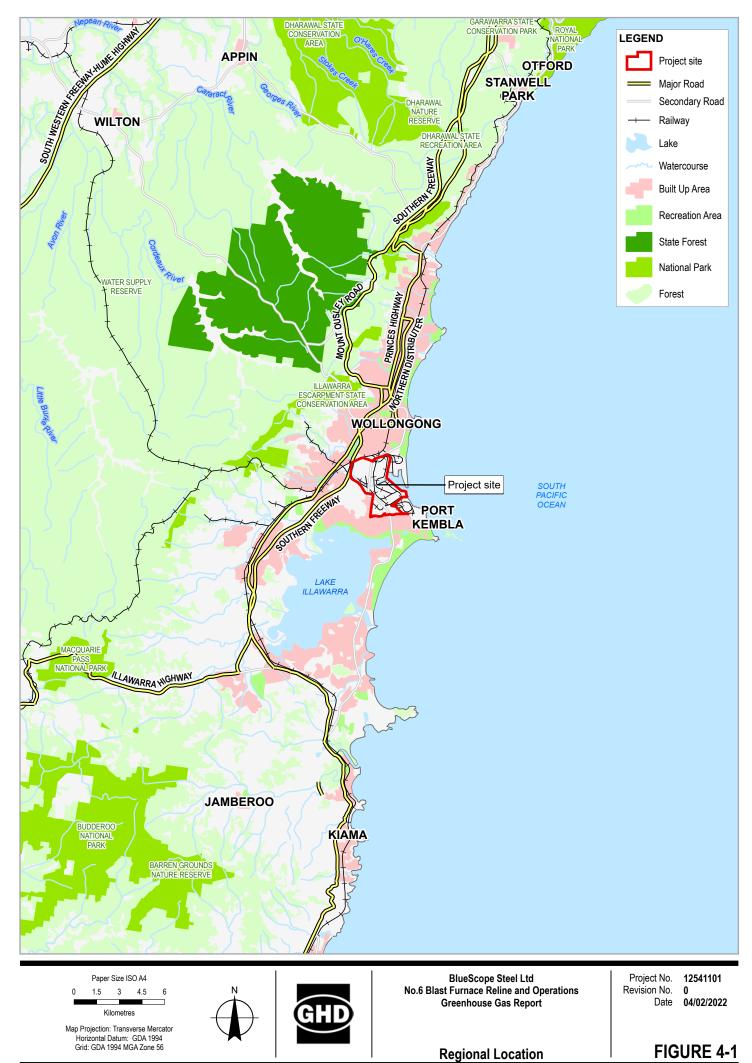
3.8 GHG applicable legislation and guidelines

Legislation and guidelines applicable to the GHG assessment include:

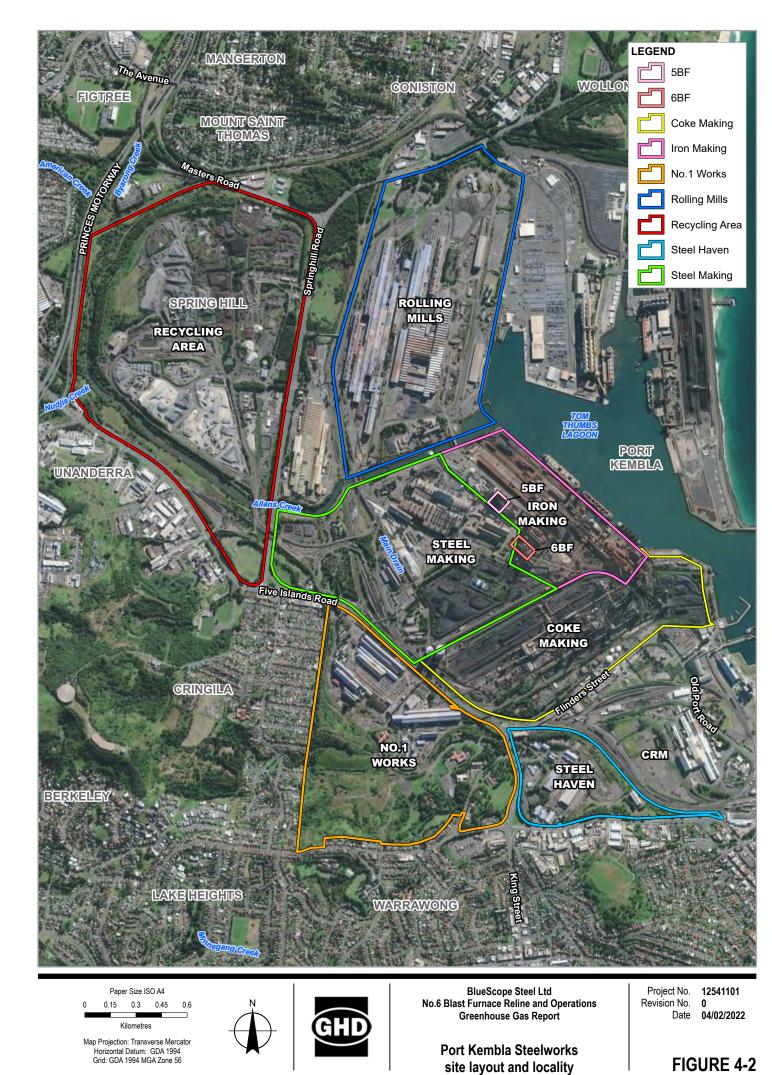
- National Greenhouse and Energy Reporting Act 2007 (NGER Act)
- National Greenhouse and Energy Reporting Regulations 2008
- National Greenhouse and Energy Reporting (Measurement) Determination 2008
- National Greenhouse and Energy Reporting Regulations 2008
- National Greenhouse Accounts Factors 2021
- AS ISO 14064-1:2006 Greenhouse gases Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals
- Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard (GHG Protocol) (World Business Council for Sustainable Development and World Resources Institute, 2015)
- Intergovernmental Panel on Climate Change Sixth Assessment Report (2021)

These guidelines are considered representative of good practice GHG accounting in Australia and are applicable to the project.

NSW State legislation does not currently include any specific requirements in relation to GHG assessments for industrial projects. As detailed in Section 3.1, the SEARs do not mandate a specific standard, protocol, or methodology for the GHG assessment. As a subset of the requirements for assessment of air quality impacts, the SEARs require an assessment of the GHG emissions of the project and any measures to minimise emissions intensity, improve energy efficiency and adopt new technologies to reduce emissions in the medium to long term.


4. Existing environment

4.1 Overview


The project is located within an industrial site of approximately 750 hectares (ha) at Port Kembla in the Wollongong LGA and Illawarra region of NSW. Sydney is approximately 80 kilometres (km) to the north of Port Kembla, while the Wollongong central business district is approximately 2.5 km to the north and Lake Illawarra is approximately 3 km to the south. Port Kembla is the main industrial centre of the Illawarra region.

Key features of Port Kembla are the heavy industrial area and the port, including industrial developments such as PKSW, fertiliser production facilities and petroleum hydrocarbon storage and wholesaling. PKSW is zoned IN3 Heavy Industrial and the port of Port Kembla is zoned SP1 – Special Activities. The Inner Harbour, specifically developed as an all-weather shipping port, covers approximately 60 ha with around 2.9 km of commercial shipping berths. BlueScope operates five berths in the Inner Harbour that supply materials for PKSW.

The area surrounding Port Kembla industrial area is primarily occupied by residential development. These urban areas provide small and large-scale retail outlets, community services (e.g. medical facilities, hospital, schools and sporting facilities) and commercial facilities (e.g. banking and post office). The closest urban developments to PKSW are the suburbs of Cringila, Berkeley, Lake Heights, Warrawong and Port Kembla to the south, and Unanderra, Cobblers Hill, Mount St Thomas, Coniston and Figtree to the north and west. The urban areas of Cringila are located adjacent to the No. 1 Works and No. 2 Works areas and are the nearest to the project area, being approximately 1.2 km to the southwest as shown on Figure 4.1 and Figure 4.2.

Data source: Commonwealth of Australia (Geoscience Australia): 250K Topographic Data Series 3, 2006. Created by: tmorton

G:\22\12541101\GIS\Maps\GHG_0.aprx\12541101_GHG002_SiteLayout_0 Print date: 04 Feb 2022 - 14:38 Data source: LPI: DCDB/DTDB, 2017. World Imagery: Maxar Created by: tmortor

4.2 Port Kembla Steelworks

PKSW currently operates as an integrated iron and steel plant utilising Blast Furnace ironmaking and Basic Oxygen Furnace steelmaking (BF-BOF operating model). The plant is co-located with hot rolling mills for plate and coil and has adjacent manufacturing facilities for cold rolling, coated products, flat products and welded beams. The plant's current output is approximately 3.1 million metric tonnes of steel per year (Mtpa). Of the steel produced, around 2.5 Mtpa services the domestic market with the remainder being exported. PKSW is Australia's only manufacturer of upstream flat steel products. Together, PKSW and the other facilities owned by BSL around Australia employ approximately 6,200 people.

Iron and steelmaking via BF-BOF technology, as is used at PKSW, results in the production of GHGs as a byproduct of the reduction reaction used to convert the iron ore into iron. GHGs produced by current operations at PKSW are predominantly CO₂, with low levels of methane (CH₄) and sulphur hexafluoride (SF₆).

BSL reports annually on its total Australian net energy consumption and GHG emissions under the National Greenhouse and Energy Reporting Scheme (NGERS) in accordance with the methodology prescribed by the National Greenhouse and Energy Reporting (Measurement) Determination 2008 (Measurement Determination). The GHG emissions from PKSW, as well as its energy use and consumption, are included in BSL's report.

The Measurement Determination recognises the complexity of measuring GHG emissions from an integrated steelworks in which the BF is not operated independently from other steelmaking processes. The Measurement Determination provides a specific methodology to determine emissions arising from the use of coke as a carbon reductant (called a carbon mass balance approach) which involves:

- Calculating the carbon content of fuels and other carbonaceous inputs.
- Calculating the carbon content in products leaving the activity (that is, of an integrated steelworks) during the relevant year.
- Calculating the carbon content in waste by-products leaving the activity during the relevant year, other than as an emission of greenhouse gas.
- Calculating the carbon content in the amount of the change in stocks of inputs, products and waste products held within the boundary of the activity during the relevant year.

This approach is used to determine the majority of GHG emissions from PKSW, which arise from the use of metallurgical coal in the iron and steelmaking process, comprising approximately 92 per cent of total GHG emissions from PKSW in any one year. The Measurement Determination does not require an allocation of GHG emissions to different plant areas within the integrated steelworks. Of particular relevance to the project, the gas generated by the blast furnace (Blast Furnace Gas or BFG) is captured and circulated around PKSW for use as an energy source, with the location of gas usage determined on a daily basis by operational need.

The integrated nature of the steelworks which makes it impracticable to assess GHG emissions from a single BF is demonstrated by the PKSW integrated operation diagram shown in Figure 4.3. The diagram illustrates the process flow from the material inputs, various operational facilities and respective output pathways, through to the Hot Strip Mill and Plate Mill where the steel is made into flat rolled products. It shows how Coke Ovens Gas (COG), generated during the cokemaking process, and BFG, are captured and circulated for use as an energy source across multiple operational facilities at PKSW from which emissions will ultimately occur.

BlueScope uses other methodologies provided under the Measurement Determination as required to capture other sources of GHG emissions from PKSW, such as those arising from fuel consumption (in particular, natural gas). Emissions from the use of electricity at PKSW are accounted for separately as required by the reporting requirements.

In financial year 2021, PKSW emitted a total of 6,868,848 tonnes of carbon dioxide equivalent (tCO₂-e), comprised of:

- Scope 1 emissions: 6,260,763 tCO₂-e
- Scope 2 emissions: 608,085 tCO₂-e.

The GHG emission intensity of steelmaking at PKSW (tonnes of CO₂-e per tonne of crude steel produced) reported for FY2021 was 2.14 tCO₂-e per tonne of crude steel produced.

BSL is a member of the World Steel Association (Worldsteel) and also participates in Worldsteel's climate action data collection program. In FY2020, the average GHG emissions intensity of steelmakers reporting to Worldsteel using BF-BOF technology was 2.33 tCO₂-e per tonne of crude steel produced. During this period, the GHG emissions intensity of steelmaking at PKSW was 2.21 tCO₂-e per tonne of crude steel produced, comparing favourably to the average reported by Worldsteel. For FY2020, PKSW was within the top quartile of reporters for integrated steel plants (i.e. lowest emitters), using the Worldsteel calculation methodology (based on ISO 14404 series).

Scope 3 emissions have been recently included in BSL's Sustainability and Climate Action Reports. The Climate Action Report refers to BSL's FY2021 commencement of reporting of its Scope 3 GHG emissions profile with its broader climate and sustainability disclosures. Based on the review of Scope 3 GHG emissions from existing operations and the fact that the majority of Scope 3 emission sources would be unchanged by the project, the move of ironmaking from 5BF to 6BF is unlikely to result in material change to Scope 3 emissions. While such Scope 3 emissions are not directly related to the project, as detailed in Section 3.7, BlueScope and BSL are committed to working with stakeholders and partners to reduce Scope 3 GHG emissions.

The co-products from steel manufacturing have many uses, including road base, cement manufacture, pigments and fertiliser. A key co-product produced at the blast furnace is Granulated Blast Furnace Slag which is used as a general cementitious replacement for Portland Cement in concrete construction to lower GHG emissions. The use of blast furnace slag from PKSW in this way supports the avoidance of more than 400,000 tCO₂-e of GHG emissions every year relative to traditional cement making processes. BlueScope will continue to investigate further opportunities to implement circular economy principles as a key component of waste management and reduction initiatives.

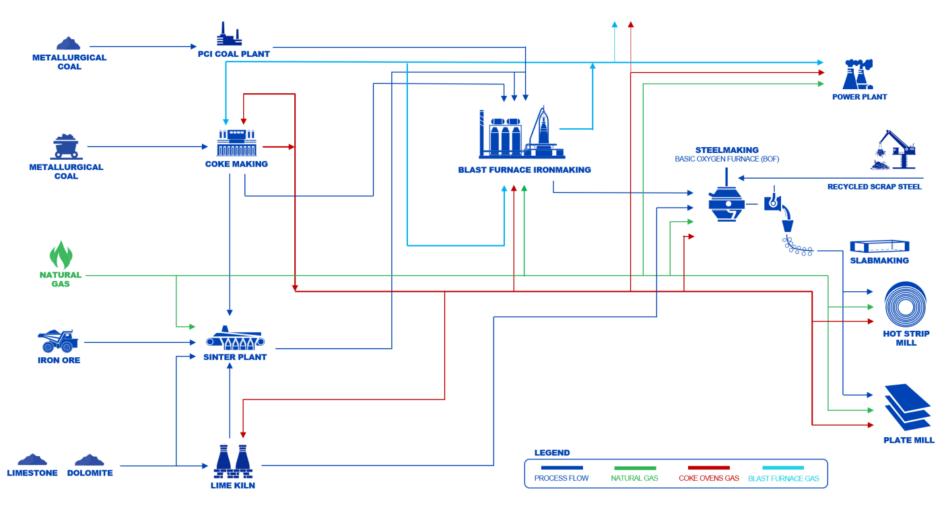


Figure 4.3 Integrated steelworks schematic

4.3 Project summary

The current operational campaign of 5BF is expected to extend to as late as 2030. Whilst the current furnace is operating well, as time moves closer to the campaign end date, the risk of unplanned shutdown will progressively increase as its condition deteriorates with age and use. By the mid-2020s, this risk is predicted to increase. For this reason, to prevent operational discontinuity and safeguard supply, it is considered prudent risk management to have 6BF ready for operation from mid to late 2026.

The project involves the relining of 6BF over a period of approximately 3 years to return it to service and commence ironmaking after 5BF ceases operation. For the purpose of the EIS and GHG assessment, the project area includes 6BF and the operational emissions. The project area is shown in Figure 4.4.

The reline of the furnace initially involves removal of remaining burden material and iron skull, followed by stripping of the staves, refractories and hearth from inside the shell. In places, repairs to the furnace shell will be required. Once stripped, installation of the new hearth, sidewall refractories and staves will be completed, together with repairs/replacement of the tuyeres, tapholes, furnace cooling systems and instrumentation. Significant work will also be required to prepare each of the 6BF ancillary systems for continuous operation across the length of the new campaign. Following construction, 6BF will be commissioned and ramped up for operation. Cold commissioning of 6BF will occur while 5BF remains operational, however ironmaking at 5BF will conclude prior to ironmaking commencing at 6BF. The project will see advances in technology being used including several improvements in 6BF compared to the currently operating 5BF, resulting in lower overall emissions from the site.

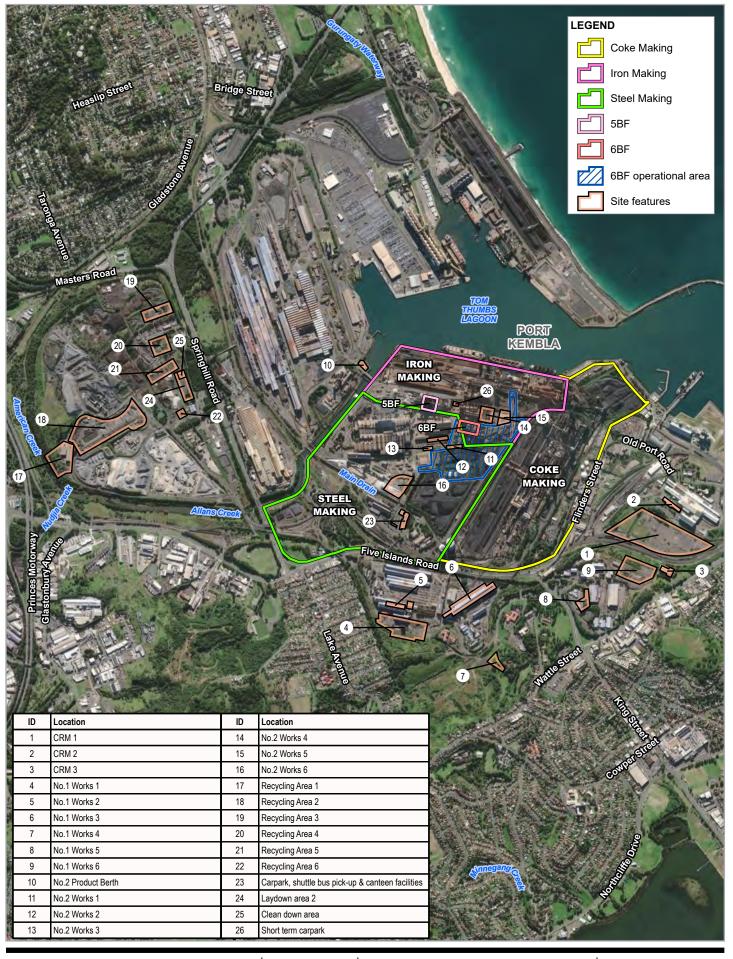

A summary of the key project elements and characteristics is provided in Table 4.1.

Table 4.1 Proje	act summary
Project element	Summary
Construction	Major construction work will be required within the blast furnace and surrounding facilities and will involve removing the remaining burden materials, refractory bricks and blocks and staves within the interior of the blast furnace for replacement. Any required repairs or replacement of ancillary equipment or structures will also be carried out.
Access	The majority of the construction traffic will access the site via the major roads that service the Port Kembla industrial area, including the Princes Motorway and Princes Highway, Shellharbour Road, Springhill Road, Five Islands Road and Masters Road. No changes to existing access arrangements are proposed.
Overhaul of Ironmaking components and systems	 Raw materials handling Sinter plant Blast furnace Stockhouse and charging system Blast furnace vessel Cooling system Casthouse Hot blast system Off gas system Slag handling
Blast furnace slag	Slag produced from the blast furnace is processed into two products, granulated slag and rock slag. Slag is sold for use in the manufacture of other products, such as cement and road base. Ground granulated blast furnace slag can be used to significantly reduce the CO ₂ emissions associated with the manufacture and use of concrete. ³
Commissioning	 Commissioning involves the following: All services brought back into live condition. Various parts of plant re heated. Pressure and leak tests conducted. Cooling systems filled and flushed. Furnace dried out and charged with kindling and burden material. Gas system purged and furnace 'blown in'. Furnace progressively heated until regular casting of iron and slag commences. Full production reached within one to two months.

Table 4.1Project summary

³ A 60% slag mix reduces the CO₂ emissions for a typical 32 MPa concrete mix by 53%. This is significant given concrete is the 2nd most used substance in the world after water (from "A Guide to the Use of Iron Blast Furnace Slag in Cement and Concrete" - ASA Data Sheet 5).

Project element	Summary
Operations	 Operation of 6BF will be generally the same as existing operations utilised at 5BF, including: Processing and transport of raw materials (iron ore, metallurgical coal, coke, fluxes). Production of sinter (agglomeration of iron ore, coke and limestone dust) for use within the blast furnace. Production of approximately 2.7 Mtpa of iron from 6BF. Processing of approximately 0.88 Mtpa of blast furnace slag for use as construction products.
Construction work hours	 Where practical, and subject to the final construction program, construction will be carried out during the following construction hours: Monday to Friday: 7.00 am to 6.00 pm. Saturday: 7.00 am to 6.00 pm. Sundays and public holidays: no work. A number of construction activities will be scheduled to be undertaken as night works. Final construction phase will require 24-hour construction (estimated to be a period of 5 months). Further, 24-hour construction may be required for an extended period if 6BF is required online earlier than 2026.
Construction duration	Approximately 3 years
Operational duration	Approximately 20 years

Paper Size ISO A4 0.2 0.4 0.6 Kilometres

0.8

BlueScope Steel Ltd No.6 Blast Furnace Reline and Operations Greenhouse Gas Report Project No. **12541101** Revision No. **0** Date **04/02/2022**

Key project features

G:\22\12541101\GIS\Maps\GHG_0.aprx\12541101_GHG003_KeyFeatures_0 Print date: 04 Feb 2022 - 14:38

Data source: LPI: DTDB/DCDB, 2017. World Imagery: Maxar Created by: tmorton

FIGURE 4-4

5. Impact assessment

5.1 Construction

Emissions during construction have been estimated based on the assumptions listed in Table 5.1. The estimated emissions are shown in Table 5.2. Emission factors have been sourced from the NGER (Measurement) Determination and the National Greenhouse Accounts (NGA, 2021)

Table 5.1	Construction	emission	assumptions
-----------	--------------	----------	-------------

Emission source	Assumptions
Construction equipment diesel use	Fuel use for construction equipment was estimated based on the type and number of equipment, weeks of use, daily hours of operation and fuel use per hour (sourced from equipment manufacturers data). Equipment includes cranes, excavators, rollers, graders, piling rigs, forklifts, concrete trucks and other trucks.
Electricity from grid (NSW)	The quantity of electricity used was estimated by BlueScope based on the type of equipment/ building, the estimated number of days during the construction program and the consumption per day. Electricity is used in site sheds and lighting, and for small power tools, electric welders, compressors, etc. (Note: large equipment and machinery is normally diesel-driven and is included in the 'construction equipment diesel use' above).
Worker commute	There would be up to 300 car trips per day over the construction period, for contractors and construction workers. All vehicles were conservatively assumed to be diesel. Fuel use for passenger vehicles is from the Australian Bureau of Statistics (ABS) Survey of Motor Vehicle Use in Australia (ABS, 2020).
Transport Buses	Buses transport workers around the site. There would be approximately 50 bus trips per day over the construction period. Fuel use for buses is from ABS, 2020.
Transport major equipment and materials	There would be approximately 100 trucks accessing the site per day over the construction period (delivery of equipment and materials to the site and removal of waste from the site). Fuel use from trucks is from ABS, 2020.
Waste (MSW and C&D)	Approximately 100 t of Municipal Solid Waste (MSW) and 7,500 t of Construction and Demolition (C&D) waste would be generated during the construction period. Disposal of this waste to landfill generates GHG.
Welding	Acetylene gas would be used for welding and cutting during demolition, modifications and construction of new structures. The quantity of acetylene used was estimated by BlueScope based on the estimated number of welding days and the consumption per day.
Commissioning	Natural gas will be used during commissioning for drying and heating. The quantity of natural gas used was estimated by BlueScope based on commissioning of previous BFs.

Table 5.2 Construction and commissioning emissions

Emission source	Value		Fuel Type/ parameter	Emissions	
	Quantity	Units		tCO ₂ -e	
Total diesel consumption	6,803	kL	Diesel (Stationary)	18,435	
Electricity from grid (NSW)	5,688	MWh	Electricity from grid (NSW)	4,494	
Worker commute	726	kL	Diesel (Transport)	1,974	
Transport Buses	287	kL	Diesel (Transport)	781	
Transport major equipment and materials	650	kL	Diesel (Transport)	1,767	
Waste (MSW & C&D)	7,600	t waste	Waste (C&D)	1,660	
Welding	105,350	m ³	Acetylene	213	
Commissioning	56,000	m ³	Natural gas	113	
Total emissions				29,437	

The quantity of GHG emissions estimated to occur during the full construction period is approximately 30,000 tCO₂-e, or approximately 9,800 tCO₂-e per annum over the three-year construction period. Emissions during construction are minor and only 0.1% of annual operational emissions (as detailed in section 5.2 below).

5.2 Operation

As outlined in Section 4.2, due to the complex integrated nature of PKSW, it is not feasible to extract a separate GHG emission rate for blast furnace operation alone. GHD therefore considers it appropriate to take an integrated approach to quantifying and assessing impacts associated with the project. When assessing the potential impact of project emissions, the following needs to be considered:

- The project represents ongoing operations with ironmaking transferring from 5BF to 6BF.
- The operation of 6BF will have a similar emissions profile to 5BF, with the exception of proposed GHG mitigation strategies (refer Section 6) which will either:
 - Provide GHG reduction from the commencement of operation of 6BF, or
 - Enable the introduction of future GHG reduction technologies as they become commercially viable, such as the use of renewable hydrogen to displace fossil fuel-based energy sources that will enable GHG emissions reductions over the medium to longer term.

It is noted that BSL has announced that the opportunities for GHG emissions reductions enabled by the 6BF reline are part of a broader suite of climate-related projects at Port Kembla that have further potential to reduce GHG emissions intensity.

A summary of Scope 1 and 2 GHG emissions, calculated in accordance with the NGER methodology, from the operation of PKSW for FY2020 and FY2021 is presented in Table 5.3. Scope 1 emissions contributed 91% of total GHG emissions in FY2021, while Scope 2 emissions contributed around 9% of the total GHG emissions from the site. The total GHG emissions presented in Table 5.3 include emissions from the current operation of 5BF.

GHG Emissions (tCO ₂ -e)	2020	2021
Scope 1	6,103,129	6,260,763
Scope 2	558,237	608,085
Scope 3 (not included in total)	Not reported	1,125,456
Total	6,661,366	6,868,848
Steel production (tonnes)	3,012,548	3,209,637
Intensity (tonnes CO2-e/tonne steel)	2.211	2.140

Table 5.3 Summary of PKSW annual emissions

Source: Climate Action Report 2021

Overall, the project will have a net improvement (reduction) in GHG emissions intensity per tonne of steel produced, with significant potential for further improvements to be made as new and emerging low emissions technologies become viable. A review of currently available and future technologies along with those selected for implementation by the project is provided in Section 6.

5.3 Impact of emissions

Australia's national GHG emissions, by sector for the year to June 2021 and year 2019 (the most recent year available) are presented in Table 5.4 Total emissions for the year to June 2021 are 498.9 MtCO₂-e, and 518.9 MtCO₂-e for year 2019.

The most recently published state-based emissions inventory is for 2019. NSW GHG emissions, by sector, for the 2019 year are also presented in Table 5.4. Total annual emissions for NSW are 136.6 MtCO₂-e.

Table 5.4 National and NSW GHG emissions

Emissions Source	Australia Emissions Year to June 2021 (MtCO ₂ -e) ¹	2019 Australia Emissions (MtCO ₂ -e) ²	2019 NSW Emissions (MtCO ₂ -e) ³
Energy – Electricity	163.9	278.9	94.7
Energy – Stationary Energy (excluding electricity)	99.4		
Energy – Transport	91.2	100.5	27.6
Energy – Fugitive Emissions	48.7	51.0	12.7
Industrial Processes and Product Use	31.1	32.6	12.8
Agriculture	75.0	69.8	16.3
Waste	14.0	12.4	4.8
Land Use, Land Use Change and Forestry	-24.4	-26.3	-12.5
Overall Total	498.9	518.9	136.6

Source:

1. Table 3, Department of Industry, Science, Energy and Resources (DISER) "Quarterly Update of Australia's National Greenhouse Gas Inventory: June 2021" December 2021

2. Table 2.1, DISER, "National Inventory Report 2019", April 2021

3. DISER "State and Territory Greenhouse Gas Inventories 2019", 2021

The quantity of Scope 1 and 2 emissions from PKSW operations reported for FY2021 were 6,868,848 tCO₂-e (approximately 6.9 MtCO₂-e) per annum. These emissions represent less than 1.4% of the total Australia emissions, and approximately 5% of NSW emissions, based on the available data presented in Table 5.4.

Scope 1 and 2 emissions associated with the operations of the PKSW are above the threshold of 25,000 tCO₂-e per annum for facility level reporting under the NGER Act so require annual reporting under the NGER scheme. Scope 1 emissions associated with the operations of the proposed project are also above the threshold of 100,000 tCO₂-e per annum for the NGER Safeguard Mechanism – therefore the site has a safeguard baseline emissions number which if exceeded would require offsetting of emissions above the baseline, for example by the purchase of Australian carbon credit units.

Scope 1 and 2 emissions associated with the operations of the PKSW before and after the project are well above both NGER facility and Safeguard thresholds. PKSW will continue to be reported as a separate facility under the NGER Act. As a result of the project (subject to planning approval), the estimated emissions from PKSW are not expected to exceed the PKSW safeguard baseline.

6. Greenhouse gas reduction measures

6.1 Overview

To achieve net zero emissions in steelmaking, commercialisation of breakthrough technologies and supporting infrastructure will be needed. The availability of breakthrough low GHG emissions ironmaking technologies has been an important consideration for BlueScope in assessing options for the future configuration of PKSW. For this reason, the scope of the project is intended to address the dual aims of securing BlueScope's domestic ironmaking needs from 2026, as well as providing a bridge to transition from current blast furnace technology to new and emerging low emissions technologies once available at commercial, viable scale.

While breakthrough technologies are still being developed, there is scope to optimise production processes to reduce GHG emissions through existing and emerging technologies.

As discussed by McKinsey & Company (2020), BF-BOF initiatives can improve efficiency and/or decrease production losses in different ways, for example:

- 1. Optimising the BF burden mix by maximising the iron content in raw materials to decrease the usage of coal as a reductant.
- 2. Increasing the use of alternative fuels to pulverized coal injection (PCI), for example, biochar (refer Section 6.4.1), biomass, or hydrogen (either as Coke Ovens Gas or renewable hydrogen).
- 3. Increasing use of Blast Furnace Gas and Coke Ovens Gas as an energy source.

These processes may have the potential to decrease GHG emissions without eliminating them, but do not offer fully carbon-neutral steel production (McKinsey & Company, 2020). PKSW already seeks to maximise the use of process gases as an energy source as displayed in Figure 4.3. As BF-BOF efficiency programs only result in a reduction in GHG emissions without eliminating them entirely, they are not a long-term solution. Biomass reductants and carbon capture and usage are either only feasible in certain regions or are still in the early stages of development (McKinsey & Company, 2020).

While BlueScope and other BF-BOF steel manufacturers continue to research and investigate lower-emissions technologies, steel, as one of the world's most highly recycled materials, has an important place in a low carbon future. Scrap steel (scrap) currently contributes to approximately 32% of steel products and for approximately 25% of the steel produced at PKSW. In FY2021, over 800,000 tonnes of scrap were recycled at PKSW through the BF-BOF route. There are limits, however, on the amount of scrap which can be used in the BF-BOF process: first, scrap supply cannot meet demand either locally or globally and secondly, there is a thermal limit on how much scrap can be used in the steelmaking process⁴.

Raw material availability will be crucial to secure steel production capability in the near and longer term and to support the transition to net zero. Securing access to the raw materials that are currently used in the blast furnace process, such as metallurgical coal (or other mixes of different types of 'clean' metallurgical coal), will be one of the options in the early transition period, as will be securing future raw material requirements, such as Direct Reduced Iron (DRI) and renewable hydrogen.

As part of its Climate Action Plan, on 7 December 2021, BSL announced its commitment to establish a 10 MW electrolyser on the PKSW site, as part of a Memorandum of Understanding with Shell Energy. A hydrogen electrolyser is a system that breaks water into hydrogen and oxygen molecules using electricity in a process called electrolysis. The proposed 10 MW electrolyser will be one of the largest electrolysers in Australia, although it is estimated that a 300 MW electrolyser would be required to generate enough hydrogen to replace carbon as a reductant for total volume of crude steel output from the PKSW. Not only will this support the NSW Government's vision for an Illawarra Hydrogen Hub, but for every tonne of renewable hydrogen used in the steelmaking process will result in reductions of CO₂-e emissions.

⁴ As discussed earlier, the BF-BOF is an integrated process and scrap is added to the BOF, rather than the BF itself.

6.2 Technology review

As described in Chapter 4 of the EIS, BlueScope's consideration of project alternatives included extensive research into alternative steelmaking technologies with potential to reduce GHG emissions. Figure 3.1 in section 3.7 of this report shows how some of these technologies may form part of BlueScope's decarbonisation pathway. Currently, however, the alternative technologies which are already available are not viable for new steelmaking plants on the east coast of Australia due to of the lack of affordable natural gas and scrap steel. Electric Arc Furnace (EAF) steelmaking also has very high electricity demand with a 2019 report issued by Worldsteel noting that electricity accounts for roughly 50 percent of the energy input costs for EAFs compared to 7 per cent for BF operations (Schumacher, 2021) and therefore cannot be considered a "green steel" making methodology unless renewable electricity is available to meet this demand.

Table 6.1 outlines the potential partial and full decarbonisation pathways proposed by McKinsey & Company (2020) and identified by BlueScope as potentially viable in the future for adoption at PKSW. The viability of the technology is assessed based on how proven the technology is.

Technology	Description	Example	Viability for PKSW
Partial decarbonisat	ion potential		
Blast Furnace (BF)/ Basic Oxygen Furnace (BOF)	Make efficiency improvements to optimise BF-BOF operations	Optimised BOF inputs (DRI, scrap) increased fuel injection in BF (e.g. hydrogen, PCI)	BSL is assessing the use of both hot briquetted iron (HBI) and DRI as furnace charges, but they come with significant Scope 3 penalties. The installation of the dual lances will allow a potential offset of Scope 1 emissions through the reduction of PCI.
Biomass reductants	Use sustainable biomass as an alternative reductant	Tecnored process⁵	Development of an economically sustainable supply of biochar in Australia is a key enabler for this technology. Research has shown the replacement of PCI coal with biochar to be viable. BlueScope is currently preparing to trial biochar as a pulverised coal replacement at 5BF and, if successful and a sustainable supply chain can be established, will be implemented at 6BF.
Carbon capture and usage	Capture fossil fuel emissions and create new products	Bioethanol production from CO ₂ emissions	Research has been undertaken with industry partners to determine the viability of Carbon Capture and Usage and Carbon Capture and Storage at PKSW. CCUS was determined to be economically unviable.
Full decarbonisation	n potential		
Electric Arc Furnace (EAF)	Maximise secondary flows and recycling by melting more scrap in EAF using renewable energy	EAF – usage to melt scrap	Availability of quality scrap is limited and existing electrical infrastructure is not sufficient to operate large enough EAFs to meet current production demands. EAF has a high electricity demand and the technology cannot be considered decarbonised unless sufficient renewable electricity is available.

 Table 6.1
 Summary of potential technologies (sourced from McKinsey & Company (2020) report)

⁵ A patented process using agglomerated iron ore fines, flux and carbon bearing fines in a moving bed shaft furnace with side feeders enabling solid fuel addition to produce iron (Noldin J, 2008)

Technology	Description	Example	Viability for PKSW			
Direct Reduced Iron (DRI) plus EAF using natural gas	Increase usage of DRI in the EAF	Current DRI plus EAF plants using natural gas (NG)	Technology not currently commercially viable due to lack of affordable natural gas on the east coast of Australia coupled with electricity limitations of EAF technology described above.			
DRI plus EAF using H_2	Replace fossil fuels in DRI process with renewable energy or H_2	MIDREX DRI process running on H ₂ HYL DRI process running on H ₂	No current hydrogen infrastructure to allow this path to be implemented. Limitations of electricity requirements for EAF technology as described above.			

The reline of 6BF provides a 'bridge' to transition from the current blast furnace technology to new and emerging low emissions technologies. BlueScope has identified a program of enhancements and upgrades to improve the emissions intensity of the balance of the existing BF-BOF steelmaking facilities as described in section **Error! Reference source not found.**. The implementation of established technologies and availability of raw materials will be crucial to secure steel production capability in the near and longer term and to support the transition to net zero technologies such as DRI produced with renewable hydrogen. As emerging and breakthrough technologies are developed over time to full commercial scale, the strong cash-flows and earnings capability of BlueScope and BSL provide significant capacity to transition to these technologies as and when they become technically and commercially viable in Australia.

6.3 **Proposed technologies for implementation**

BlueScope has incorporated improvements into the design of 6BF which will result in reductions in GHG emissions when compared to those from the current operation of 5BF.

Table 6.2 details the technologies or equipment that are proposed to be installed as part of the operation of 6BF that will assist in reducing GHG emissions when compared with the operation of 5BF.

Technology	Description	Potential GHG reduction	Viability
Dual lance tuyeres	Allow the use of additional supplementary gaseous fuels such as Coke Ovens Gas (COG) or hydrogen.	No direct reduction, however, enables COG and hydrogen injection which will reduce GHG emissions by offsetting external metallurgical coal purchases. COG injection has the potential to reduce emissions by approximately 150,000 tCO ₂ per year.	Dual lance tuyeres are being designed and will be incorporated into the project design.
Top Gas Recovery Turbine	A Top Gas Recovery Turbine utilises the pressure and thermal energy of blast furnace gases as they leave the furnace to generate electricity. The technology reduces GHG emissions by offsetting external power requirements sourced from fossil fuel generation.	Potential reduction of approximately 11,000 tCO ₂ per year in comparison to existing operations.	Proven means of recovering energy from the blast furnace which has been previously implemented on 5BF and will be part of the project design, with improvements which will achieve greater energy recovery on 6BF.

Table 6.2 Technologies or practices proposed as part of the project

Technology	Description	Potential GHG reduction	Viability
Hot Blast Waste Gas Heat Recovery	Gas to gas heat exchangers recover waste heat from the Hot Blast Stoves allowing a reduction in fuel consumption. The higher efficiency combustion liberates Coke Ovens Gas which can be injected into the dual lance tuyeres displacing a proportionate amount of pulverised coal injection into the furnace. Reduction in GHG emissions via reduced fossil fuel energy consumption.	Potential reduction of approximately 11,000 tCO ₂ per year, and enables injection of COG into the blast furnace.	Proven technology which will be part of the project design.
Energy Efficiency	Use of variable speed drives on compressors, pumps and fans, high efficiency motors, and correct equipment selection to avoid over sizing electric motors. Reduction in GHG emissions achieved via reduced fossil fuel energy consumption.	N/A	Proven technology that will be implemented as part of the project.

The incorporation of the technologies identified in Table 6.2 is expected to achieve a reduction of GHG emissions of approximately 172,000 tCO₂-e. This reduction is equivalent to removing over 30,000 cars per year from the road⁶. In addition to these technologies, all operational equipment will be operated and maintained to minimise leaks, accidental venting of gases, or other fugitive GHG emissions to the maximum extent practical.

Furthermore, these technologies will be key enablers of medium to longer-term opportunities to reduce Port Kembla Steelworks' greenhouse gas intensity. These opportunities are part of a broader suite of climate-related projects at Port Kembla that have the potential to significantly reduce GHG emissions intensity. Partnerships and collaborations with governments, technology vendors and industry bodies will be crucial to implementing future technologies.

6.3.1 Dual lance tuyeres

Iron ore, coke and flux materials are 'charged' into the top of the furnace. As the materials descend through the furnace, they are subject to and react with an ascending high speed, high pressure gas stream consisting of preheated air, enrichment oxygen and steam at temperatures in excess of 2,000°C. The gas stream is injected into the furnace through tuyeres positioned above the hearth around the circumference of the furnace. The injection of pulverised coal into the blast furnace is an established technology at PKSW where the coal acts as a fuel and reduces the amount of coke required in the process. The pulverised coal is injected into the blast furnace via an injection lance at the tuyeres.

As part of the project, dual lance tuyeres will be installed at 6BF to enable the injection of hydrogen as an alternate reductant, either in the form of COG⁷ or renewable hydrogen, into the blast furnace. These reductants will replace a proportionate amount of the coal currently injected into the blast furnace, thereby reducing Scope 1 GHG emissions.

⁶ Based on US EPA estimate of 4.6 tonnes CO₂-e per car per year and 220 cars = 1kt.

⁷ COG is gas generated from cokemaking processes and is used as a fuel at the blast furnace. It is around 60% hydrogen.

6.3.1.1 Coke Ovens Gas as an intermediate source of hydrogen

COG is composed of approximately 60% hydrogen, making it an available source of hydrogen until electrolysis of hydrogen becomes economically viable. The high concentration of hydrogen contained in COG makes it suitable for use as a reductant in the blast furnace. BlueScope is investigating a number of different ways to make more COG available for use in the Blast Furnace (the primary source being the Hot Blast Waste Gas Heat Recovery mentioned above). Before it is injected into the blast furnace, COG needs to be pressurised to approximately 700 kPa. In addition to the work of the project, BlueScope is investigating the installation of a COG compression plant. While this is not part of the project scope, the plant would further enable the use of COG as a reductant in the blast furnace.

The use of COG as a reductant in the blast furnace has the potential to result in CO_2 emission reductions of up to approximately 150,000 t CO_2 -e per year.

6.3.1.2 Hydrogen as a reductant

As discussed in section 3.7, BSL has signed a Memorandum of Understanding with Shell Energy Operations Pty Ltd to investigate designing, building and operating a 10 MW renewable energy hydrogen electrolyser to test the use of hydrogen in the blast furnace at PKSW. To produce renewable hydrogen, the electrolyser must be powered by renewable energy.

The electrolyser does not form part of the project scope however, its operation will potentially enable the use of hydrogen as a reductant at the blast furnace.

If successful, it is estimated the 10 MW electrolyser may achieve emission reductions of up to 12,000 tonnes of CO₂ per year and provide the information necessary to allow subsequent installation of a larger electrolyser for more significant reductions once the cost of hydrogen production is economically viable and sufficient renewable electricity is available.

6.3.2 Top Gas Recovery Turbine

A Top Gas Recovery Turbine (TRT) designed to extract power from the furnace top gases in a similar fashion to a hydroelectric generation system will be installed at the top of the furnace. The TRT will let the furnace top pressure down from 200 kPa to approximately 10 kPa, driving an alternator to generate approximately 13 MW of electricity to be consumed within the works.

This technology is currently utilised at PKSW and the new TRT at 6BF will produce approximately 3MW more than the existing TRT installed at 5BF, thereby reducing the amount of electricity externally sourced for the operation of PKSW.

6.3.3 Waste Gas Heat Recovery

A Waste Gas Heat Recovery unit will be installed on the 6BF stoves. This technology uses heat pipes to transfer energy directly from the flue gas into both the BFG and combustion air supplied to the stoves.

This technology is not currently implemented at PKSW and its installation at 6BF will reduce the need for enrichment gas, COG, to be used at the stoves. This will enable the use of COG as a reducing agent at the blast furnace to decrease the amount of pulverised coal injected into the furnace.

6.4 Emerging and future breakthrough technologies

BlueScope recognises that the decarbonisation of hard-to-abate industries like iron and steelmaking relies on breakthrough technologies, once proven and scalable. Several hydrogen-based ironmaking technologies are currently being explored across the industry. These range from the injection of hydrogen into existing blast furnace operations to the replacement of current ironmaking technologies with DRI manufactured using renewable hydrogen. Concept studies, prototypes and demonstration plants are being developed, but further significant advances will be needed before these technologies are commercialised. Based on current research, technology and commercial readiness, these technologies are expected to continue to develop over the current and following decade, with significant take-up across the steel industry predicted to occur into the 2040s.

A range of innovative "green steel" ideas are starting to be piloted globally and BlueScope, when examining the possible steel production and supply options to be adopted at the conclusion of the current 5BF campaign, considered the potential use of these breakthrough technologies. Following extensive review of the available options and industry analysis of those developments, BlueScope has concluded that these technologies, and the supporting infrastructure required to implement them (such as a cost competitive renewable hydrogen supply chain) will not be commercialised at a viable scale in time to maintain production once the current campaign of 5BF concludes in the mid to late 2020s.

6.4.1 Biochar

Producing biochar captures 50 percent of the CO₂ that would otherwise escape during waste decomposition and retains most of it for up to 100 years. McKinsey & Company (2020) estimate that biochar technology is less than a decade away from the point when it could start having a real impact: by 2030, it could sequester roughly 2 Mtpa of CO₂.

The use of biochar is identified as an emerging technology in BSL's Climate Action Report (refer Figure 3.1). This process involves the use of sustainably sourced charcoal from forestry or construction industry waste as a coal substitute. Biochar is currently used as a reductant in some iron and steel plants overseas (such as Brazil) however, the availability of sustainable biochar in Australia is currently limited. A key enabler of this technology will be the development of an economically sustainable source of biochar in Australia.

In 2006, BlueScope partnered with CSIRO and OneSteel in a successful Worldsteel CO₂ Breakthrough R&D (CO2BT) program on the potential use of renewable carbon-based (biochar) materials. In the case of renewable carbon-based materials, the objective was to partially replace coal in various processes, particularly for a) pulverised coal injection (PCI) into the BF, b) metallurgical coal in coke ovens, c) anthracite in iron ore sintering and d) calcined anthracite in steel decarburisation. At the conclusion of the CO2BT program in 2012, the suitability of biochar had been demonstrated at a technical and pilot-scale level for all four applications.

BlueScope is currently evaluating options for the use of biochar as PCI into the BF, through potential supply of biomass/biochar, pyrolysis equipment capable of producing large quantities of biochar, and plant trials at 5BF. If trials are successful and a sustainable supply chain can be established, BlueScope will be able to introduce biochar into the relined 6BF.

It is estimated that biochar has the potential to achieve reductions of up to 450,000 tonnes of CO₂ per annum.

6.4.2 Hydrogen-based Direct Reduced Iron (DRI) / Electric Arc Furnace (EAF) steelmaking

Hydrogen-based DRI coupled with steel production using an EAF is technically feasible and already considered to be part of a potential long-term solution for decarbonizing the steel industry on a large scale. The question is not whether but when and to what extent this transformation will happen.

While integrated manufacturers produce steel from iron ore and need coal as a reductant, EAF producers use steel scrap or direct reduced iron (DRI) as their main raw material and sometimes pig iron in billets. The existing commercial production of DRI is achieved by subjecting pelletised iron ore to natural gas or COG. The hydrogen and carbon monoxide in the natural gas or coal gas react with the oxygen in the iron ore reducing it to iron and generating water and/or CO₂.

Significant attention is being given by the media to the potential for the use of renewable hydrogen as a reductant source to reduce the carbon footprint of steelmaking processes using the DRI process. However, this technology remains at pilot stage; in 2019 its technology readiness level (TRL) was assessed by the Australian Renewable Energy Agency as 1 - 6, indicating the requirement for further research, development and demonstration. The recent report of the Australian Industry Energy Transition Initiative predicts that this technology will be commercially available only in 2035 and this prediction may in fact be optimistic having regard to the timeframes in which step changes in iron and steelmaking technologies typically occur.

There are external factors affecting the immediate implementation of renewable hydrogen-based DRI-EAF steelmaking including production technology, limited power supply, and hydrogen supply security (McKinsey & Company, 2020):

- Production technology: While transitioning the process to an entirely hydrogen-powered process is technically feasible, the technology has yet to be proven on a large scale (McKinsey & Company, 2020).
- Limited power supply: Renewable hydrogen-based steel creates a need for a significant capacity increase in electricity derived from renewables. To put this into perspective, the total energy required to produce two million tonnes of hydrogen-based steel is about 8.8 Terawatt-hour, which equates to the output from 300 to 1,100 wind turbines (depending on the output capacity of current and future turbines) (McKinsey & Company, 2020). The development of a commercial renewable hydrogen industry requires the availability of renewable electricity to increase substantially. A low-cost, large-scale, reliable supply of renewables is critical to reducing the cost of renewable hydrogen production sufficiently to bring it into the range of commercial viability for industrial use in iron and steelmaking.
- Hydrogen-supply security: The future shift to hydrogen-based steel production relies heavily on the broad availability of renewable hydrogen on an industrial scale. Producing two million tonnes of hydrogen-based steel requires 144,000 tonnes of hydrogen (McKinsey & Company, 2020).

As reported by the European Parliamentary Research Service (2020), the production of 1 tonne of steel requires 50 kg of hydrogen. Currently, the largest electrolyser in Australia is 1.25 MW, capable of producing 480 kg of hydrogen per day (AGIG, 2021). PKSW produces approximately 8,000 tonnes of iron per day, therefore, to maintain existing production rates, approximately 400,000 kg of hydrogen would be required per day.

BSL and Shell Energy Operations Pty Ltd have signed a Memorandum of Understanding to investigate, design, build and operate a 10 MW renewable energy hydrogen electrolyser to explore and test the use of renewable hydrogen in the blast furnace at PKSW (refer section 3.7). If successful, it is estimated the 10 MW electrolyser may achieve emission reductions of up to 12,000 tonnes of CO₂ per year. While an improvement, BlueScope estimates up to a 300 MW electrolyser would be required to service the blast furnace.

In addition to the limitations posed by the availability of renewable hydrogen, the transition of steelmaking technology from BF-BOF to renewable hydrogen-based DRI-EAF requires changes to raw material inputs. Currently only 15-20% of iron ores available globally are suitable for use as a DRI feed in a DRI/EAF process configuration. A sudden transition to renewable hydrogen-based DRI-EAF technology by the steelmaking sector could result in rising price premiums given an uncertainty of a secure DRI supply, thereby negatively affecting the economic viability of the production method.

One of the priority action areas of the Memorandum of Understanding signed by BSL and Rio Tinto is to explore the direct reduction of Rio Tinto's Pilbara ores, which are not currently suitable for direct reduction using the commercially available DRI-EAF technology, to overcome this limitation.

6.4.3 Hydrogen-based Direct Reduced Iron (DRI) / Melter / Basic Oxygen Furnace (BOF)

An alternative process for the use of lower-grade ore sources that are unsuitable for DRI-EAF steel production is to add a Melter process after the DRI process. Such technology exists and can be used to remove the metal oxide impurities ('gangue') that are present in the Pilbara hematite based ores. This process also enables the existing BOF-Caster configuration that is part of an integrated steelworks to continue to be utilised, without the need to invest in an additional conversion process. The limitations of renewable hydrogen production and availability for DRI discussed above remain applicable to this technology. As with the DRI-EAF technology, the DRI-Melter-BOF process is electricity-intensive.

Hematite ores such as those which are predominant in the Pilbara region of Australia are not currently suitable for direct reduction using the commercially available DRI-EAF technology due to the levels of gangue present in the material but may be suitable for DRI-Melter-BOF technology. One of the priority action areas of the Memorandum of Understanding signed by BSL and Rio Tinto is to explore the direct reduction of Rio Tinto's Pilbara ores, to determine the suitability of this technology in the future.

6.4.4 Direct electrolysis of iron ore

Direct electrolysis of iron ore is a proposed technology currently undergoing small pilot trials overseas. It involves the reduction of iron ore using electro-chemical processes rather than using chemical reductants.

This electricity intensive process could potentially be a zero emission technology if utilising 100 per cent renewable energy however, the technology is in its early stages and must be further developed to overcome engineering issues, and pilot trials upscaled before it can be considered technically and economically viable at the scale required.

6.4.5 Blast Furnace coupled with Carbon Capture, Utilisation and Storage (CCUS)

Carbon Capture Utilisation and Storage (CCUS) involves capturing CO₂ emissions at the source, removing impurities, compressing the CO₂ for transport, and either utilising it to create other products or permanently storing it in underground geological formations.

In 2018 to 2019, BlueScope partnered with the CO₂ Cooperative Research Centre (CO2CRC) to explore potential pathways for reducing GHG emissions in steel production through CCS and CCU. A high-level evaluation of the economic viability of transport (piping or shipping) and storage location options for captured CO₂ from Port Kembla was carried out by CO2CRC and the Sydney University. In addition, utilisation of CO₂- and CO-rich gases to provide high-quality, value-added products using innovative biochemical and chemical processes have been considered. Further work on the potential to use plant generated gases to produce ethanol was completed, with many different scenarios considered, including hydrogen and methane.

Findings are yet to be released publicly, however, CCUS opportunities will not be progressed at this stage, as they were determined to be economically unviable.

7. Mitigation measures

7.1 Construction

Construction stage emissions are minor. Measures such as the use of appropriately sized equipment, minimising use and turning off engines where practical will minimise GHG emissions during construction.

7.2 Operations

Mitigation measures have been outlined in Sections 3.7 and 6. The mitigation measures for the project form part of BlueScope's GHG reduction and climate targets. Section 6.3 details technologies that will be incorporated into the operation of the project. A reduction in GHG emissions relative to current 5BF operations is anticipated through the implementation, installation or undertaking of the following:

- Dual lance tuyeres.
- Waste Gas Heat Recovery unit installed on 6BF stoves.
- Top Recovery Turbine installed to extract energy from gases vented from the top of the blast furnace.
- Energy efficiency initiatives such as use of high efficiency motors and variable speed drives on auxiliary equipment.
- Maintenance and operation of equipment to minimise leaks, accidental venting of gases or other fugitive GHG emissions to the extent practical.

In addition to the mitigation measures proposed above, BlueScope is committed to identifying and investigating possible measures to be implemented to reduce net GHG emissions from the operation of 6BF. This will include but is not limited to:

- Optimising raw material mixes.
- Replacing a portion of the pulverised coal currently used in the blast furnace process with alternative reductants such as COG, renewable hydrogen and/or biochar.
- Investigation and review of emerging technologies to determine commercial and economic viability.

BlueScope and BSL will continue to undertake regular reporting on total PKSW net energy consumption and GHG emissions under the NGERS in accordance with the methodology prescribed by the National Greenhouse and Energy Reporting (Measurement) Determination 2008 (Measurement Determination).

Sustainability and Climate Change strategies will be regularly reviewed against evolving regulatory, corporate or other policy over the life of the 6BF campaign to ensure the GHG management strategies are managed in accordance with evolving stakeholder expectations.

BlueScope will also continue to maximise the use of steel manufacturing co-products to offset carbon intensive material inputs into industrial processes e.g. the use of Granulated Blast Furnace Slag as a cementitious replacement for Portland Cement in concrete construction to lower GHG emissions.

8. Conclusions

The quantity of GHG emissions estimated to occur during the full construction and commissioning period are approximately 30,000 tCO₂-e, or approximately 9,800 tCO₂-e per annum. Emissions during construction are minor and approximately 0.1% of annual operational emissions.

In line with current operations, annual emissions from the project will account for less than 1.4% of Australia's annual GHG emissions and approximately 5% of NSW's annual GHG emissions, based on currently available data.

Over the life of the project GHG emissions are predicted to reduce through the implementation of proven technologies including dual lance tuyeres, top recovery gas turbine, waste gas heat recovery and COG injection. These technologies are anticipated to reduce GHG emissions by approximately 172,000 tCO₂-e or approximately 2.5% based on FY2021 emissions. These technologies also provide scope for further reductions. The scope of the project is intended to address the dual aims of the project: to secure BlueScope's domestic ironmaking needs from 2026, as well as provide a bridge to transition from current blast furnace technology to new and emerging low emissions technologies once available at commercial, viable scale

Emissions reductions would also be achieved through the implementation of various other technologies as they become proven and commercially viable. This includes the use of biochar as a pulverised coal replacement, hydrogen-based DRI following installation of a hydrogen electrolyser at PKSW and installation of a COG compression plant.

Measures will be implemented to minimise and reduce GHG emissions and energy usage in relation to the 6BF reline project. Whilst the project represents a continuation of 'business as usual' as iron production is transferred from 5BF to 6BF, ongoing measures implemented by BlueScope as part of the project will ensure ongoing reductions in GHG emissions are achieved.

Consistent with the commitments made by BSL in their Climate Action Report, BlueScope is committed to continue research and investment in emerging technologies for PKSW over the campaign life of 6BF to more substantially reduce GHG emissions. This approach is considered by GHD to be consistent with international, national, state and local GHG policies aimed at achieving a net zero future.

9. References

ABS. (2020) Survey of Motor Vehicle Use, Australia, 12 months ended 30 June 2020

Australian Government. (2021). Australia's Long-term Emissions Reduction Plans. https://creativecommons.org/licenses/by/4.0/.Thefulllicencetermsareavailablefromhttps://creativecommons.org/licenses/by/4.0/legalcode

AGIG. (2021). Hydrogen Park South Australia. https://www.agig.com.au/hydrogen-park-south-australia

BlueScope (2021) Climate Action Report

BlueScope (2021) Sustainability Report 2020/21

Commonwealth of Australia "National greenhouse and Energy Reporting (Measurement) Determination 2008", Compilation No. 13, July 2021

Department of Industry, Science, Energy and Resources "Quarterly Update of Australia's National Greenhouse Gas Inventory: June 2021, Incorporating emissions from the NEW up to September 2021"

Department of Industry, Science, Energy and Resources "State and Territory Greenhouse Gas Inventories 2019" 2021

Department of Industry, Science, Energy and Resources, National Inventory Report 2019", April 2021

IPCC. (2021). Climate change widespread, rapid, and intensifying – IPCC. https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/

IPCC. (2021). Summary for Policymakers of IPCC Special Report on Global Warming of 1.5°C approved by governments — IPCC. Retrieved December 8, 2021, from https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/

McKinsey. (2020), Decarbonization in steel. Retrieved December 8, 2021, from https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel

Noldin, J. H., Cox, I. J., & D'Abreu, J. C. (2008). The Tecnored ironmaking process part 1 - Competitiveness and pilot development work. Ironmaking and Steelmaking, 35(4), 245–250. https://doi.org/10.1179/174328108X301705

NSW Government. (2020). Net Zero Plan. Stage 1: 2020-2030. Net Zero Plan Stage 1: 2020-2030 | NSW Environment, Energy and Science

Wollongong City Council (2020) Climate Change Mitigation Plan 2020

Wollongong City Council (2020) Sustainable Wollongong 2030

Worldsteel Association (2021) Climate change and the production of iron. Public policy paper

Worldsteel Association (2021) Fact sheet: Energy use in the steel industry

Worldsteel Association (2021) Fact sheet: Electrolysis in ironmaking

ghd.com

→ The Power of Commitment

Appendix K Biodiversity

Database searches BRAW Waiver

Contact Name: Deana Burn Number: 02 9274 6453 Email: deana.burn@planning.nsw.gov.au

Mr Simon Murphy Environmental Planner GHD Pty Ltd PO Box 5403 Hunter Region Mail Centre NEWCASTLE NSW 2310

Dear Mr Murphy

BlueScope Blast Furnace 6 Reline Project (SSI-22545215) Approval of the Waiver of Requirement to Prepare a Biodiversity Development Assessment Report

I refer to your correspondence received on 11 June 2021, seeking to waive the requirement to prepare a biodiversity development assessment report (BDAR) for the State significant infrastructure application for the BlueScope Blast Furnace 6 Reline Project.

Description of proposed development

Reline, commission and operate Blast Furnace No. 6 at the Port Kembla Steelworks.

Under section 7.9(2) of the Biodiversity Conservation Act 2016 (BC Act):

"Any such application is to be accompanied by a biodiversity assessment report unless the Planning Agency Head and the Environment Agency Head determine that the proposed development is not likely to have any significant impact on the biodiversity values".

This letter is to confirm that the Planning Secretary of the Department of Planning, Industry and Environment and the Chief Executive of the Environment, Energy and Science Group have determined that the proposed project as described above is not likely to have any significant impact on biodiversity values and that a BDAR is not required to accompany any application for infrastructure approval for the proposed project.

Evidence that the Chief Executive of the Environment, Energy and Science Group has determined that the proposed development is not likely to have any significant impacts on biodiversity values is attached and dated 28 July 2021.

If there are any amendments to the proposed project, a new request for a BDAR waiver determination will be required or a BDAR may need to be prepared.

Should you have any further enquiries, please contact Deana Burn, Planning Services, at the Department on the above contact details.

Yours sincerely

Retche

5 August 2021

Chris Ritchie Director Industry Assessments (as delegate of the Planning Secretary)

Encl: Determination, Environment, Energy and Science Group Determination, Department of Planning, Industry and Environment

Determination under clause 7.9(2) of the Biodiversity Conservation Act 2016

I, Chris Ritchie, Director Industry Assessments, Planning Services, of the Department of Planning, Industry and Environment, under clause 7.9(2) of the *Biodiversity Conservation Act 2016*, determine that the proposed project is not likely to have any significant impact on biodiversity values and therefore a Biodiversity Development Assessment Report (BDAR) is not required.

Proposed project means relining, commissioning and operation of Blast Furnace No. 6 at the Port Kembla Steelworks and as detailed in the "BDAR waiver application dated 11 June 2021". If the proposed project changes so that it is no longer consistent with this description, a further waiver request is required.

Chetche

5 August 2021

Date

Director Industry Assessments Planning Services Department of Planning, Industry and Environment (as delegate of the Planning Secretary)

Determination template - BDAR not required

Determination under clause 7.9(2) of the Biodiversity Conservation Act 2016

I, Michael Saxon, Director South East Branch, Conservation and Regional Delivery Division of the Office of Environment and Heritage, under clause 7.9(2) of the *Biodiversity Conservation Act 2016*, determine that the proposed development is unlikely to have any significant impact on biodiversity values and a Biodiversity Development Assessment Report (BDAR) **is therefore not required**.

Proposed development means the development as described in Schedule 1. If the proposed development changes so that it is no longer consistent with this description, a further request to waive the requirement for a BDAR must be lodged or a BDAR prepared.

If you do not lodge the development application related to this determination for the proposed development within 2 years of the issue date of this determination, you must either prepare a BDAR or lodge a new request to have the BDAR requirement waived.

28/7/2021

Date

Michael Saxon South East Branch Biodiversity and Conservation Division

SCHEDULE 1 – Description of the proposed development

BlueScope Blast Furnace No. 6 Reline (SSI-22545215)

The proposal is to reline an existing blast furnace to allow for the ongoing manufacture of steel at the Port Kembla BlueScope Pty steelworks.

The blast furnace site is located within a heavily industrialised site, with no native vegetation present and very little threatened species habitat, connectivity or potential for presence.

Data from the BioNet Atlas website, which holds records from a number of custodians. The data are only indicative and cannot be considered a comprehensive inventory, and may contain errors and omissions. Species listed under the Sensitive Species Data Policy may have their locations denatured (^ rounded to 0.1°C; ^^ rounded to 0.01°C. Copyright the State of NSW through the Department of Planning, Industry and Environment. Search criteria : Public Report of all Valid Records of Threatened (listed on BC Act 2016) ,Commonwealth listed ,CAMBA listed ,JAMBA listed or ROKAMBA listed Entities in selected area [North: -34.36 West: 150.79 East: 150.99 South: -34.56] returned a total of 17,013 records of 133 species.

Kingdom	Class	Family	Species Code	Scientific Name	Exotic	Common Name	NSW status	Comm. status	Record s	Info
Animalia	Amphibia	Myobatrachidae	3116	Pseudophryne australis		Red-crowned Toadlet	V,P		17	1
Animalia	Amphibia	Hylidae	3166	Litoria aurea		Green and Golden Bell Frog	E1,P	V	479	1
Animalia	Amphibia	Hylidae	3039	Litoria littlejohni		Littlejohn's Tree Frog	V,P	V	1	1
Animalia	Amphibia	Limnodynastida e	3042	Heleioporus australiacus		Giant Burrowing Frog	V,P	V	3	i
Animalia	Reptilia	Cheloniidae	2004	Caretta caretta		Loggerhead Turtle	E1,P	Е	1	4
Animalia	Reptilia	Cheloniidae	2007	Chelonia mydas		Green Turtle	V,P	V	5	a la la la
Animalia	Reptilia	Cheloniidae	2008	Eretmochelys imbricata		Hawksbill Turtle	Р	V	1	1
Animalia	Reptilia	Varanidae	2287	Varanus rosenbergi		Rosenberg's Goanna	V,P		1	1
Animalia	Reptilia	Elapidae	2676	^Hoplocephalus bungaroides		Broad-headed Snake	E1,P,2	V	4	i
Animalia	Aves	Anatidae	0216	Oxyura australis		Blue-billed Duck	V,P		40	1
Animalia	Aves	Anatidae	0214	Stictonetta naevosa		Freckled Duck	V,P		40	-
Animalia	Aves	Phaethontidae	0108	Phaethon lepturus		White-tailed Tropicbird	Р	C,J	3	
Animalia	Aves	Columbidae	0025	Ptilinopus magnificus		Wompoo Fruit-Dove	V,P		2	
Animalia	Aves	Columbidae	0021	Ptilinopus regina		Rose-crowned Fruit-Dove	V,P		2	
Animalia	Aves	Columbidae	0023	Ptilinopus superbus		Superb Fruit-Dove	V,P		3	i
Animalia	Aves	Apodidae	0335	Apus pacificus		Fork-tailed Swift	Р	C,J,K	2	
Animalia	Aves	Apodidae	0334	Hirundapus caudacutus		White-throated Needletail	Р	V,C,J,K	7	i
Animalia	Aves	Diomedeidae	0086	Diomedea exulans		Wandering Albatross	E1,P	Е	1417	
Animalia	Aves	Diomedeidae	0847	Diomedea gibsoni		Gibson's Albatross	V,P	V	1	1
Animalia	Aves	Diomedeidae	0859	Thalassarche impavida		Campbell Albatross	Р	V	1	1

Animalia	Aves	Diomedeidae	0088	Thalassarche melanophris	Black-browed Albatross	V,P	V	9	i
Animalia	Aves	Diomedeidae	0862	Thalassarche salvini	Salvin's Albatross	Р	V	1	-
Animalia	Aves	Procellariidae	0072	Ardenna carneipes	Flesh-footed Shearwater	V,P	J,K	2	1
Animalia	Aves	Procellariidae	0070	Ardenna grisea	Sooty Shearwater	P	Ĵ	4	1
Animalia	Aves	Procellariidae	0069	Ardenna pacifica	Wedge-tailed Shearwater	Р	J	7831	
Animalia	Aves	Procellariidae	0071	Ardenna tenuirostris	Short-tailed Shearwater	Р	C,J,K	408	
Animalia	Aves	Procellariidae	0853	Calonectris leucomelas	Streaked Shearwater	Р	C,J,K	2	
Animalia	Aves	Procellariidae	0929	Macronectes giganteus	Southern Giant Petrel	E1,P	E	16	
Animalia	Aves	Procellariidae	0937	Macronectes halli	Northern Giant-Petrel	V,P	V	2	1010
Animalia	Aves	Procellariidae	8684	Pterodroma leucoptera leucoptera	Gould's Petrel	V,P	E	1	i
Animalia	Aves	Procellariidae	0067	Puffinus assimilis	Little Shearwater	V,P		2	1
Animalia	Aves	Fregatidae	0095	Fregata ariel	Lesser Frigatebird	P	C,J,K	1	
Animalia	Aves	Sulidae	0102	Sula leucogaster	Brown Booby	Р	C,J,K	1	
Animalia	Aves	Ciconiidae	0183	Ephippiorhynchus asiaticus	Black-necked Stork	E1,P		3	i
Animalia	Aves	Ardeidae	0197	Botaurus poiciloptilus	Australasian Bittern	E1,P	E	3	- 1
Animalia	Aves	Ardeidae	0196	Ixobrychus flavicollis	Black Bittern	V,P		16	1010
Animalia	Aves	Accipitridae	0218	Circus assimilis	Spotted Harrier	V,P		1	1
Animalia	Aves	Accipitridae	0226	Haliaeetus leucogaster	White-bellied Sea-Eagle	V,P		39	
Animalia	Aves	Accipitridae	0225	Hieraaetus morphnoides	Little Eagle	V,P		7	i
Animalia	Aves	Accipitridae	0230	^^Lophoictinia isura	Square-tailed Kite	V,P,3		11	4
Animalia	Aves	Accipitridae	8739	^^Pandion cristatus	Eastern Osprey	V,P,3		31	
Animalia	Aves	Haematopodida e	0131	Haematopus fuliginosus	Sooty Oystercatcher	V,P		55	Mo to to
Animalia	Aves	Haematopodida e	0130	Haematopus longirostris	Pied Oystercatcher	E1,P		18	i
Animalia	Aves	Charadriidae	0141	Charadrius leschenaultii	Greater Sand-plover	V,P	V,C,J,K	6	1
Animalia	Aves	Charadriidae	0139	Charadrius mongolus	Lesser Sand-plover	V,P	E,C,J,K	2	i
Animalia	Aves	Charadriidae	8006	Pluvialis fulva	Pacific Golden Plover	Р	C,J,K	8	
	Aves	Charadriidae	0136	Pluvialis squatarola	Grey Plover	Р	C,J,K	18	

Animalia	Aves	Charadriidae	T453	Thinornis cucullatus cucullatus	Eastern Hooded Dotterel	E4A	V	5	1
Animalia	Aves	Rostratulidae	0170	Rostratula australis	Australian Painted Snipe	E1,P	E	1	1
Animalia	Aves	Scolopacidae	0157	Actitis hypoleucos	Common Sandpiper	P	C,J,K	2	· 1
Animalia	Aves	Scolopacidae	0129	Arenaria interpres	Ruddy Turnstone	Р	C,J,K	25	
Animalia	Aves	Scolopacidae	0163	Calidris acuminata	Sharp-tailed Sandpiper	Р	C,J,K	29	
Animalia	Aves	Scolopacidae	0166	Calidris alba	Sanderling	V,P	C,J,K	18	
Animalia	Aves	Scolopacidae	0164	Calidris canutus	Red Knot	Р	E,C,J,K	10	1
Animalia	Aves	Scolopacidae	0161	Calidris ferruginea	Curlew Sandpiper	E1,P	CE,C,J, K	10	1
Animalia	Aves	Scolopacidae	0978	Calidris melanotos	Pectoral Sandpiper	Р	J,K	3	
Animalia	Aves	Scolopacidae	0162	Calidris ruficollis	Red-necked Stint	Р	C,J,K	15	
Animalia	Aves	Scolopacidae	0165	Calidris tenuirostris	Great Knot	V,P	CE,C,J, K	10	i
Animalia	Aves	Scolopacidae	0168	Gallinago hardwickii	Latham's Snipe	Р	J,K	13	
Animalia	Aves	Scolopacidae	0167	Limicola falcinellus	Broad-billed Sandpiper	V,P	C,J,K	3	1
Animalia	Aves	Scolopacidae	0153	Limosa lapponica	Bar-tailed Godwit	P	C,J,K	33	_
Animalia	Aves	Scolopacidae	0152	Limosa limosa	Black-tailed Godwit	V,P	C,J,K	2	-
Animalia	Aves	Scolopacidae	0149	Numenius madagascariensis	Eastern Curlew	Ρ	CE,C,J, K	22	i
Animalia	Aves	Scolopacidae	0150	Numenius phaeopus	Whimbrel	Р	C,J,K	2	
Animalia	Aves	Scolopacidae	0155	Tringa brevipes	Grey-tailed Tattler	Р	C,J,K	12	
Animalia	Aves	Scolopacidae	0156	Tringa incana	Wandering Tattler	Р	J	9	
Animalia	Aves	Scolopacidae	0158	Tringa nebularia	Common Greenshank	Р	C,J,K	25	
Animalia	Aves	Scolopacidae	0159	Tringa stagnatilis	Marsh Sandpiper	Р	C,J,K	5	
Animalia	Aves	Scolopacidae	0160	Xenus cinereus	Terek Sandpiper	V,P	C,J,K	5	1
Animalia	Aves	Stercorariidae	0128	Stercorarius parasiticus	Arctic Jaeger	P	C,J,K	3	_
Animalia	Aves	Stercorariidae	0945	Stercorarius pomarinus	Pomarine Jaeger	Р	C,J,K	1	
Animalia	Aves	Laridae	0109	Chlidonias leucopterus	White-winged Black Tern	Р	C,J,K	16	
Animalia	Aves	Laridae	0111	Gelochelidon nilotica	Gull-billed Tern	Р	С	1	
Animalia	Aves	Laridae	0972	Gygis alba	White Tern	V,P		2	i
Animalia	Aves	Laridae	0112	Hydroprogne caspia	Caspian Tern	Р	J	59	-
Animalia	Aves	Laridae	0120	Onychoprion fuscata	Sooty Tern	V,P		4	1
Animalia	Aves	Laridae	0953	Sterna hirundo	Common Tern	Р	C,J,K	6	
Animalia	Aves	Laridae	0117	Sternula albifrons	Little Tern	E1,P	C,J,K	258	-

Animalia	Aves	Laridae	0115	Thalasseus bergii	Crested Tern	Р	J	4855	-
Animalia	Aves	Cacatuidae	0268	^^Callocephalon fimbriatum	Gang-gang Cockatoo	V,P,3		64	1
Animalia	Aves	Cacatuidae	0265	^Calyptorhynchus Iathami	Glossy Black-Cockatoo	V,P,2		6	1
Animalia	Aves	Psittacidae	0260	Glossopsitta pusilla	Little Lorikeet	V,P		11	-
Animalia	Aves	Psittacidae	0309	^^Lathamus discolor	Swift Parrot	E1,P,3	CE	36	
Animalia	Aves	Psittacidae	0302	^^Neophema pulchella	Turquoise Parrot	V,P,3		3	4
Animalia	Aves	Psittacidae	0709	^^Polytelis anthopeplus monarchoides	Regent Parrot (eastern subspecies)	E1,P,3	V	1	Нотоло но
Animalia	Aves	Psittacidae	0277	^^Polytelis swainsonii	Superb Parrot	V,P,3	V	1	1
Animalia	Aves	Strigidae	0246	^^Ninox connivens	Barking Owl	V,P,3		1	le le
Animalia	Aves	Strigidae	0248	^^Ninox strenua	Powerful Owl	V,P,3		42	-
Animalia	Aves	Tytonidae	0250	^^Tyto novaehollandiae	Masked Owl	V,P,3		5	1
Animalia	Aves	Tytonidae	9924	^^Tyto tenebricosa	Sooty Owl	V,P,3		19	de la de
Animalia	Aves	Dasyornithidae	0519	^Dasyornis brachypterus	Eastern Bristlebird	E1,P,2	Е	4	i
Animalia	Aves	Meliphagidae	0603	Anthochaera phrygia	Regent Honeyeater	E4A,P	CE	3	-
Animalia	Aves	Meliphagidae	0448	Epthianura albifrons	White-fronted Chat	V,P		1	-
Animalia	Aves	Meliphagidae	0598	Grantiella picta	Painted Honeyeater	V,P	V	1	-
Animalia	Aves	Meliphagidae	8303	Melithreptus gularis gularis	Black-chinned Honeyeater (eastern subspecies)	V,P		1	нотопа
Animalia	Aves	Neosittidae	0549	Daphoenositta chrysoptera	Varied Sittella	V,P		2	1
Animalia	Aves	Campephagida e	0428	Coracina lineata	Barred Cuckoo-shrike	V,P		1	1
Animalia	Aves	Pachycephalida e	0405	Pachycephala olivacea	Olive Whistler	V,P		2	1
Animalia	Aves	Artamidae	8519	Artamus cyanopterus cyanopterus	Dusky Woodswallow	V,P		1	1
Animalia	Aves	Petroicidae	0380	Petroica boodang	Scarlet Robin	V,P		1	-
Animalia	Aves	Petroicidae	0382	Petroica phoenicea	Flame Robin	V,P		2	1
Animalia	Aves	Petroicidae	0383	Petroica rodinogaster	Pink Robin	V,P		1	
Animalia	Mammalia	Dasyuridae	1008	Dasyurus maculatus	Spotted-tailed Quoll	V,P	Е	3	1
Animalia	Mammalia	Phascolarctidae	1162	Phascolarctos cinereus	Koala	V,P	V	15	и стопопо

Animalia	Mammalia	Burramyidae	1150	Cercartetus nanus	Eastern Pygmy-possum	V,P		11	1
Animalia	Mammalia	Petauridae	1137	Petaurus norfolcensis	Squirrel Glider	V,P		2	1
Animalia	Mammalia	Pseudocheirida e	1133	Petauroides volans	Greater Glider	Р	V	23	1
Animalia	Mammalia	Pteropodidae	1280	Pteropus poliocephalus	Grey-headed Flying-fox	V,P	V	504	-
Animalia	Mammalia	Vespertilionidae	1353	Chalinolobus dwyeri	Large-eared Pied Bat	V,P	V	1	1
Animalia	Mammalia	Vespertilionidae	1372	Falsistrellus tasmaniensis	Eastern False Pipistrelle	V,P		3	i
Animalia	Mammalia	Vespertilionidae	1357	Myotis macropus	Southern Myotis	V,P		3	1
Animalia	Mammalia	Vespertilionidae	1361	Scoteanax rueppellii	Greater Broad-nosed Bat	V,P		2	1
Animalia	Mammalia	Miniopteridae	1346	Miniopterus australis	Little Bent-winged Bat	V,P		4	1
Animalia	Mammalia	Miniopteridae	3330	Miniopterus orianae oceanensis	Large Bent-winged Bat	V,P		12	1
Animalia	Mammalia	Dugongidae	1558	Dugong dugon	Dugong	E1,P		1	-
Animalia	Mammalia	Otariidae	1882	Arctocephalus pusillus doriferus	Australian Fur-seal	V,P		10	;
Animalia	Mammalia	Balaenopterida e	1575	Megaptera novaeangliae	Humpback Whale	V,P	V	2	i
Animalia	Mammalia	Physeteridae	1578	Physeter macrocephalus	Sperm Whale	V,P		2	i
Plantae	Flora	Apocynaceae	1226	Cynanchum elegans	White-flowered Wax Plant	E1	Е	65	1
Plantae	Flora	Davalliaceae	8085	^^Arthropteris palisotii	Lesser Creeping Fern	E1,3		1	1
Plantae	Flora	Ericaceae	7752	Epacris purpurascens var. purpurascens		V		3	
Plantae	Flora	Fabaceae (Caesalpinioide ae)	8772	Senna acclinis	Rainforest Cassia	E1		3	1
Plantae	Flora	Fabaceae (Faboideae)	2797	Chorizema parviflorum	Chorizema parviflorum Benth. in the Wollongong and Shellharbour Local Government Areas	E2		1	i
Plantae	Flora	Fabaceae (Faboideae)	2974	Pultenaea aristata	Prickly Bush-pea	V	V	48	1

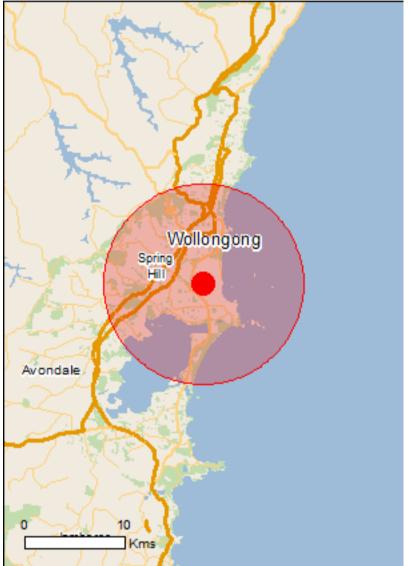
Plantae	Flora	Fabaceae (Mimosoideae)	6577	Acacia baueri subsp. aspera		V		3	i
Plantae	Flora	Myrtaceae	11397	Gossia acmenoides	Gossia acmenoides population in the Sydney Basin Bioregion south of the Georges River	E2		11	i
Plantae	Flora	Myrtaceae	4283	Rhodamnia rubescens	Scrub Turpentine	E4A		38	-
Plantae	Flora	Myrtaceae	4293	Syzygium paniculatum	Magenta Lilly Pilly	E1	V	3	-
Plantae	Flora	Proteaceae	9678	Grevillea raybrownii		V		1	-
Plantae	Flora	Rutaceae	5839	Zieria granulata	Illawarra Zieria	E1	Е	9	-
Plantae	Flora	Solanaceae	11442	Solanum celatum		E1		20	-
Plantae	Flora	Thymelaeaceae	6965	Pimelea curviflora var. curviflora		V	V	2	i
Plantae	Flora	Thymelaeaceae	6190	Pimelea spicata	Spiked Rice-flower	E1	Е	6	i

Australian Government

Department of Agriculture, Water and the Environment

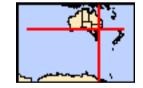
EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.


Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.

Report created: 24/08/21 16:19:08


Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat

Acknowledgements

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2015

Coordinates Buffer: 10.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	7
Listed Threatened Species:	94
Listed Migratory Species:	75

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	14
Commonwealth Heritage Places:	None
Listed Marine Species:	104
Whales and Other Cetaceans:	14
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	3
Regional Forest Agreements:	None
Invasive Species:	50
Nationally Important Wetlands:	3
Key Ecological Features (Marine)	None

Details

Matters of National Environmental Significance

Listed Threatened Ecological Communities

[Resource Information]

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Name	Status	Type of Presence
Coastal Swamp Oak (Casuarina glauca) Forest of New South Wales and South East Queensland ecological	Endangered	Community likely to occur within area
<u>community</u> <u>Coastal Upland Swamps in the Sydney Basin</u> <u>Bioregion</u>	Endangered	Community likely to occur within area
Illawarra and south coast lowland forest and woodland ecological community	Critically Endangered	Community likely to occur within area
Illawarra-Shoalhaven Subtropical Rainforest of the Sydney Basin Bioregion	Critically Endangered	Community likely to occur within area
River-flat eucalypt forest on coastal floodplains of southern New South Wales and eastern Victoria	Critically Endangered	Community likely to occur within area
Subtropical and Temperate Coastal Saltmarsh	Vulnerable	Community likely to occur within area
Upland Basalt Eucalypt Forests of the Sydney Basin Bioregion	Endangered	Community may occur within area
Listed Threatened Species		[Resource Information]
Listed Threatened Species Name	Status	[Resource Information] Type of Presence
•	Status	
Name	Status	
Name Birds	Status Critically Endangered	
Name Birds Anthochaera phrygia		Type of Presence Species or species habitat
Name Birds <u>Anthochaera phrygia</u> Regent Honeyeater [82338]		Type of Presence Species or species habitat

Calidris ferruginea

Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat known to occur within area
<u>Calidris tenuirostris</u> Great Knot [862]	Critically Endangered	Roosting known to occur
Charadrius mongolus	En deu mens d	within area
Lesser Sand Plover, Mongolian Plover [879] Dasyornis brachypterus	Endangered	Roosting known to occur within area
Eastern Bristlebird [533]	Endangered	Species or species habitat known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur

within area

Name	Status	Type of Presence
Diomedea antipodensis gibsoni Gibson's Albatross [82270]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea epomophora Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea exulans Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea sanfordi Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area
<u>Falco hypoleucos</u> Grey Falcon [929]	Vulnerable	Species or species habitat may occur within area
Fregetta grallaria grallaria White-bellied Storm-Petrel (Tasman Sea), White- bellied Storm-Petrel (Australasian) [64438]	Vulnerable	Species or species habitat likely to occur within area
<u>Grantiella picta</u> Painted Honeyeater [470]	Vulnerable	Species or species habitat likely to occur within area
Hirundapus caudacutus White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Lathamus discolor Swift Parrot [744]	Critically Endangered	Species or species habitat known to occur within area
Limosa lapponica baueri Nunivak Bar-tailed Godwit, Western Alaskan Bar-tailed Godwit [86380]	Vulnerable	Species or species habitat known to occur within area
Macronectes giganteus Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
Neophema chrysogaster Orange-bellied Parrot [747]	Critically Endangered	Species or species habitat may occur within area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
Pachyptila turtur subantarctica Fairy Prion (southern) [64445]	Vulnerable	Species or species habitat known to occur within area
Phoebetria fusca Sooty Albatross [1075]	Vulnerable	Species or species habitat may occur within area
Pterodroma leucoptera leucoptera Gould's Petrel, Australian Gould's Petrel [26033]	Endangered	Species or species habitat may occur within area
Pterodroma neglecta neglecta Kermadec Petrel (western) [64450]	Vulnerable	Foraging, feeding or related behaviour may occur within area

Name	Status	Type of Presence
Rostratula australis Australian Painted Snipe [77037]	Endangered	Species or species habitat likely to occur within area
<u>Sternula nereis</u> Australian Fairy Tern [82950]	Vulnerable	Species or species habitat known to occur within area
<u>Thalassarche bulleri</u> Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche bulleri platei</u> Northern Buller's Albatross, Pacific Albatross [82273]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche cauta</u> Shy Albatross [89224]	Endangered	Foraging, feeding or related behaviour likely to occur
<u>Thalassarche eremita</u> Chatham Albatross [64457]	Endangered	within area Foraging, feeding or related behaviour likely to occur
<u>Thalassarche impavida</u> Campbell Albatross, Campbell Black-browed Albatross [64459]	Vulnerable	within area Species or species habitat may occur within area
Thalassarche melanophris Black-browed Albatross [66472]	Vulnerable	Species or species habitat may occur within area
<u>Thalassarche salvini</u> Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	within area Foraging, feeding or related behaviour likely to occur
Thinornis cucullatus cucullatus Eastern Hooded Plover, Eastern Hooded Plover	Vulnerable	within area Species or species habitat
[90381] Fish		likely to occur within area

Epinephelus daemelii Black Rockcod, Black Cod, Saddled Rockcod [68449]	Vulnerable	Species or species habitat likely to occur within area
Hippocampus whitei White's Seahorse, Crowned Seahorse, Sydney Seahorse [66240]	Endangered	Species or species habitat likely to occur within area
Macquaria australasica Macquarie Perch [66632]	Endangered	Species or species habitat may occur within area
Prototroctes maraena Australian Grayling [26179]	Vulnerable	Species or species habitat likely to occur within area
Frogs		
<u>Heleioporus australiacus</u> Giant Burrowing Frog [1973]	Vulnerable	Species or species habitat likely to occur within area
<u>Litoria aurea</u> Green and Golden Bell Frog [1870]	Vulnerable	Species or species habitat known to occur within area
Litoria littlejohni Littlejohn's Tree Frog, Heath Frog [64733]	Vulnerable	Species or species habitat likely to occur

Name	Status	Type of Presence
		within area
Mixophyes balbus Stuttering Frog, Southern Barred Frog (in Victoria) [1942]	Vulnerable	Species or species habitat likely to occur within area
Mammals		
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur
Balaenoptera musculus Blue Whale [36]	Endangered	within area Species or species habitat may occur within area
<u>Balaenoptera physalus</u> Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur
Chalinolobus dwyeri Large-eared Pied Bat, Large Pied Bat [183]	Vulnerable	within area Species or species habitat known to occur within area
Dasyurus maculatus maculatus (SE mainland populati Spot-tailed Quoll, Spotted-tail Quoll, Tiger Quoll (southeastern mainland population) [75184]	i <u>on)</u> Endangered	Species or species habitat likely to occur within area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area
Isoodon obesulus obesulus Southern Brown Bandicoot (eastern), Southern Brown Bandicoot (south-eastern) [68050]	Endangered	Species or species habitat likely to occur within area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Species or species habitat known to occur within area
Petauroides volans Greater Glider [254]	Vulnerable	Species or species habitat known to occur within area
Petrogale penicillata Brush-tailed Rock-wallaby [225]	Vulnerable	Species or species habitat likely to occur within area
Phascolarctos cinereus (combined populations of Qld, Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104]	NSW and the ACT) Vulnerable	Species or species habitat known to occur within area
Potorous tridactylus tridactylus Long-nosed Potoroo (SE Mainland) [66645]	Vulnerable	Species or species habitat likely to occur within area
<u>Pseudomys novaehollandiae</u> New Holland Mouse, Pookila [96]	Vulnerable	Species or species habitat likely to occur within area
Pteropus poliocephalus Grey-headed Flying-fox [186] Plants	Vulnerable	Roosting known to occur within area
<u>Acacia bynoeana</u>		
Bynoe's Wattle, Tiny Wattle [8575]	Vulnerable	Species or species habitat may occur within area
<u>Allocasuarina glareicola</u> [21932]	Endangered	Species or species habitat may occur within area
Caladenia tessellata Thick-lipped Spider-orchid, Daddy Long-legs [2119]	Vulnerable	Species or species habitat likely to occur

Name	Status	Type of Presence
		within area
<u>Cryptostylis hunteriana</u> Leafless Tongue-orchid [19533]	Vulnerable	Species or species habitat likely to occur within area
Cynanchum elegans White-flowered Wax Plant [12533]	Endangered	Species or species habitat known to occur within area
<u>Genoplesium baueri</u> Yellow Gnat-orchid, Bauer's Midge Orchid, Brittle Midge Orchid [7528]	Endangered	Species or species habitat likely to occur within area
<u>Grevillea raybrownii</u> [65665]	Vulnerable	Species or species habitat may occur within area
<u>Haloragis exalata subsp. exalata</u>		
Wingless Raspwort, Square Raspwort [24636]	Vulnerable	Species or species habitat known to occur within area
<u>Melaleuca biconvexa</u>		
Biconvex Paperbark [5583]	Vulnerable	Species or species habitat may occur within area
Persicaria elatior		
Knotweed, Tall Knotweed [5831]	Vulnerable	Species or species habitat likely to occur within area
Persoonia hirsuta		
Hairy Geebung, Hairy Persoonia [19006]	Endangered	Species or species habitat known to occur within area
Persoonia nutans		
Nodding Geebung [18119]	Endangered	Species or species habitat may occur within area
Pimelea spicata		
Spiked Rice-flower [20834]	Endangered	Species or species habitat known to occur within area
Pomaderris brunnea		
Rufous Pomaderris, Brown Pomaderris [16845]	Vulnerable	Species or species habitat may occur within area

Prasophyllum affine Jervis Bay Leek Orchid, Culburra Leek-orchid, Kinghorn Point Leek-orchid [2210]	Endangered	Species or species habitat may occur within area
<u>Pterostylis gibbosa</u> Illawarra Greenhood, Rufa Greenhood, Pouched Greenhood [4562]	Endangered	Species or species habitat likely to occur within area
<u>Pterostylis saxicola</u> Sydney Plains Greenhood [64537]	Endangered	Species or species habitat may occur within area
Pultenaea aristata [18062]	Vulnerable	Species or species habitat likely to occur within area
<u>Rhizanthella slateri</u> Eastern Underground Orchid [11768]	Endangered	Species or species habitat may occur within area
<u>Rhodamnia rubescens</u> Scrub Turpentine, Brown Malletwood [15763]	Critically Endangered	Species or species habitat known to occur within area
Rhodomyrtus psidioides Native Guava [19162]	Critically Endangered	Species or species habitat may occur within area

Name	Status	Type of Presence
Syzygium paniculatum Magenta Lilly Pilly, Magenta Cherry, Daguba, Scrub Cherry, Creek Lilly Pilly, Brush Cherry [20307]	Vulnerable	Species or species habitat known to occur within area
<u>Thelymitra kangaloonica</u> Kangaloon Sun Orchid [81861]	Critically Endangered	Species or species habitat may occur within area
<u>Thesium australe</u> Austral Toadflax, Toadflax [15202]	Vulnerable	Species or species habitat likely to occur within area
<u>Xerochrysum palustre</u> Swamp Everlasting, Swamp Paper Daisy [76215]	Vulnerable	Species or species habitat may occur within area
<u>Zieria granulata</u> Hill Zieria, Hilly Zieria, Illawarra Zieria [17147]	Endangered	Species or species habitat likely to occur within area
Reptiles		
<u>Caretta caretta</u> Loggerhead Turtle [1763]	Endangered	Breeding likely to occur within area
<u>Chelonia mydas</u> Green Turtle [1765]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat known to occur within area
Eretmochelys imbricata Hawksbill Turtle [1766]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Hoplocephalus bungaroides Broad-headed Snake [1182]	Vulnerable	Species or species habitat likely to occur within area
<u>Natator depressus</u> Flatback Turtle [59257]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Sharks		within area
Carcharias taurus (east coast population) Grey Nurse Shark (east coast population) [68751]	Critically Endangered	Species or species habitat known to occur within area
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area
Rhincodon typus Whale Shark [66680]	Vulnerable	Species or species habitat may occur within area
Listed Migratory Species * Species is listed under a different scientific name on	the EPBC Act - Threatened	[<u>Resource Information</u>] d Species list.
Name Migratory Marine Birds	Threatened	Type of Presence
Anous stolidus Common Noddy [825]		Species or species habitat likely to occur within area
Apus pacificus Fork-tailed Swift [678]		Species or species habitat likely to occur within area
Ardenna carneipes Flesh-footed Shearwater, Fleshy-footed		Foraging, feeding or

Name	Threatened	Type of Presence
Shearwater [82404]	modelieu	related behaviour likely to
		occur within area
Ardenna grisea		
Sooty Shearwater [82651]		Species or species habitat
		likely to occur within area
Ardenne necifice		
Ardenna pacifica Wedge toiled Sheenwater [84202]		Prooding known to occur
Wedge-tailed Shearwater [84292]		Breeding known to occur within area
Ardenna tenuirostris		
Short-tailed Shearwater [82652]		Breeding known to occur
		within area
Calonectris leucomelas		
Streaked Shearwater [1077]		Species or species habitat
		known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related
		behaviour likely to occur
		within area
Diomedea epomophora		
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related
		behaviour likely to occur within area
Diomedea exulans		WILLING ALEA
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related
		behaviour likely to occur
		within area
Diomedea sanfordi		
Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related
		behaviour likely to occur within area
Fregata ariel		
Lesser Frigatebird, Least Frigatebird [1012]		Species or species habitat
		known to occur within area
Fregata minor		
Great Frigatebird, Greater Frigatebird [1013]		Species or species habitat
		may occur within area
Macronectes giganteus		
Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat
		may occur within area
Maaranaataa halli		
<u>Macronectes halli</u> Northern Giant Petrel [1061]	Vulnerable	Species or species habitat
Northern Glant Feller [1001]	Vullerable	may occur within area
Phoebetria fusca		
Sooty Albatross [1075]	Vulnerable	Species or species habitat
		may occur within area
Sternula albifrons		
Little Tern [82849]		Breeding known to occur
		within area
Thalassarche bulleri		
Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Species or species habitat
		may occur within area
Thalassarche cauta		
Shy Albatross [89224]	Endangered	Foraging, feeding or related
		behaviour likely to occur
		within area
Thalassarche eremita		
Chatham Albatross [64457]	Endangered	Foraging, feeding or related
		behaviour likely to occur
Thalassarche impavida		within area
Campbell Albatross, Campbell Black-browed Albatross	Vulnerable	Species or species habitat
[64459]		may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species

Name	Threatened	Type of Presence
		habitat may occur within
Thalassarche salvini		area
Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Migratory Marine Species		
Balaena glacialis australis Southern Right Whale [75529]	Endangered*	Species or species habitat known to occur within area
Balaenoptera borealis		
Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Balaenoptera edeni</u> Bryde's Whale [35]		Species or species habitat may occur within area
Balaenoptera musculus		
Blue Whale [36]	Endangered	Species or species habitat may occur within area
Balaenoptera physalus		
Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Caperea marginata</u> Pygmy Right Whale [39]		Foraging, feeding or related behaviour may occur within area
Carcharhinus longimanus		
Oceanic Whitetip Shark [84108]		Species or species habitat may occur within area
Carcharodon carcharias White Shark, Great White Shark [64470]	Vulnerable	Species or species habitat known to occur within area
Caretta caretta		
Loggerhead Turtle [1763]	Endangered	Breeding likely to occur within area

Chelonia mydas Green Turtle [1765]

Dermochelys coriacea Leatherback Turtle, Leathery Turtle, Luth [1768]

Eretmochelys imbricata Hawksbill Turtle [1766]

Lagenorhynchus obscurus Dusky Dolphin [43]

Lamna nasus Porbeagle, Mackerel Shark [83288]

Manta birostris Giant Manta Ray, Chevron Manta Ray, Pacific Manta Ray, Pelagic Manta Ray, Oceanic Manta Ray [84995]

Megaptera novaeangliae Humpback Whale [38]

Vulnerable

may occur within area

Species or species habitat known to occur

within area

Vulnerable

Foraging, feeding or related behaviour known to occur within area

Species or species habitat known to occur within area

Foraging, feeding or related behaviour known to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat

Endangered

Vulnerable

Name	Threatened	Type of Presence
Natator depressus		within area
Flatback Turtle [59257]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Orcinus orca Killer Whele, Orea [46]		Spacing or opening hebitat
Killer Whale, Orca [46]		Species or species habitat likely to occur within area
Rhincodon typus	Vulnarabla	Species or openios hebitat
Whale Shark [66680]	Vulnerable	Species or species habitat may occur within area
Migratory Terrestrial Species		
Cuculus optatus		
Oriental Cuckoo, Horsfield's Cuckoo [86651]		Species or species habitat may occur within area
Hirundapus caudacutus		
White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Monarcha melanopsis		
Black-faced Monarch [609]		Species or species habitat known to occur within area
Monarcha trivirgatus		
Spectacled Monarch [610]		Species or species habitat may occur within area
Motacilla flava		
Yellow Wagtail [644]		Species or species habitat may occur within area
Myiagra cyanoleuca		
Satin Flycatcher [612]		Species or species habitat likely to occur within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat known to occur within area
Migratory Wetlands Species		
Actitis hypoleucos		

Common Sandpiper [59309]

Species or species habitat

Arenaria interpres Ruddy Turnstone [872]

Calidris acuminata Sharp-tailed Sandpiper [874]

Calidris alba Sanderling [875]

Calidris canutus Red Knot, Knot [855]

Calidris ferruginea Curlew Sandpiper [856]

Calidris melanotos Pectoral Sandpiper [858]

Calidris ruficollis Red-necked Stint [860] Roosting known to occur within area

Roosting known to occur within area

Roosting known to occur within area

Species or species habitat known to occur within area

Critically Endangered

Endangered

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Name	Threatened	Type of Presence
Calidris tenuirostris Great Knot [862]	Critically Endangered	Roosting known to occur within area
<u>Charadrius bicinctus</u> Double-banded Plover [895]		Roosting known to occur within area
<u>Charadrius mongolus</u> Lesser Sand Plover, Mongolian Plover [879]	Endangered	Roosting known to occur within area
<u>Gallinago hardwickii</u> Latham's Snipe, Japanese Snipe [863]		Species or species habitat known to occur within area
<u>Gallinago megala</u> Swinhoe's Snipe [864]		Roosting likely to occur within area
Gallinago stenura Pin-tailed Snipe [841]		Roosting likely to occur within area
Limosa lapponica Bar-tailed Godwit [844]		Species or species habitat known to occur within area
<u>Limosa limosa</u> Black-tailed Godwit [845]		Roosting known to occur within area
Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]	Critically Endangered	Species or species habitat known to occur within area
<u>Numenius minutus</u> Little Curlew, Little Whimbrel [848]		Roosting likely to occur within area
<u>Numenius phaeopus</u> Whimbrel [849]		Roosting known to occur within area
Pandion haliaetus Osprey [952]		Species or species habitat known to occur within area
<u>Pluvialis fulva</u> Pacific Golden Plover [25545]		Roosting known to occur within area
<u>Thalasseus bergii</u> Greater Crested Tern [83000]		Breeding known to occur

Tringa brevipes Grey-tailed Tattler [851]

Tringa nebularia Common Greenshank, Greenshank [832]

Tringa stagnatilis Marsh Sandpiper, Little Greenshank [833] within area

Roosting known to occur within area

Species or species habitat known to occur within area

Other Matters Protected by the EPBC Act

Commonwealth Land

The Commonwealth area listed below may indicate the presence of Commonwealth land in this vicinity. Due to the unreliability of the data source, all proposals should be checked as to whether it impacts on a Commonwealth area, before making a definitive decision. Contact the State or Territory government land department for further information.

Name

Commonwealth Land -Commonwealth Land - Australian Postal Commission Commonwealth Land - Australian Postal Corporation Commonwealth Land - Australian Telecommunications Commission Commonwealth Land - Commonwealth Trading Bank of Australia Commonwealth Land - Defence Housing Authority Commonwealth Land - Defence Service Homes Corporation Defence - AIRTC WOLLONGONG Defence - Graovac House Defence - HYDROGRAPHIC OFFICE Defence - LAKE ILLAWARRA CADET FACILITY Defence - THROSBY TRG DEPOT-PORT KEMBLA Defence - TS ALBATROSS-WOLLONGONG

Defence - WOLLONGONG MULTI-USER DEPOT

L	isted Marine Species		[Resource Information]
*	* Species is listed under a different scientific name on the EPBC Act - Threatened Species list.		
Ν	ame	Threatened	Type of Presence
В	irds		
Α	<u>ctitis hypoleucos</u>		
С	ommon Sandpiper [59309]		Species or species habitat known to occur within area
A	nous stolidus		
С	ommon Noddy [825]		Species or species habitat likely to occur within area
А	pus pacificus		
	ork-tailed Swift [678]		Species or species habitat likely to occur within area
A	rdea ibis		
	attle Egret [59542]		Species or species habitat may occur within area

[Resource Information]

Arenaria interpres Ruddy Turnstone [872]

Calidris acuminata Sharp-tailed Sandpiper [874]

Calidris alba Sanderling [875]

Calidris canutus Red Knot, Knot [855]

Calidris ferruginea Curlew Sandpiper [856]

<u>Calidris melanotos</u> Pectoral Sandpiper [858]

Calidris ruficollis Red-necked Stint [860] Roosting known to occur within area

Roosting known to occur within area

Roosting known to occur within area

Species or species habitat known to occur within area

Critically Endangered

Endangered

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Name	Threatened	Type of Presence
<u>Calidris tenuirostris</u>	mediciled	
Great Knot [862]	Critically Endangered	Roosting known to occur within area
Calonectris leucomelas		
Streaked Shearwater [1077]		Species or species habitat known to occur within area
Catharacta skua		
Great Skua [59472]		Species or species habitat may occur within area
Charadrius bicinctus		
Double-banded Plover [895]		Roosting known to occur within area
Charadrius mongolus		
Lesser Sand Plover, Mongolian Plover [879]	Endangered	Roosting known to occur within area
Charadrius ruficapillus		
Red-capped Plover [881]		Roosting known to occur within area
Diomedea antipodensis		
Antipodean Albatross [64458]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea epomophora		Eans sinse, fa a din e, an nalata d
Southern Royal Albatross [89221]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea exulans		Eans sinse, fa a din e, an uslata d
Wandering Albatross [89223]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Diomedea gibsoni		— · · · · · · · · · · ·
Gibson's Albatross [64466]	Vulnerable*	Foraging, feeding or related behaviour likely to occur within area
Diomedea sanfordi		
Northern Royal Albatross [64456]	Endangered	Foraging, feeding or related behaviour likely to occur within area
Eudyptula minor		
Little Penguin [1085]		Breeding known to occur within area
Fregata ariel		0
Lesser Frigatebird, Least Frigatebird [1012]		Species or species habitat

<u>Fregata minor</u> Great Frigatebird, Greater Frigatebird [1013]

Gallinago hardwickii Latham's Snipe, Japanese Snipe [863]

<u>Gallinago megala</u> Swinhoe's Snipe [864]

Gallinago stenura Pin-tailed Snipe [841]

Haliaeetus leucogaster White-bellied Sea-Eagle [943]

Heteroscelus brevipes Grey-tailed Tattler [59311]

Himantopus himantopus Pied Stilt, Black-winged Stilt [870] Species or species habitat may occur within area

Species or species habitat known to occur within area

Roosting likely to occur within area

Roosting likely to occur within area

Species or species habitat known to occur within area

Roosting known to occur within area

Name	Threatened	Type of Presence
Hirundapus caudacutus White-throated Needletail [682]	Vulnerable	Species or species habitat known to occur within area
Larus dominicanus Kelp Gull [809]		Breeding known to occur within area
<u>Larus novaehollandiae</u> Silver Gull [810]		Breeding known to occur within area
Lathamus discolor Swift Parrot [744]	Critically Endangered	Species or species habitat known to occur within area
Limosa Iapponica Bar-tailed Godwit [844]		Species or species habitat known to occur within area
Limosa limosa Black-tailed Godwit [845]		Roosting known to occur within area
Macronectes giganteus Southern Giant-Petrel, Southern Giant Petrel [1060]	Endangered	Species or species habitat may occur within area
Macronectes halli		
Northern Giant Petrel [1061]	Vulnerable	Species or species habitat may occur within area
<u>Merops ornatus</u> Rainbow Bee-eater [670]		Species or species habitat may occur within area
Monarcha melanopsis Black-faced Monarch [609]		Species or species habitat known to occur within area
Monarcha trivirgatus Spectacled Monarch [610]		Species or species habitat may occur within area
<u>Motacilla flava</u> Yellow Wagtail [644]		Species or species habitat may occur within area

Myiagra cyanoleuca Satin Flycatcher [612]

Neophema chrysogaster Orange-bellied Parrot [747]

Numenius madagascariensis Eastern Curlew, Far Eastern Curlew [847]

Numenius minutus Little Curlew, Little Whimbrel [848]

Numenius phaeopus Whimbrel [849]

Pachyptila turtur Fairy Prion [1066]

Pandion haliaetus Osprey [952]

Pelagodroma marina White-faced Storm-Petrel [1016] Species or species habitat likely to occur within area

Critically Endangered

Species or species habitat may occur within area

Critically Endangered

Species or species habitat known to occur within area

Roosting likely to occur within area

Roosting known to occur within area

Species or species habitat known to occur within area

Species or species habitat known to occur within area

Breeding known to occur

Name	Threatened	Type of Presence
		within area
Phoebetria fusca		
Sooty Albatross [1075]	Vulnerable	Species or species habitat
		may occur within area
Pluvialis fulva		
Pacific Golden Plover [25545]		Roosting known to occur
		within area
Puffinus carneipes		
Flesh-footed Shearwater, Fleshy-footed Shearwater		Foraging, feeding or related
[1043]		behaviour likely to occur within area
Puffinus griseus		
Sooty Shearwater [1024]		Species or species habitat
		likely to occur within area
Puffinus pacificus		
Wedge-tailed Shearwater [1027]		Breeding known to occur within area
Puffinus tenuirostris		
Short-tailed Shearwater [1029]		Breeding known to occur
		within area
Rhipidura rufifrons		
Rufous Fantail [592]		Species or species habitat
		known to occur within area
Rostratula benghalensis (sensu lato)		
Painted Snipe [889]	Endangered*	Species or species habitat
	Lindangerea	likely to occur within area
Sterna albifrons		
Little Tern [813]		Breeding known to occur
Sterna bergii		within area
Crested Tern [816]		Breeding known to occur
		within area
Thalassarche bulleri		
Buller's Albatross, Pacific Albatross [64460]	Vulnerable	Species or species habitat
		may occur within area
Thalassarche cauta		
Shy Albatross [89224]	Endangered	Foraging, feeding or related
		behaviour likely to occur
The last such a successive		within area
<u>Thalassarche eremita</u> Chatham Albetraga [64457]	Endongorod	Earonian fooding or related
Chatham Albatross [64457]	Endangered	Foraging, feeding or related behaviour likely to occur
		within area
Thalassarche impavida		
Campbell Albatross, Campbell Black-browed Albatross	Vulnerable	Species or species habitat
[64459]		may occur within area
Thalassarche melanophris		
Black-browed Albatross [66472]	Vulnerable	Species or species habitat
		may occur within area
Thalassarche salvini		
Salvin's Albatross [64463]	Vulnerable	Foraging, feeding or related
		behaviour likely to occur within area
Thalassarche sp. nov.		
Pacific Albatross [66511]	Vulnerable*	Species or species habitat
		may occur within area
Thalaccaraba staadi		
<u>Thalassarche steadi</u> White-capped Albatross [64462]	Vulnerable	Foraging, feeding or related
\mathbf{v}		behaviour likely to occur
		within area
Thinornis rubricollis rubricollis		
Hooded Plover (eastern) [66726]	Vulnerable*	Species or species habitat
		likely to occur within area

Name	Threatened	Type of Presence
<u>Tringa nebularia</u>		
Common Greenshank, Greenshank [832]		Species or species habitat known to occur within area
Tringa stagnatilis		
Marsh Sandpiper, Little Greenshank [833]		Roosting known to occur within area
Fish		
Acentronura tentaculata		
Shortpouch Pygmy Pipehorse [66187]		Species or species habitat may occur within area
Cosmocampus howensis		
Lord Howe Pipefish [66208]		Species or species habitat may occur within area
Festucalex cinctus		
Girdled Pipefish [66214]		Species or species habitat may occur within area
Filicampus tigris		
Tiger Pipefish [66217]		Species or species habitat may occur within area
Heraldia nocturna		
Upside-down Pipefish, Eastern Upside-down Pi Eastern Upside-down Pipefish [66227]	pefish,	Species or species habitat may occur within area
Hippichthys penicillus		
Beady Pipefish, Steep-nosed Pipefish [66231]		Species or species habitat may occur within area
Hippocampus abdominalis		
Big-belly Seahorse, Eastern Potbelly Seahorse, Zealand Potbelly Seahorse [66233]	, New	Species or species habitat may occur within area
Hippocampus breviceps		
Short-head Seahorse, Short-snouted Seahorse [66235]		Species or species habitat may occur within area
<u>Hippocampus whitei</u>		
White's Seahorse, Crowned Seahorse, Sydney	Endangered	Species or species habitat
Seahorse [66240]		likely to occur within area
Histiogamphelus briggsii		

Species or species habitat may occur within area

Crested Pipefish, Briggs' Crested Pipefish, Briggs' Pipefish [66242]

Kimblaeus bassensis Trawl Pipefish, Bass Strait Pipefish [66247]

Lissocampus runa Javelin Pipefish [66251]

Maroubra perserrata Sawtooth Pipefish [66252]

Notiocampus ruber Red Pipefish [66265]

Phyllopteryx taeniolatus Common Seadragon, Weedy Seadragon [66268]

Solegnathus spinosissimus Spiny Pipehorse, Australian Spiny Pipehorse [66275] Species or species habitat may occur within area

Name	Threatened	Type of Presence
Solenostomus cyanopterus Robust Ghostpipefish, Blue-finned Ghost Pipefish, [66183]		Species or species habitat may occur within area
<u>Solenostomus paradoxus</u> Ornate Ghostpipefish, Harlequin Ghost Pipefish, Ornate Ghost Pipefish [66184]		Species or species habitat may occur within area
Stigmatopora argus Spotted Pipefish, Gulf Pipefish, Peacock Pipefish [66276]		Species or species habitat may occur within area
Stigmatopora nigra Widebody Pipefish, Wide-bodied Pipefish, Black Pipefish [66277]		Species or species habitat may occur within area
Syngnathoides biaculeatus Double-end Pipehorse, Double-ended Pipehorse, Alligator Pipefish [66279]		Species or species habitat may occur within area
<u>Trachyrhamphus bicoarctatus</u> Bentstick Pipefish, Bend Stick Pipefish, Short-tailed Pipefish [66280]		Species or species habitat may occur within area
<u>Urocampus carinirostris</u> Hairy Pipefish [66282]		Species or species habitat may occur within area
Vanacampus margaritifer Mother-of-pearl Pipefish [66283]		Species or species habitat may occur within area
<u>Vanacampus phillipi</u> Port Phillip Pipefish [66284]		Species or species habitat may occur within area
Mammals		
Arctocephalus forsteri Long-nosed Fur-seal, New Zealand Fur-seal [20]		Species or species habitat may occur within area
Arctocephalus pusillus Australian Fur-seal, Australo-African Fur-seal [21]		Species or species habitat may occur within area

Rentiles

Reptiles		
Caretta caretta		
Loggerhead Turtle [1763]	Endangered	Breeding likely to occur within area
<u>Chelonia mydas</u>		
Green Turtle [1765] Dermochelys coriacea	Vulnerable	Foraging, feeding or related behaviour known to occur within area
		Opening of opening habitat
Leatherback Turtle, Leathery Turtle, Luth [1768]	Endangered	Species or species habitat known to occur within area
Eretmochelys imbricata		
Hawksbill Turtle [1766]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Natator depressus		
Flatback Turtle [59257]	Vulnerable	Foraging, feeding or related behaviour known to occur within area
Whales and other Cetaceans		[Resource Information]
Name	Status	Type of Presence
Mammals		
Balaenoptera acutorostrata		
Minke Whale [33]		Species or species habitat may occur within area

Name	Status	Type of Presence
Balaenoptera borealis Sei Whale [34]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
<u>Balaenoptera edeni</u> Bryde's Whale [35]		Species or species habitat may occur within area
Balaenoptera musculus Blue Whale [36]	Endangered	Species or species habitat may occur within area
Balaenoptera physalus Fin Whale [37]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Caperea marginata Pygmy Right Whale [39]		Foraging, feeding or related behaviour may occur within area
Delphinus delphis Common Dolphin, Short-beaked Common Dolphin [60]		Species or species habitat may occur within area
<u>Eubalaena australis</u> Southern Right Whale [40]	Endangered	Species or species habitat known to occur within area
<u>Grampus griseus</u> Risso's Dolphin, Grampus [64]		Species or species habitat may occur within area
Lagenorhynchus obscurus Dusky Dolphin [43]		Species or species habitat may occur within area
Megaptera novaeangliae Humpback Whale [38]	Vulnerable	Species or species habitat known to occur within area
<u>Orcinus orca</u> Killer Whale, Orca [46]		Species or species habitat likely to occur within area
Tursiops aduncus Indian Ocean Bottlenose Dolphin, Spotted Bottlenose		Species or species babitat

Indian Ocean Bottlenose Dolphin, Spotted Bottlenose Dolphin [68418]

Tursiops truncatus s. str. Bottlenose Dolphin [68417] Species or species habitat likely to occur within area

Species or species habitat may occur within area

Extra Information

State and Territory Reserves	[Resource Information]
Name	State
Berkeley	NSW
Five Islands	NSW
Illawarra Escarpment	NSW

Invasive Species

[Resource Information]

Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.

Name	Status	Type of Presence
Birds		
Acridotheres tristis		
Common Myna, Indian Myna [387]		Species or species habitat likely to occur within area
Alauda arvensis		
Skylark [656]		Species or species habitat likely to occur within area
Anas platyrhynchos		
Mallard [974]		Species or species habitat likely to occur within area
Carduelis carduelis		
European Goldfinch [403]		Species or species habitat likely to occur within area
Columba livia		
Rock Pigeon, Rock Dove, Domestic Pigeon [803]		Species or species habitat likely to occur within area
Lonchura punctulata		
Nutmeg Mannikin [399]		Species or species habitat likely to occur within area
Passer domesticus		
House Sparrow [405]		Species or species habitat likely to occur within area
Pycnonotus jocosus		
Red-whiskered Bulbul [631]		Species or species habitat likely to occur within area
Streptopelia chinensis		
Spotted Turtle-Dove [780]		Species or species habitat likely to occur within area
Sturnus vulgaris		
_		

Species or s

Common Starling [389]

Turdus merula Common Blackbird, Eurasian Blackbird [596]

Frogs

Rhinella marina Cane Toad [83218]

Mammals

Bos taurus Domestic Cattle [16]

Canis lupus familiaris Domestic Dog [82654]

Capra hircus Goat [2]

Felis catus Cat, House Cat, Domestic Cat [19] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur

Name	Status	Type of Presence
Forel door		within area
Feral deer Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Lepus capensis		
Brown Hare [127]		Species or species habitat likely to occur within area
Mus musculus		
House Mouse [120]		Species or species habitat likely to occur within area
Oryctolagus cuniculus		
Rabbit, European Rabbit [128]		Species or species habitat likely to occur within area
Rattus norvegicus		
Brown Rat, Norway Rat [83]		Species or species habitat likely to occur within area
Rattus rattus		
Black Rat, Ship Rat [84]		Species or species habitat likely to occur within area
Sus scrofa		
Pig [6]		Species or species habitat likely to occur within area
Vulpes vulpes		
Red Fox, Fox [18]		Species or species habitat likely to occur within area
Plants		
Alternanthera philoxeroides Alligator Weed [11620]		Species or species habitat likely to occur within area
Anredera cordifolia		
Madeira Vine, Jalap, Lamb's-tail, Mignonette Vine,		Species or species habitat

Anredera, Gulf Madeiravine, Heartleaf Madeiravine,

Potato Vine [2643] Asparagus aethiopicus

Asparagus Fern, Ground Asparagus, Basket Fern, Sprengi's Fern, Bushy Asparagus, Emerald Asparagus [62425] Asparagus asparagoides Bridal Creeper, Bridal Veil Creeper, Smilax, Florist's Smilax, Smilax Asparagus [22473]

Species or species habitat likely to occur within area

likely to occur within area

Asparagus plumosus Climbing Asparagus-fern [48993]

Asparagus scandens Asparagus Fern, Climbing Asparagus Fern [23255]

Cabomba caroliniana Cabomba, Fanwort, Carolina Watershield, Fish Grass, Washington Grass, Watershield, Carolina Fanwort, Common Cabomba [5171] Chrysanthemoides monilifera Bitou Bush, Boneseed [18983]

Chrysanthemoides monilifera subsp. monilifera Boneseed [16905]

Chrysanthemoides monilifera subsp. rotundata Bitou Bush [16332] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat may occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur

Name	Status	Type of Presence
		within area
Cytisus scoparius Broom, English Broom, Scotch Broom, Common Broom, Scottish Broom, Spanish Broom [5934]		Species or species habitat likely to occur within area
Eichhornia crassipes		
Water Hyacinth, Water Orchid, Nile Lily [13466]		Species or species habitat likely to occur within area
Genista monspessulana		
Montpellier Broom, Cape Broom, Canary Broom, Common Broom, French Broom, Soft Broom [20126]		Species or species habitat likely to occur within area
Genista sp. X Genista monspessulana		
Broom [67538]		Species or species habitat may occur within area
Lantana camara		
Lantana, Common Lantana, Kamara Lantana, Large- leaf Lantana, Pink Flowered Lantana, Red Flowered Lantana, Red-Flowered Sage, White Sage, Wild Sag [10892]		Species or species habitat likely to occur within area
Lycium ferocissimum		
African Boxthorn, Boxthorn [19235]		Species or species habitat likely to occur within area
Nassella neesiana		
Chilean Needle grass [67699]		Species or species habitat likely to occur within area
Nassella trichotoma		
Serrated Tussock, Yass River Tussock, Yass Tussoc Nassella Tussock (NZ) [18884]	ck,	Species or species habitat likely to occur within area
Opuntia spp.		
Prickly Pears [82753]		Species or species habitat likely to occur within area
Pinus radiata		
Radiata Pine Monterey Pine, Insignis Pine, Wilding Pine [20780]		Species or species habitat may occur within area
Rubus fruticosus aggregate		
Blackberry, European Blackberry [68406]		Species or species habitat

Species or species habitat likely to occur within area

Sagittaria platyphylla Delta Arrowhead, Arrowhead, Slender Arrowhead [68483]

Salix spp. except S.babylonica, S.x calodendron & S.x reichardtii Willows except Weeping Willow, Pussy Willow and Sterile Pussy Willow [68497]

Salvinia molesta Salvinia, Giant Salvinia, Aquarium Watermoss, Kariba Weed [13665]

Senecio madagascariensis Fireweed, Madagascar Ragwort, Madagascar Groundsel [2624]

Ulex europaeus Gorse, Furze [7693] Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Species or species habitat likely to occur within area

Nationally Important Wetlands	[Resource Information]
Name	State
Coomaditchy Lagoon	NSW
Five Islands Nature Reserve	NSW
Lake Illawarra	NSW

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the qualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-34.46203 150.88375

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

-Office of Environment and Heritage, New South Wales -Department of Environment and Primary Industries, Victoria -Department of Primary Industries, Parks, Water and Environment, Tasmania -Department of Environment, Water and Natural Resources, South Australia -Department of Land and Resource Management, Northern Territory -Department of Environmental and Heritage Protection, Queensland -Department of Parks and Wildlife, Western Australia -Environment and Planning Directorate, ACT -Birdlife Australia -Australian Bird and Bat Banding Scheme -Australian National Wildlife Collection -Natural history museums of Australia -Museum Victoria -Australian Museum -South Australian Museum -Queensland Museum -Online Zoological Collections of Australian Museums -Queensland Herbarium -National Herbarium of NSW -Royal Botanic Gardens and National Herbarium of Victoria -Tasmanian Herbarium -State Herbarium of South Australia -Northern Territory Herbarium -Western Australian Herbarium -Australian National Herbarium, Canberra -University of New England -Ocean Biogeographic Information System -Australian Government, Department of Defence Forestry Corporation, NSW -Geoscience Australia -CSIRO -Australian Tropical Herbarium, Cairns -eBird Australia -Australian Government – Australian Antarctic Data Centre -Museum and Art Gallery of the Northern Territory -Australian Government National Environmental Science Program

-Australian Institute of Marine Science

-Reef Life Survey Australia

-American Museum of Natural History

-Queen Victoria Museum and Art Gallery, Inveresk, Tasmania

-Tasmanian Museum and Art Gallery, Hobart, Tasmania

-Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

© Commonwealth of Australia Department of Agriculture Water and the Environment GPO Box 858 Canberra City ACT 2601 Australia +61 2 6274 1111

Appendix L AHIMS search results

AHIMS Web Services (AWS)

Extensive search - Site list report

Client Service ID : 616068

-										
<u>SiteID</u>	<u>SiteName</u>	<u>Datum</u>	<u>Zone</u>	<u>Easting</u>	<u>Northing</u>	<u>Context</u>	Site Status **	<u>SiteFeatures</u>	<u>SiteTypes</u>	<u>Reports</u>
52-5-0187	Primbee 3;	AGD	56	306340	6180410	Open site	Valid	Shell : -, Artefact : -	Midden	647,102212
	<u>Contact</u>	<u>Recorders</u>	Mrs.	Caryll Sefton				<u>Permits</u>		
52-5-0188	Primbee 1;	AGD	56	306800	6180340	Open site	Valid	Artefact : -	Open Camp Site	102212
	Contact	<u>Recorders</u>	ASRS	SYS				<u>Permits</u>		
52-5-0189	Primbee 2;	AGD	56	306480	6180330	Open site	Valid	Artefact : -	Open Camp Site	102212
	Contact	<u>Recorders</u>	ASRS	SYS				<u>Permits</u>		
52-2-1285	Wollami Point;	AGD	56	303300	6181600	Open site	Valid	Shell : -, Artefact : -	Midden	1330,102212
	Contact	<u>Recorders</u>	Kerr	y Navin				<u>Permits</u>		
52-2-1286	Elephant site;	AGD	56	303950	6181350	Open site	Valid	Shell : -, Artefact : -	Midden	1330,102212
	Contact	<u>Recorders</u>	Kerr	y Navin,S Ha	mm			<u>Permits</u>		
52-2-1287	Hooka Pt. 2;	AGD	56	301090	6181400	Open site	Valid	Shell : -, Artefact : -	Midden	1330,102212
	Contact	Recorders	Kerr	y Navin				<u>Permits</u>		
52-2-1288	Hooka Pt. 3;	AGD	56	301800	6181700	Open site	Valid	Shell : -, Artefact : -	Midden	1330,102212
	Contact	<u>Recorders</u>	Kerr	y Navin				Permits	1876	
52-2-1289	North Beach 2	GDA	56	308600	6181700	Open site	Valid	Shell : -, Artefact : -	Midden	1330,102212
	Contact	Recorders	Kerr	y Navin,Nich	e Environmen	t and Heritage,Miss.L	ayne Holloway	Permits	4544	
52-2-1290	North Beach 1;	GDA	56	308300	6182700	Open site	Partially Destroyed	Shell : -, Artefact : -	Midden	1330,102212
	Contact	<u>Recorders</u>	Kerr	y Navin,Nich	e Environmen	t and Heritage,Miss.L	ayne Holloway	<u>Permits</u>	602,1471,4544	
52-2-0534	Big Island	AGD	56	309630	6181370	Open site	Valid	Artefact : -	Open Camp Site	
	Contact	<u>Recorders</u>	Illaw	arra Prehisto	ory Group			<u>Permits</u>		
52-2-0033	Berkeley;Hooker Point;	AGD	56	301548	6181337	Open site	Valid	Shell : -, Artefact : -	Midden	729,102212
	<u>Contact</u>	<u>Recorders</u>	Univ	ersity of Syd	ney			<u>Permits</u>	1876	
52-2-1728	Red point;	AGD	56	309000	6181000	Open site	Valid	Shell : -, Artefact : -	Midden	102212
	Contact	<u>Recorders</u>	Mr.N	leville Baker				<u>Permits</u>		
52-2-0059	Primbee;Coomaditchy Lagoon	AGD	56	306863	6180802	Closed site	Valid	Artefact : -, Shell : -	Midden,Shelter with Deposit	102212
	<u>Contact</u>	<u>Recorders</u>	0.B F	Pryor				<u>Permits</u>		
52-2-0072	Red Point; 1	GDA	56	308319	6181196	Open site	Valid	Burial : -, Shell : -, Artefact : -	Midden	102212
	Contact	<u>Recorders</u>	Dal E	Birrell,Bill Su	llivan,Niche Er	nvironment and Heri	tage,Miss.Layne H	olloway <u>Permits</u>		
52-2-0476	Red Point	GDA	56	308600	6181780	Open site	Not a Site	Shell : -, Artefact : -	Midden,Open Camp Site	102212
	Contact	<u>Recorders</u>	,			nt and Heritage,Miss.	5	<u>Permits</u>	4544	
52-2-2203	Gloucestor Ave	GDA	56	308230	6182540	Open site	Valid	Artefact : -		102212
	Contact	<u>Recorders</u>	Navi	n Officer Her	itage Consulta	nts Pty Ltd,Niche Env	vironment and He	ritage,Niche <u>Permits</u>	1371,4544	
52-2-2261	Gooseberry Island 1	AGD	56	302000	6180850	Open site	Valid	Shell : -, Artefact : -		102212
	<u>Contact</u>	<u>Recorders</u>	Cher	yl Stanborou	ıgh			<u>Permits</u>		

Report generated by AHIMS Web Service on 24/08/2021 for Poppy Kiem for the following area at Lat, Long From : -34.5, 150.83 - Lat, Long To : -34.43, 150.95. Number of Aboriginal sites and Aboriginal objects found is 33

This information is not guaranteed to be free from error omission. Heritage NSW and its employees disclaim liability for any act done or omission made on the information and consequences of such acts or omission.

AHIMS Web Services (AWS)

Extensive search - Site list report

	SiteName	<u>Datum</u>	<u>Zone</u>	Easting	<u>Northing</u>	<u>Context</u>	Site Status **	<u>SiteFeatures</u>	<u>SiteTypes</u>	<u>Reports</u>
2-2-3024	BR1 Berkeley	AGD	56	302776	6183010	Open site	Valid	Artefact : 1		102212
	<u>Contact</u>	<u>Recorders</u>	Unkr	Unknown Author				Permits	1938	
2-2-3208	Hill 60/ Red Point	AGD		309000	6181000	Open site	Valid	Aboriginal Resource and Gathering : -		102212
	Contact T Russell	Recorders		ue Wesson				<u>Permits</u>		
2-2-3209	Goosberry Island	AGD		302000	6180900	Open site	Valid	Aboriginal Ceremony and Dreaming : -		102212
2 2 2201	Contact T Russell	Recorders	-	ue Wesson	(100000	0 "	17.11.1	Permits		102212
2-2-3201	Hooka Island	AGD		301300	6180900	Open site	Valid	Aboriginal Ceremony and Dreaming : -		102212
	Contact T Russell	Recorders		ue Wesson				<u>Permits</u>		
2-2-3202		AGD	56	308650	6181250	Open site	Valid	Aboriginal Ceremony and Dreaming : -, Aboriginal Resource and Gathering : -		102212
	<u>Contact</u>	<u>Recorders</u>	Ms.S	ue Wesson				<u>Permits</u>	4544	
2-2-3197	Mt Kembla	AGD	56	302000	6186500	Open site	Valid	Aboriginal Ceremony and Dreaming : 1, Aboriginal Resource and Gathering : 1		102212
	Contact T Russell	Recorders	Ms.S	ue Wesson				<u>Permits</u>		
2-2-3199	Fig Tree Site	AGD		303075	6186850	Open site	Valid	Aboriginal Ceremony and Dreaming : -, Aboriginal Resource and Gathering : -		102212
	Contact T Russell	<u>Recorders</u>	-	ue Wesson				<u>Permits</u>		
2-2-3200	Coomaditchie/Official Camps	AGD	56	307000	6181000	Open site	Valid	Aboriginal Ceremony and Dreaming : -, Habitation Structure : -		102212
	<u>Contact</u>	<u>Recorders</u>	Ms.S	ue Wesson				<u>Permits</u>		
2-2-3618	BSS-OS-1	AGD	56	304670	6185580	Open site	Valid	Artefact : -		102212
	<u>Contact</u>	Recorders	Mills	Archaeologi	cal & Heritage	Services Pty Ltd		Permits		
2-5-0081	Red Point Parkyn's Beach	AGD		307595	6180816	Open site	Valid	Shell : -, Artefact : -	Midden	877,2048,1022 12
	<u>Contact</u>	Recorders	K Jef	fcoat				Permits		
	Figtree TRE; Amaroo Avenue	GDA	56	302222	6186473	Open site	Valid	Modified Tree (Carved or Scarred) :		102212
2-2-3675	Figuree TKE, Annaroo Avenue							-		
2-2-3675	<u>Contact</u>	Recorders	Mr.M	lark Simon				- <u>Permits</u>		

Report generated by AHIMS Web Service on 24/08/2021 for Poppy Kiem for the following area at Lat, Long From : -34.5, 150.83 - Lat, Long To : -34.43, 150.95. Number of Aboriginal sites and Aboriginal objects found is 33

This information is not guaranteed to be free from error omission. Heritage NSW and its employees disclaim liability for any act done or omission made on the information and consequences of such acts or omission.

AHIMS Web Services (AWS)

Extensive search - Site list report

<u>SiteID</u>	<u>SiteName</u>	<u>Datum</u>	<u>Zone</u>	Easting	<u>Northing</u>	<u>Context</u>	<u>Site Status **</u>	<u>SiteFeatur</u>	es	<u>SiteTypes</u>	<u>Reports</u>
	<u>Contact</u>	<u>Recorders</u>	Matth	ew Kelleher					<u>Permits</u>	3917	
52-2-4245	Restriction applied. Please contact					Open site	Valid				
	ahims@environment.nsw.gov.au.										
	<u>Contact</u>	<u>Recorders</u>	Mr.Ro	y Barker					<u>Permits</u>		
52-2-4344	Restriction applied. Please contact					Open site	Valid				
	ahims@environment.nsw.gov.au.										
	<u>Contact</u>	Recorders	Mr.Pa	ul House					<u>Permits</u>	4544	
52-2-4502	Gloucester Boulevarde Midden 01	GDA	56	308493	6182251	Open site	Valid	Artefact : -,	Shell : -		
	Contact	<u>Recorders</u>	Niche	Environmen	t and Heritag	e,Miss.Layne Hollowa	ay		Permits	4544	
52-2-4673	PORT KEMBLA MIDDEN	GDA	56	307950	6181308	Open site	Valid	Shell : 1			
	Contact	<u>Recorders</u>	Miss.F	Miss.Rose O'Sullivan,Mr.SINSW Heritage							

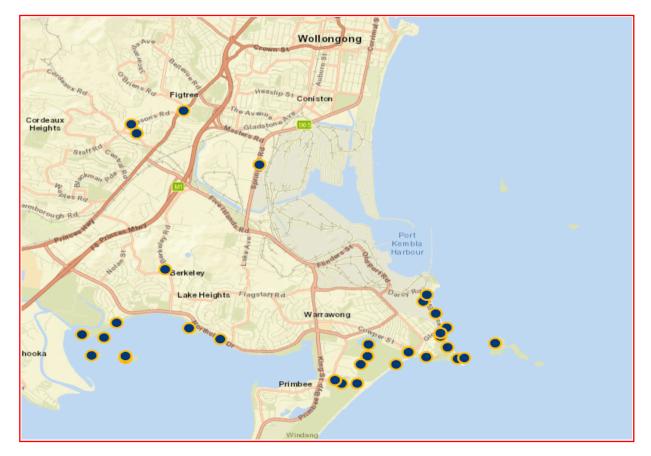
** Site Status

Valid - The site has been recorded and accepted onto the system as valid

Destroyed - The site has been completely impacted or harmed usually as consequence of permit activity but sometimes also after natural events. There is nothing left of the site on the ground but proponents should proceed with caution. Partially Destroyed - The site has been only partially impacted or harmed usually as consequence of permit activity but sometimes also after natural events. There might be parts or sections of the original site still present on the ground Not a site - The site has been originally entered and accepted onto AHIMS as a valid site but after further investigations it was decided it is NOT an aboriginal site. Impact of this type of site does not require permit but Heritage NSW should be notified

Report generated by AHIMS Web Service on 24/08/2021 for Poppy Kiem for the following area at Lat, Long From : -34.5, 150.83 - Lat, Long To : -34.43, 150.95. Number of Aboriginal sites and Aboriginal objects found is 33

This information is not guaranteed to be free from error omission. Heritage NSW and its employees disclaim liability for any act done or omission made on the information and consequences of such acts or omission.


GHD - Newcastle

24 Honeysuckle Drive Newcastle New South Wales 2300 Attention: Poppy Kiem Email: poppy.kiem@ghd.com

Dear Sir or Madam:

AHIMS Web Service search for the following area at Lat, Long From : -34.5, 150.83 - Lat, Long To : -34.43, 150.95, conducted by Poppy Kiem on 24 August 2021.

The context area of your search is shown in the map below. Please note that the map does not accurately display the exact boundaries of the search as defined in the paragraph above. The map is to be used for general reference purposes only.

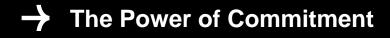
A search of Heritage NSW AHIMS Web Services (Aboriginal Heritage Information Management System) has shown that:

33 Aboriginal sites are recorded in or near the above location.
0 Aboriginal places have been declared in or near the above location. *

Your Ref/PO Number : BlueScope Client Service ID : 616068

Date: 24 August 2021

If your search shows Aboriginal sites or places what should you do?


- You must do an extensive search if AHIMS has shown that there are Aboriginal sites or places recorded in the search area.
- If you are checking AHIMS as a part of your due diligence, refer to the next steps of the Due Diligence Code of practice.
- You can get further information about Aboriginal places by looking at the gazettal notice that declared it. Aboriginal places gazetted after 2001 are available on the NSW Government Gazette (https://www.legislation.nsw.gov.au/gazette) website. Gazettal notices published prior to 2001 can be obtained from Heritage NSW upon request

Important information about your AHIMS search

- The information derived from the AHIMS search is only to be used for the purpose for which it was requested. It is not be made available to the public.
- AHIMS records information about Aboriginal sites that have been provided to Heritage NSW and Aboriginal places that have been declared by the Minister;
- Information recorded on AHIMS may vary in its accuracy and may not be up to date. Location details are recorded as grid references and it is important to note that there may be errors or omissions in these recordings,
- Some parts of New South Wales have not been investigated in detail and there may be fewer records of Aboriginal sites in those areas. These areas may contain Aboriginal sites which are not recorded on AHIMS.
- Aboriginal objects are protected under the National Parks and Wildlife Act 1974 even if they are not recorded as a site on AHIMS.
- This search can form part of your due diligence and remains valid for 12 months.

ghd.com

